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Background Mendelian Randomization (MR) studies assess the causality of an
exposure–disease association using genetic determinants [i.e. in-
strumental variables (IVs)] of the exposure. Power and IV strength
requirements for MR studies using multiple genetic variants have
not been explored.

Methods We simulated cohort data sets consisting of a normally distributed
disease trait, a normally distributed exposure, which affects this
trait and a biallelic genetic variant that affects the exposure. We
estimated power to detect an effect of exposure on disease for
varying allele frequencies, effect sizes and samples sizes (using
two-stage least squares regression on 10 000 data sets—Stage 1 is
a regression of exposure on the variant. Stage 2 is a regression of
disease on the fitted exposure). Similar analyses were conducted
using multiple genetic variants (5, 10, 20) as independent or com-
bined IVs. We assessed IV strength using the first-stage F statistic.

Results Simulations of realistic scenarios indicate that MR studies will re-
quire large (n41000), often very large (n410 000), sample sizes. In
many cases, so-called ‘weak IV’ problems arise when using multiple
variants as independent IVs (even with as few as five), resulting in
biased effect estimates. Combining genetic factors into fewer IVs
results in modest power decreases, but alleviates weak IV problems.
Ideal methods for combining genetic factors depend upon know-
ledge of the genetic architecture underlying the exposure.

Conclusions The feasibility of well-powered, unbiased MR studies will depend
upon the amount of variance in the exposure that can be explained
by known genetic factors and the ‘strength’ of the IV set derived
from these genetic factors.

Keywords Mendelian randomization, instrumental variable analysis, power,
weak instrument, causal inference, two-stage least squares
regression
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Introduction
Mendelian Randomization (MR) is a method used to
test or estimate a causal effect of an exposure on a
disease outcome when the exposure has a known
genetic determinant.1,2 Data on such a genetic deter-
minant, also known as an instrumental variable (IV),
can be analysed jointly with exposure and outcome
data to determine if an observed exposure–disease as-
sociation is causal. Typically, MR is utilized when an
observed exposure–outcome association is potentially
attributable, at least in part, to confounding or reverse
causation. In the absence of these phenomena, simple
measures of association provide more precise effect
estimates.

A valid MR analysis requires that the IV is (i) asso-
ciated with the exposure, (ii) independent of the out-
come given the exposure and confounders of the
exposure–outcome association and (iii) independent
of factors that confound the exposure–outcome rela-
tionship. Because genetic variation is randomly as-
signed prior to conception, it is not expected to be
affected by any confounding factors other than ances-
try, which can be accurately measured and accounted
for using genetic data.3 Consequently, if the IV affects
the outcome only through the exposure, the uncon-
founded effect of the exposure on the outcome can be
captured by comparing the effect of the IV on expos-
ure to the indirect effect of the IV on the outcome. IV
analysis is common in the econometrics literature,4

although MR is a specific type of IV analysis in
which is the IVs are genetic variants.

MR studies are becoming more feasible, as recent
genome wide association (GWA) studies have identi-
fied genetic determinants (typically single nucleotide
polymorphisms) for many health-related biomarkers.
For example, GWA studies have linked high-density
lipoprotein to 11 loci, low-density lipoprotein to
14 loci and triglycerides to 11 loci.5–7 Genetic deter-
minants have also been identified for C-reactive pro-
tein;8,9 plasma levels of vitamins B,10,11 A12 and E;12

mean platelet volume;13,14 blood pressure15,16 and
fasting plasma glucose.17–20 Several recent publica-
tions highlight the potential for GWA studies of
many biomarkers simultaneously.21–24 Such parallel
GWA studies could expand our knowledge of
biomarker-related polymorphisms very quickly, and
as our understanding of these polymorphisms’ func-
tions improve, the broad application of MR method-
ology to epidemiological and biomarker research may
become feasible.

In light of these developments, we have conducted a
simulation study evaluating power and IV strength
requirements for MR analyses using two-stage least
squares (2SLS) regression, the most common statis-
tical method used in MR studies of continuous expos-
ures and continuous outcomes.25,26 We provide power
calculations for IVs of varying strength and exposures
of varying effect, under realistic scenarios given cur-
rent knowledge. We explore the use of multiple

genetic variants in MR studies, employing different
strategies to combine information across variants
and evaluating the consequences of these strategies
on power and overall IV strength, as measured by
the first-stage F statistic in 2SLS. Weak IVs lead to
biased effect estimates in the presence of confounding
of the exposure–outcome relationship.27–30 We intend
for this work to guide researchers in their design of
future MR studies, in selecting appropriate genetic
variants, constructing strong IVs and obtaining ad-
equate sample sizes.

Methods
Power estimates were generated using simulated data
sets of samples drawn from a genetically homogenous
population. Each simulation consisted of 10 000 data
sets containing one or more biallelic loci (G) in
Hardy–Weinberg equilibrium, a continuous exposure
(X) affected by G and a continuous outcome (Y) af-
fected positively by X. Each power estimate was ob-
tained by applying 2SLS to all 10 000 simulated data
sets and determining the percentage of data sets in
which a positive effect of the fitted X on Y was
observed using a two-sided significance test
(a¼ 0.05). The effect estimate from each simulated
data set was also retained. Stage 1 of the 2SLS is a
regression of the X on the IV(s) (G). Stage 2 is a
regression of Y on the fitted X-values from Stage 1.
In other words, only the variation in X that is ex-
plained by the IV(s) is used in Stage 2.

We extract two key parameters from each Stage 1
regression: R2 and the F statistic. R2 is the proportion
of variability in the X that is explained by G, an indi-
cator of power for MR studies. F reflects the ‘strength’
of an IV or a set of IVs. In the presence of X–Y con-
founding, 2SLS effect estimates will be biased towards
the confounded X–Y association, but the size of the
relative bias is inversely related to F (‘relative bias’ is
defined as the ratio of the 2SLS bias to the bias of the
confounded X–Y association).29,30 In the MR litera-
ture, a threshold of F < 10 has typically been used
to define a ‘weak IV’ (the Staiger–Stock rule31). This
rule of thumb is based on the observation that an F
value greater than �11 ensures that relative bias will
be <10% at least 95% of the time, regardless of the
number of IVs used in the analysis.29 The F statistic is
defined as the ratio of the mean square of the model
to the mean square of the error. However, F can be
expressed as a function of the first-stage R2, the
sample size (n) and the number of IVs (k):

F ¼
R2ðn� 1� kÞ

ð1� R2Þk
ð1Þ

Thus, F increases as R2 and n increase, but F decreases
as k increases. We also extract the ‘adjusted R2’ from
each 2SLS regression, a modification of R2 that ad-
justs for inflation due to large numbers of predictors
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and small sample sizes.32 The adjusted R2 is defined
as:

1� ð1� R2Þ
n� 1

n� k� 1
ð2Þ

Thus, for a given R2, the adjusted R2 decreases as the
number of IVs (k) increases and approaches R2 as the
sample size increases. For simulations in which the R2

and/or the adjusted R2 were held constant, the appro-
priate effect sizes were found using an iterative search
process.

Data simulation 1: Power estimates for MR
studies using one genetic variant
Each simulated data set consisted of Y, X and a single
G as an IV, both with and without an unobserved
confounding variable, U (Figure 1a). The genotype
at G was randomly generated, assuming a minor
allele frequency (MAF) of 0.3 and an effect size
(�gx) that resulted in a specific R2 value (either
0.005, 0.01, 0.05 or 0.10). For a fixed R2, varying the
MAF and the effect size does not affect power or F. G
was coded as �1, 0 or 1, representing the presence of
0, 1 or 2X-increaser alleles, respectively. X was mod-
elled as a random number drawn from a standard
normal distribution plus an additive effect of alleles
at G:

xi ¼ �gxgi þ "i with "i � Nð0,1Þ ð3Þ

where �gx represents the effect of G on X. Similarly,
Y was modelled as a random number drawn from
a standard normal distribution plus the linear effect
of X:

yi ¼ �xygi þ "i with "i � Nð0,1Þ ð4Þ

with �xy set to 0.1, 0.3 or 0.5. To explore the effects of
unmeasured confounding on the power and the effect
estimates, we generated similar data sets, but intro-
duced a confounding variable (U), which affects both
X and Y. U is a random number drawn from a stand-
ard normal distribution. X was modelled as

xi ¼ �gxgi þ 0:5ui þ "i with "i � Nð0,1Þ: ð5Þ

Similarly, Y was modelled as

yi ¼ �xygi þ 0:5ui þ "i with "i � Nð0,1Þ: ð6Þ

Power estimates and median 2SLS estimates were
obtained for each unique combination of the param-
eters R2 and �xy over a range of sample sizes (n¼ 500,
1000, 5000 and 10 000). For the scenarios where con-
founding was introduced, U was not used in the 2SLS
analysis, as it is assumed that this is an unmeasured
confounder.

Data simulation 2: Power estimates for
single and multiple variant scenarios
To compare power estimates and F values between
MR analyses using single and multiple genetic

variants as independent IVs, we first generated
power estimates assuming a single variant, G, with
an MAF of 0.3 and effect sizes corresponding to spe-
cific adjusted R2 values: 0.01, 0.05 and 0.10. For these
adjusted R2 values, we chose samples sizes of 5000,
1000 and 500, respectively, resulting in a broad range
of power estimates for each adjusted R2 value.

We then generated power estimates for scenarios
with 5, 10 or 20 variants as independent IVs
(Figure 1b), assuming equal effects for each variant
on X and holding either R2 or adjusted R2 equal to the
single-IV scenarios. For the five-variant model, G is a
matrix containing five variants with X-increaser allele
frequencies of 0.1, 0.3, 0.5, 0.7 and 0.9. These same
frequencies (0.1, 0.3, 0.5, 0.7 and 0.9) were used for

Figure 1 Causal diagram for a Mendelian randomization
study using (a) a single instrumental variable, (b) multiple,
independent instrumental variables (c) a single combined
instrumental variable and (d) a major gene and polygene
instrumental variables
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the 10- and 20-variant models, with each variant rep-
resented two and four times, respectively. For all
scenarios, power estimates and mean F statistics
were generated both in the presence and absence of
the unobserved confounding variable introduced in
Data simulation 1.

These analyses allowed us to compare the multivar-
iant scenarios to the single-variant scenarios in two
ways: holding R2-adjusted constant and holding R2

constant. This was done to demonstrate which R2

measure was more closely related to overall power
across all single- and multivariant scenarios.

Data simulation 3: Power estimates for
multivariant scenarios where variants are
combined to reduce the number of IVs
To investigate the consequences of combining mul-
tiple variants into a composite IV, we simulated
data sets using three distinct models regarding the
genetic architecture of X: (i) equal effects on X for
each variant in matrix G, (ii) a continuum of effects
on X for the variants contained in G and
(iii) major-gene and polygene effects on X for the
variants contained in G. All data sets were generated
both with and without the unobserved confounding
variable U introduced in Data simulation 1.

For the ‘equal effects’ model, we simulated three
types of data sets containing either 5, 10 or 20 vari-
ants of equal effect. The effect size, �gx, was chosen to
produce an adjusted R2 of 0.05 when using all the
variants as independent IVs in one 2SLS regression.
Allele frequencies were identical to Data simulation 2.

For the ‘continuum of effects’ model, we again
simulated three types of data sets, containing either
5, 10 or 20 variants that affect X. However, in this
model, a range of effect sizes were assigned to
the variants in the matrix G. These effects of these
variants were weighted to be 0.5, 0.75, 1.0, 1.25
or 1.5 times as large as some reference allelic
�gx value, which was chosen to result in an
adjusted R2 of 0.05 when using all the variants as
an independent IV in one 2SLS regression. Each of
the five weights were represented once, twice or
four times in the set of 5, 10 or 20 variants,
respectively.

The ‘major-gene/polygene’ model consisted of
10 variants, two of which were assigned strong effects
on X (i.e. major genes); the remaining eight variants
were assigned weaker effects (i.e. polygenes), each of
equal magnitude, defined as the reference �gx. The
two major-gene effects were five and three times as
strong as the reference �gx. The reference �gx was
chosen to result in an adjusted R2 of 0.10 when
using all 10 variants as independent IVs in one
2SLS regression.

For the equal effects model, 2SLS power analyses
were conducted using each variant as an independent
IV in one regression (Figure 1b) and using a single
composite IV—an allele count (i.e. total number

of X-increaser alleles present for all variants;
Figure 1c). Identical analyses were conducted for
the ‘continuum of effects’ model, but with an add-
itional composite IV—a weighted allele count—
where each X-increaser allele present is weighted by
its true effect on X before the alleles are summed.
Applications of the weighted allele count method
would require previous knowledge of the magnitudes
of the associations between the Gs and X. For the
major-gene/polygene model, we conducted analyses
identical to those for the ‘continuum of effects’
model, but included an additional analysis using
three IVs in a single 2SLS regression: two independ-
ent IVs for the major-gene effects and a single allele
count IV for the polygenic effects (Figure 1d).

Data simulation 4: Power for MR under
different types of unmeasured confounding
We conducted additional simulations under both
positive and negative confounding, varying the
strength of the effect of the unobserved confounding
variable U on X and Y. We explored the effects of
these various confounding scenarios using the equal
effects model from Data simulation 3, using a sample
size of 1000 and an adjusted R2 of 0.05.

Results
Power estimates for detecting significant causal
effects (two-sided a¼ 0.05) in single-variant MR stu-
dies are presented in Table 1. The estimated power
increases as the asymptotic R2, �xy and n increase.
The first-stage F increases as the asymptotic R2 and
n increase. Weak IV scenarios are shaded in grey, with
darker grey corresponding to lower F values and more
bias away from the null when positive X–Y confound-
ing is present. Adequately powered scenarios (power
480%) are shown in bold, none of which have a weak
IV problem (Table 1).

Power for MR studies using multiple variants as in-
dependent IVs is shown in Table 2. When the adjusted
R2 is held constant, power and unadjusted R2 increase
as the number of variants (i.e. IVs) increases, while F
decreases. When R2 is held constant under no X–Y
confounding, there is no impact on power when the
number of variants is increased; however, the adjusted
R2 and F decrease as the number of IVs increases.
Each multi-IV scenario has a weak IV problem
(shown in grey), resulting in upward bias in the
effect estimates in the presence of confounding, espe-
cially for very low F values (dark grey). This bias re-
sults in power estimates that are artificially inflated
compared with the corresponding unconfounded
(and unbiased) scenario.

Comparisons of multivariant MR studies using inde-
pendent IVs vs a composite IV are shown in Table 3.
For the unconfounded scenarios, combining variants
of equal effect into an X-increaser ‘allele count’ IV
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resulted in slight decreases in R2 and power, when
compared with using each G as an independent IV;
these decreases becomes more substantial as the
number of variants increases. In contrast, combining
the variants in to a single IV has no impact on the
adjusted R2 values, which are identical to the values
from the multi-IV scenario. Each multi-IV scenario
had a weak IV problem (shaded in grey), again re-
sulting in bias-inflated power estimates under con-
founding. Using an allele count IV resulted in large
increases in F, eliminating the ‘weak-IV’ bias observed
in the presence of X–Y confounding.

When combining variants with a continuum of ef-
fects into a single IV, using an allele count IV
increased F, while resulting in decreases for R2, ad-
justed R2 and power, compared with the multi-IV
scenario (Table 3). Using the ‘weighted allele count’
IV also resulted in large increases in F and decreases
in R2 and power (compared with the multi-IV scen-
ario), although R2 and power estimates greater than
those obtained for the allele count IV. The weighted

allele count method produced an adjusted R2 similar
to that obtained from the multi-IV scenario.

When constructing an IV using two variants with
‘major-gene’ effects and eight ‘polygenic’ variants of
smaller effect, using an allele count resulted in a sub-
stantial decrease in R2 and power and a large increase
in F (compared with the 10-IV scenario). Using the
weighted allele count IV, power was only slightly
lower than when using all 10 IVs and the F statistic
was much larger. If the variants with large effects
were treated as independent IVs and the remaining
polygenic variants were combined into a single allele
count IV, power was similar to the weighted allele
count IV scenario. The F statistic was smaller in this
case (mean F¼ 20), but still 411, resulting in accept-
able levels of relative bias (<10%).

Under each model presented in Table 3, introducing
positive X–Y confounding results in effect estimates
that are biased away from the null and bias-inflated
power estimates when compared with the identical
model with no X–Y confounding. Table 4 shows the

Table 1 Power estimates, median effect estimates and instrument strength (F) for Mendelian randomization studies using
one genetic variant

Sample size
Asymptotic R2,a

Fb Unadj.
mean

R2

No X–Y confounding X–Y confounding

Power estimatec (Median effect estimatec) Power estimatec (Median effect estimatec)

�xy �xy

0.0 0.1 0.3 0.5 0.0 0.1 0.3 0.5

n¼ 500
0.005 3 0.007 0.00 (0.00) 0.00 (0.10) 0.03 (0.30) 0.09 (0.50) 0.01 (0.02) 0.02 (0.13) 0.06 (0.33) 0.14 (0.52)

0.01 6 0.012 0.00 (0.00) 0.01 (0.10) 0.06 (0.30) 0.18 (0.50) 0.01 (0.00) 0.03 (0.11) 0.11 (0.32) 0.23 (0.51)

0.05 27 0.052 0.01 (0.00) 0.07 (0.10) 0.35 (0.30) 0.70 (0.50) 0.03 (0.00) 0.08 (0.10) 0.35 (0.30) 0.68 (0.50)

0.10 56 0.102 0.02 (0.00) 0.11 (0.10) 0.60 (0.30) 0.94 (0.50) 0.03 (0.00) 0.12 (0.10) 0.59 (0.30) 0.92 (0.50)

n¼ 1000

0.005 6 0.006 0.00 (0.00) 0.01 (0.10) 0.06 (0.30) 0.18 (0.50) 0.01 (0.01) 0.03 (0.11) 0.11 (0.31) 0.23 (0.51)

0.01 11 0.011 0.01 (0.00) 0.03 (0.10) 0.14 (0.30) 0.35 (0.50) 0.02 (0.00) 0.05 (0.10) 0.18 (0.30) 0.37 (0.50)

0.05 54 0.051 0.02 (0.00) 0.11 (0.10) 0.58 (0.30) 0.92 (0.50) 0.03 (0.00) 0.12 (0.10) 0.58 (0.30) 0.90 (0.50)

0.10 113 0.101 0.02 (0.00) 0.18 (0.10) 0.87 (0.30) 1.00 (0.50) 0.03 (0.00) 0.19 (0.10) 0.86 (0.30) 1.00 (0.50)

n¼ 5000

0.005 27 0.005 0.02 (0.00) 0.07 (0.10) 0.32 (0.30) 0.68 (0.50) 0.03 (0.00) 0.08 (0.10) 0.34 (0.30) 0.67 (0.50)

0.01 52 0.010 0.02 (0.00) 0.10 (0.10) 0.58 (0.30) 0.92 (0.50) 0.03 (0.00) 0.12 (0.10) 0.57 (0.30) 0.90 (0.50)

0.05 263 0.050 0.02 (0.00) 0.36 (0.10) 1.00 (0.30) 1.00 (0.50) 0.03 (0.00) 0.37 (0.10) 1.00 (0.30) 1.00 (0.50)

0.10 559 0.100 0.03 (0.00) 0.65 (0.10) 1.00 (0.30) 1.00 (0.50) 0.03 (0.00) 0.65 (0.10) 1.00 (0.30) 1.00 (0.50)

n¼ 10 000

0.005 51 0.005 0.02 (0.00) 0.10 (0.10) 0.56 (0.30) 0.92 (0.50) 0.03 (0.00) 0.11 (0.10) 0.56 (0.30) 0.90 (0.50)

0.01 105 0.010 0.02 (0.00) 0.17 (0.10) 0.84 (0.30) 1.00 (0.50) 0.03 (0.00) 0.18 (0.10) 0.83 (0.30) 1.00 (0.50)

0.05 528 0.050 0.02 (0.00) 0.63 (0.10) 1.00 (0.30) 1.00 (0.50) 0.03 (0.00) 0.62 (0.10) 1.00 (0.30) 1.00 (0.50)

0.10 4999 0.100 0.03 (0.00) 0.92 (0.10) 1.00 (0.30) 1.00 (0.50) 0.02 (0.00) 0.91 (0.10) 1.00 (0.30) 1.00 (0.50)

aThis can also be interpreted as the ‘adjusted R2’ for the regression of the exposure (X) on the genetic variant (G).
bScenarios with weak instrument problems (i.e. low F values) are shown in grey, with darker shading corresponding to lower
F values and more bias in the presence of X–Y confounding.
cPower and median effect estimates were obtained using 10 000 simulations. Scenarios with power 480% are shown in bold.
Median effect estimates are shown in parentheses below the power estimates.
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effects of introducing various types of unmeasured
X–Y confounding on the estimates from the ‘equal-
effects model’. Increasing the strength of the con-
founding effects increases the magnitude of the bias
for the weak IV scenarios. The direction of the bias is
always towards the confounded association esti-
mate—away from the null under positive X–Y con-
founding and towards the null under negative X–Y
confounding.

Discussion
In this simulation study of power and IV strength
requirements for MR studies using 2SLS regression,
we have evaluated power estimates for single-variant
studies over a range of allele frequencies, effect sizes
and sample sizes. Our results indicate that
well-powered single-IV MR studies are not prone to
weak IV problems, and therefore provide unbiased
effect estimates in the presence of unmeasured
confounding.

For MR studies using multiple variants, we have
described the relationships among numerous key
study variables, including the number of variants,
variant effect sizes, exposure effect sizes, R2, adjusted
R2, F and power. Our results suggest that power to
detect a causal effect depends strongly on the R2

value of the first-stage regression (not the adjusted
R2) and is not influenced by allele frequencies or
the number of IVs included in a regression.
However, for a fixed R2, F decreases as the number
of IVs increases, potentially creating weak IV prob-
lems (i.e. low F values). The weak IV problem has
been extensively described in the econometrics litera-
ture.27–30,33 In short, if an X–Y association is con-
founded, bias increases as F decreases. This bias is
substantial for small F values (�4), but typically be-
comes negligible for F values 411 (Tables 1–4). This
work shows that using each variant as an independ-
ent IV results in maximal power, but this strategy is
often undesirable because of low F values. The weak
IV problem can be overcome by combining the IVs,
with modest reductions in power.

We have demonstrated several methods for combin-
ing IVs and explored their effects on power. The allele
count IV is appropriate when each G has a similar
effect, but suboptimal otherwise, as the effect sizes
of the variants will be inherently mis-specified. If
effect sizes are known, one can calculate a weighted
allele count that has only slightly less power than
using each variant as an independent IV and avoids
weak IV problems. However, this method requires ac-
curate effect estimates derived from previous research
on independent samples. An alternative option is to
use knowledge regarding ‘major-gene’ and ‘polygenic’
effects to create multiple IVs: one for each variant of
large effect, and one representing the collective effects
of the variants of small effect. For some circulating
proteins, this model could potentially representT
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cis-effects (which tend to be strong) and trans-effects
(which tend to be weak) on gene transcription.34 This
model requires no specific information on effect sizes,
just knowledge of specific major genes and polygenes.

This work can be better understood in the context of
Figure 2, which shows the relationship between R2, F,
sample size (n) and number of IVs (k) (from
Equation 1), in the context of the F thresholds pro-
vided by Stock et al.29 A set of IVs with an F below
the threshold of �11 is considered weak and will lead
to relative bias 410% in the presence of X–Y con-
founding, with increasing bias as F decreases. This
threshold can be increased or decreased to allow for
lower or higher levels of relative bias, respectively.29

Stock and Yogo29 also provide thresholds for F which
keep the actual size of the nominal 5% significance
test <15% in the presence of ‘maximal’ confounding
(i.e. X–Y correlation of 1). Unlike the ‘relative-bias’
threshold used in this work, the ‘actual-size’ thresh-
old increases substantially as the number of IVs in-
creases; however, because such ‘maximal’
confounding is unrealistic for epidemiological applica-
tions, we focus on the ‘relative-bias’ threshold in this
work.

GWA studies typically identify several weak, inde-
pendent genetic effects for biomarkers of interest.
MR studies utilizing this information will require

careful treatment of the weak IV problem, as infor-
mation on genetic variants of weak effect will often
need to be combined to produce strong IVs and an
adequately powered MR analysis. The ideal method
for translating genetic information into a reasonable
number of IVs depends on several factors, including
the total number of variants and their relative effect
sizes. If using a small number of variants (<5), it may
be possible to treat them as independent IVs, depend-
ing upon the value of F and the number of IVs.30 This
method will maximize power, while making no as-
sumptions regarding the effect sizes of each G. If
fewer IVs are needed, the model used to construct
the IVs should consider the relative effect size of
each G, while attempting to maximize the first-stage
R2 and F values and minimize the risk of effect-size
mis-specification (resulting in loss of power). Models
should be based on existing epidemiological and bio-
logical evidence.

This work is timely, as GWA studies have recently
identified genetic determinants for a wide array of
circulating biomarkers with known and suspected
roles in a wide array of diseases (e.g. C-reactive pro-
tein,8,9 urate,35–39 lipids and triglycerides,5–7 fasting
plasma glucose17–20 and B vitamins10,11). Clinically
relevant physical measures (e.g. blood pressure15,16

and body mass index40–42) and life-course traits

Figure 2 Relationship between F and R2 for varying sample sizes and number of instrumental variables. The F thresholds
from Stock et al.29,30 are shown as horizontal lines
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(e.g. age at menarche and menopause43–48) have also
been shown to have genetic determinants. These
variants are often not causal, but in linkage disequi-
librium with a causal variant. The proportion of
total phenotypic variance in these traits explained
by the collective effects of known, common variants
(R2) is rarely 40.10 but often 40.01, while some stu-
dies fail to report the overall R2 for genetic factors.
Thus, we have conducted our power analyses
using reasonable R2 values, in light of current
knowledge.

Our simulated data sets were created according to
the three key criteria for MR studies: the IV is
(i) associated with X, (ii) independent of Y given X
and X–Y confounding factors and (iii) independent of
factors that confound the X–Y association.
Assumption 1 should be well established when con-
ducting an MR study, but Assumptions 2 and 3 may
require careful attention. Assumption 2 (known as
the ‘exclusion restriction’ in the econometrics litera-
ture) requires that G affect Y only through X. This
assumption could be violated in the presence of plei-
otropy,49 where a variant has independent effects on
multiple traits (i.e. both X and Y). A violation could
also occur if G is in linkage disequilibrium with a
nearby variant that affects Y, thereby inducing a cor-
relation between G and Y. It is not possible to test
Assumption 2 by testing for G–Y independence while
adjusting for X, because this adjustment will induce
an association between G and Y in the presence of X–Y
confounding (i.e. X is a ‘collider’), even when
Assumption 2 is valid; however, this test could be
used to assess the absence of X–Y confounding.
When using multiple IVs, it is possible to assess
Assumption 2 by ensuring the estimates for each IV
are similar (the ‘over-identification test’50), but this
itself requires additional assumptions. Assumption 3
could be violated as a consequence of population
stratification, if the distributions of G, X and Y differ
between sub-groups of the study sample;51 however,
these differences can be measured and adjusted for
using genetic data.3

Our analysis makes several additional simplifying
assumptions, namely, additive allelic effects for each
variant, no gene–gene interactions and a linear effect
for X (on Y). However, if these assumptions were
known to be invalid, such knowledge could be incor-
porated into the model that relates G to the IV(s). For
example, for variants with known non-additive effects
on X (i.e. dominant or recessive), a binary G variable
representing a dominant or recessive effect could be
used as an independent IV or as an additional factor
included in an allele count. IVs can also be con-
structed using data on haplotypes25,26 rather than
single variants. Gene–gene interactions could be mod-
elled in a number of ways, including creating inde-
pendent IVs representing the presence of effects due
to interaction or including interaction terms when
generating weighted allele counts.

In this analysis, we use the 2SLS regression on
simulated cohort data sets to obtain an estimate of
the causal effect of X on Y, when both are continuous
variables. If there is heterogeneity in the effect of X on
Y between individuals then although the 2SLS estima-
tor does give an estimate of the causal effect, its pre-
cise interpretation is somewhat complicated.52,53 The
Wald estimator can be used for continuous X and Y
variables and produces point estimates identical to the
2SLS method; however, this method cannot accom-
modate multiple IVs.1 When the X variable is binary
rather than continuous, it is possible to estimate
so-called local average treatment or (with additional
assumptions) the population average treatment
effect.54,55 When Y is binary, several other methods
are available56 and a description of some of these
for epidemiologists is given in Rassen et al.57 These
methods include probit structural equation models,
two-stage logistic models and generalized method of
moments estimators. The biases that can arise with a
continuous X and a binary Y are difficult to com-
pletely account for using standard statistical methods,
although bias can be reduced using a residual-based
adjustment in a two-stage logistic model and quanti-
fied under varying degrees of hypothesized X–Y con-
founding using sensitivity analyses.58 The causal
inference literature has developed methods to
handle such settings,59–61 but these impose an as-
sumption of homogeneity or give only local causal
effects. The power calculations derived here are valid
only for cohort studies, as case–control studies require
analysis techniques that integrate data on disease in-
cidence into the analysis.62 For example, if we let p
denote the outcome prevalence in the population and
we let p denote the ratio of cases to the sum of cases
and controls in the study, then to conduct MR ana-
lyses with case–control data, we could use standard
IV techniques but weight each case by p/p and each
control subject by (1�p)/(1�p) to obtain valid
results.63

GWA studies are providing new tools for exploring
causation using MR studies, but these tools must be
applied carefully. The feasibility of MR studies will
depend heavily upon the amount of variance in X
that can be explained by known genetic factors and
our understanding of those genetic effects. Given cur-
rent knowledge of the genetic determinants of expos-
ures of interest, samples sizes for MR studies will
need to be quite large (41000, sometimes 410 000).
As more is learned regarding the genetics of
health-related biomarkers, MR methods may become
more efficient and broadly applicable.
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KEY MESSAGES

� In Mendelian randomization studies, genetic factors that influence an exposure of interest can be
used as ‘instrumental variables’ to assess the causality of an exposure–disease association using a
two-stage least squares regression.

� Well-powered Mendelian randomization studies will require large (n41000), often very large
(n410 000), sample sizes.

� Using multiple genetic variants as instrumental variables can lead to ‘weak instrument’ scenarios, in
which effect estimates may be substantially biased.

� Combining genetic factors into fewer instrumental variable results in modest power decreases, but
reduces the ‘weak instrument’ bias.

� Ideal methods for combining genetic factors into fewer instrumental variables depend upon know-
ledge of the genetic architecture underlying the exposure.
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Investigations into the aetiology of common complex
diseases based on observational data should make use
of any opportunity to reduce bias due to unobserved
confounding. In this context, it has become popular to
exploit instrumental variable (IV) methods via
Mendelian randomization but the key to success lies
in finding suitable genetic instruments. Genome-wide
association studies are increasingly yielding large
numbers of biomarkers and the understanding of
the functionality of these variants is continually im-
proving. However, genetic instruments typically ex-
plain only a small proportion of the overall variation
in a given exposure and are therefore loosely regarded
as ‘weak’ instruments. Combining several instruments
intuitively seems like a plausible approach to improv-
ing overall instrument strength. Given the likely avail-
ability of ever more genetic instruments in the
foreseeable future, an investigation into the power
and instrument strength requirements of Mendelian
randomization analyses with multiple instruments, as
proposed by Pierce et al.1, is both relevant and timely.

In a Mendelian randomization study, the typical
target of inference is the effect of an exposure X on
a disease outcome Y in the presence of unmeasured
confounding factors, U, using one or a combination
of several genetic variant(s), G, as an IV. It is often
assumed that X and Y are continuous and that all
relationships are linear with no interactions, as in
Pierce et al.1 (Note that the linear models in
Equations (4) and (6) in Pierce et al.1 are not correct,

as stated: gi should be replaced by xi, as implied in the
surrounding text, and not as written.) The causal par-
ameter of interest is the effect that manipulating X, to
change it by one unit, has on Y—the so-called average
causal effect (ACE)—and happens to coincide with
the coefficient of X in the regression of Y on X and
U under the above model assumptions. The two-stage
least squares (2SLS) IV estimator is commonly used
in this context, as it is asymptotically unbiased for the
ACE under these model assumptions, but, crucially,
this is not necessarily the case in finite samples.

In the work of Pierce et al.,1 simulation studies were
carried out where different strategies for combining
multiple genetic variants into instruments were con-
sidered, and their impact on power to detect a causal
effect of X on Y, based on 2SLS, assessed. The authors
focus on the case of ‘weak’ instruments because of
their relevance to Mendelian randomization applica-
tions. The problem with weak instruments is 2-fold:
not only is there limited power to detect any effect at
all but there can also be ‘weak instrument bias’.
Bound et al.2 noted that any correlation between
G and U, however small, can lead to large inconsis-
tencies in the IV estimate if the true relationship
between G and X is weak and the sample size insuf-
ficiently large to compensate. Even when G is a legit-
imate instrument and no such correlation with U
exists on a population level, sampling variation can
induce an empirical correlation and hence bias in
the IV estimate. The bias is in the direction of

752 INTERNATIONAL JOURNAL OF EPIDEMIOLOGY




