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Abstract
Background—Morbidity and mortality associated with heart failure remains high. A wide
variety of demographic and clinical factors, as well as biomarkers are associated with increased
mortality. Despite this, most multivariate predictive models for heart failure mortality have
predictive accuracies characterized by a C-statistic (area under the receiver operating curve) of
around 0.74.

Methods and Results—We analyzed data on 963 patients enrolled in the Vesnarinone
Evaluation of Survival Trial (VEST), including circulating levels of two cytokines (TNF and IL-6)
and their receptors sampled at baseline, and at 8, 16 and 24 weeks. We built multivariate logistic
regression models using standard clinical variables and time-series of cytokine and cytokine
receptor levels, using independent components analysis to handle collinearity among cytokine
measurements, and L2-penalized stepwise regression for variable selection. We also built
ensemble models with these data using gentle boosting. Our multivariate logistic regression model
using time-series cytokine measurements predicts one-year mortality significantly better (p=0.001)
than the baseline model, with a C-statistic of 0.81±0.03. Without the cytokines, the baseline model
has a C-statistic of 0.73±0.03, and with only baseline cytokine and cytokine receptor levels added,
the model has a C-statistic of 0.74±0.04. An ensemble model of 100 decision stumps with serial
cytokine measurements has a significantly better (p=0.04) C-statistic of 0.84±0.02. An ensemble
model with baseline cytokine data and without the serial measurements has a C-statistic of
0.74±0.04.

Conclusions—Significant gains in accuracy of one year mortality prediction in chronic heart
failure can be obtained by using logistic regression models that incorporate serial measurements of
biomarkers such as cytokine and cytokine receptor levels. Ensemble models capture inherent
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variability in large patient populations, and boost predictive accuracy through the use of time-
series measurements.
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heart failure; mortality prediction; time-series measurements; ensemble models

Introduction
Morbidity and mortality associated with heart failure (HF) remain high [1,2]. Expensive
management strategies for the treatment of advanced HF such as left ventricular assist
devices and heart transplantation have improved both survival and quality of life for patients
with HF [3]. This has led to the need to accurately predict both short and long term survival
not only for physicians to time such interventions, but also to discuss prognosis with patients
and to help with end of life decisions.

A wide variety of factors has been associated with increased mortality in HF including
demographic factors (e.g., gender), clinical factors (e.g., renal dysfunction), co-morbidities
(e.g., diabetes), cardiac imaging markers (e.g., cardio-thoracic ratio and ejection fraction)
and serum biomarkers (e.g., brain natriuretic peptide (BNP) and C-reactive protein (CRP)).
Some of the well known mortality prediction models are from the Enhanced Feedback for
Effective Cardiology Treatment (EFFECT) study [4], the Acute Decompensated Heart
Failure National Registry (ADHERE) [5] for 30 day mortality prediction for hospitalized
patients, the Candesartan in Heart Failure: Assessment of Reduction in Mortality and
Morbidity (CHARM) trial [6], and the Seattle Heart Failure Model (SHFM) [7] for 1, 2 and
5 year mortality prediction for ambulatory patients. The predictive power of these
multivariate models, as measured by the C-statistic, or the area under the receiver operating
curve, varies from 0.68–0.73 for short-term to 0.73–0.79 for long-term survival. Of these,
the SHFM has been extensively validated [8] on many data sets. Despite the intuitive appeal
of these models, the less than optimal accuracy has limited the routine use of these models in
clinical practice. Improved estimation of the risk of mortality might significantly impact the
ability of physicians to formulate more appropriate treatment plans.

Various biomarkers including inflammatory biomarkers such as cytokines and cytokine
receptors [9] have been shown to be prognostically important. Statistical machine learning
[10] offers principled approaches to incorporating data on such markers into current risk
estimation models. The aim of the present study was to develop an improved model for
predicting survival in patients with HF, using statistical machine learning algorithms to
integrate time-series measurements of cytokine and cytokine receptor levels with the
standard clinical variables used in prognostic modeling. Here, we also evaluate whether an
“ensemble” of models can estimate one-year survival better than a single model system.

Methods
Study sample

In our analysis, we used data from the first 1200 participants in the Vesnarinone Evaluation
of Survival Trial (VEST) [11] for whom measurements of the levels of plasma tumor
necrosis factor (TNF) interleukin-6 (IL-6) and their receptors: soluble TNF receptors
(sTNFR1 and sTNFR2), and soluble IL-6 receptor (sIL6R), were gathered at baseline, 8, 16,
24, and 48 weeks. No serial measurements other than the cytokines are available for this
cohort of patients. The study protocol for measuring all the predictor variables, except for
the cytokines, has been previously published in [9]. Detailed description of the assays for

Subramanian et al. Page 2

Circ Heart Fail. Author manuscript; available in PMC 2012 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



measuring cytokines as well as their coefficients of variation has been presented previously
[12 (data supp.),13].

Thirty one patients were excluded from the analysis (18 patients with NYHA class II and 13
patients with incorrect baseline measurements). From the remaining 1169 patients with
NYHA functional class III and IV, we eliminated 206 patients for whom various baseline
variables were missing, following the methodology previously used [12,13]. Baseline
information on each patient includes age, gender, weight, NYHA class, ischemic or non-
ischemic etiology, cardiothoracic ratio, left ventricular ejection fraction (LVEF), blood urea
nitrogen (BUN), hepatic enzymes: alanine aminotranferease (ALT) and aspartate
aminotransferase (AST), serum sodium and potassium, creatinine, as well as creatinine
clearance, percentage of lymphocytes and quality of life as measured by the Minnesota
Living with Heart Failure questionnaire [14]. We also include vesnarinone dose (placebo, 30
milligrams, 60 milligrams) for each patient.

Incorporating time series measurements into logistic regression models
The above data from the cytokine database of the VEST trial was subject to a binary
classification analysis, where patients who survived beyond 52 weeks after entry into the
trial were assigned to one class (class 0), and patients who died before 52 weeks were
assigned to the other class (class 1). Here we were interested in modeling survival as a
dichotomous outcome variable (alive or dead) at a defined point in time, namely 52 weeks
after baseline randomization visit. The rationale for this approach was based on the premise
that if a clinician recognized that there is a high probability of mortality within one year, it
would prompt the recommendation of more aggressive life-saving therapies (e.g., circulatory
assist device, or a cardiac transplant). Conversely, knowing that there is a low probability of
mortality within a year, a clinician might not seek to pursue aggressive strategies because of
concern about the inherent morbidity and mortality of these therapies. The standard
modeling methodology for problems with dichotomous outcome variables is logistic
regression [10].

In order to determine the utility of time series measurements, we built three logistic
regression models to predict survival beyond 52 weeks after entry into the trial. The first
model uses standard baseline measurements as predictor variables. It allows us to compare
our results with existing work in the literature. The second model adds baseline cytokine
measurements to the predictor variables of the first model. It measures the incremental value
of adding baseline cytokines to the standard model. The third model includes cytokine
measurements up to week 24 to the second set of predictor variables. In constructing this
model, we treat cytokine levels for patients who die before 24 weeks as missing data. This
model provides an assessment of the utility of serial follow-up measurements to predict
survival. Clearly, the third model uses more recent information than the first two models;
however it is not a priori obvious that follow-up cytokine levels (baseline or recent relative
to the 52 week horizon) have predictive value for one-year survival. Additional details of the
statistical modeling including the handling of collinearity in time series measurements,
model selection and cross-validation for model assessment are presented in Supplemental
Methods.

Evaluation of ensemble models
Traditional logistic regression produces linear models. In order to handle non-linear effects
within the framework of logistic regression, the statistical model has to explicitly include
interaction terms in the analysis. Given that there are an exponential number of possible
interaction terms to consider, it becomes computationally prohibitive to exhaustively
enumerate and evaluate each interaction, particularly when there a number of predictive
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variables built into the model. An alternative approach is to use the well-established method
termed “ensemble modeling” derived from statistical machine learning [10]. Ensemble
models achieve high classification accuracy by combining the results of multiple statistical
models. Instead of learning a single global model over the entire data, ensemble learning
produces a set of models. Given data for a new patient, each component model in the
ensemble classifies the patient as a survivor or non-survivor for the 52 week horizon. The
final classification for the patient is the category that is predicted by a majority of the
component models of the ensemble. Ensemble classifiers are automatically learned using
boosting, a special family of machine learning techniques [10]. Additional details of
ensemble modeling are presented in Supplemental Methods.

Results
Descriptive statistics on the 963 patients in our study are summarized in Table 1. Univariate
analysis using the t-test reveals that LVEF, cardio-thoracic ratio, BUN, serum sodium,
creatinine and creatinine clearance, percentage lymphocytes and the quality of life scores are
significantly different between the cohort that survives past one year from entry into the
trial, and the cohort that did not survive. The non-survivors were more likely to be male,
NYHA class IV and have an ischemic etiology of HF. The cytokine levels at baseline and at
24 weeks were significantly different, with soluble TNF-receptor 1, soluble TNF-receptor 2,
and IL-6 being the most important cytokines, as we have described previously [9]. Similar
differences hold for cytokine levels at 8, and 16 weeks.

Incorporating time-series measurements into logistic regression models
There are 18 predictor variables comprising the standard baseline measurements which were
used to build the first logistic regression model, shown in Table 2. We used ten-fold cross-
validation to assess the predictive accuracy of the model. The C-statistic of this baseline
model was 0.73 ± 0.03. The variables BUN, LVEF, cardio-thoracic ratio and percentage
lymphocytes account for almost all of the variability in the outcome variable.

We next added baseline cytokines, transformed by ICA (see Supplemental Methods), to the
18 standard predictors. The new model is shown in Table 3. As shown, BUN, LVEF,
cardiothoracic ratio and percentage lymphocytes continue to be important. The estimated
coefficients for these four predictors are very similar to the ones for the previous model. The
independent component factor coefficients indicate that baseline levels of IL-6 and TNF add
a modest increase to the C-statistic of the model, which was 0.74±0.04 in ten-fold cross-
validation.

The final model that we constructed uses the 18 basic predictors and five major components
of the ICA-transformed cytokine levels at baseline and for weeks 8, 16, 24. The estimated
model parameters are shown in Table 4. The ten-fold cross-validated C-statistic for the full
model was 0.81±0.03. BUN, cardio-thoracic ratio, LVEF, and percentage lymphocytes
continued to be significant predictors as in the previous models. A study of the independent
components factor coefficients shows that the new significant predictors were the TNF and
TNF receptors at weeks 8, 16 and 24 (factor X2 and X3), IL-6 at baseline, week 8 and week
24 (factor X5), and IL-6 receptor levels at baseline, week 8 and week 24 (factor X2). Each
independent factor emphasizes a different aspect of the underlying cytokine measurements.
The importance of the baseline cytokine values in the model was reduced in the presence of
serial follow-up measurements of cytokines. The model accounts for the variance in one-
year survival significantly better, as demonstrated in the significant improvement of the ten-
fold cross-validated C-statistic from 0.73 ± 0.03 to 0.81 ± 0.03 (p=0.001). Thus the use of a
statistical model that incorporates a series of timed measurements of biomarkers (in this
case, cytokines) is more accurate than a model that utilizes a single measurement of a
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biomarker obtained at baseline. Figure 1 shows the receiver operating characteristic curve
for all three models and visually demonstrates that follow-up measurements of cytokine
levels add significant predictive power.

The net reclassification improvement (NRI) is an alternative to the C-statistic for binary
classification problems. For our analysis, there is a 1.1% improvement in NRI in moving
from the logistic regression model built without cytokines to one with baseline cytokines
alone. The improvement in NRI is about 8.7% when comparing the logistic regression
model with cytokines up to 24 weeks, against the logistic regression model with baseline
cytokines alone. Thus, the NRI measure is consistent with improvements observed in the C-
statistic.

An important question that arises from this analysis is whether the improvement in accuracy
in predicting mortality at 52 weeks from the time of randomization came from using data
available at 24 weeks, as opposed to the data that were obtained at baseline. We did not use
the entire complement of measurements at 24 weeks to make predictions of survival at the
52 week time point; rather, we only added the measurement of the cytokine and cytokine
receptors up to week 24. The majority of the measurements used in the model were taken
from baseline measurements. To make the comparison between the models fair, so that they
both make predictions 52 weeks from the last used measurement, we re-ran the logistic
regression model construction and evaluation procedure by advancing the prediction horizon
to 76 weeks, i.e., 52 weeks after the 24 week cytokine measurement. The model with time
series measurements had a C-statistic of 0.79±0.03, which is significantly better (p = 0.01)
than the model with baseline cytokines alone, which had a C-statistic of 0.74±0.04. The
model without any cytokine data had a C-statistic of 0.73±0.05. This demonstrates that the
use of time series data improves prediction accuracy both for the problem of predicting
survival at 52 weeks from baseline randomization, as well as between 24 and 76 weeks from
baseline.

Ensemble Models
In order to determine whether the C-statistic of 0.81±0.03 represented a “ceiling” for
predictive accuracy with respect to HF mortality, we also employed a well-established
method in statistical machine learning termed ensemble modeling, which constructs a highly
accurate classification model by combining models, instead of producing a single global
model. Each model classifies a new data point (patient), and the overall classification is
determined by taking a weighted vote of the individual model predictions. The ensemble
model that we constructed used the standard predictors for heart failure mortality, and five
major components of the ICA-transformed cytokines at baseline and for weeks 8, 16, and 24
weeks. Our model consisted of 100 decision stumps learned by gentle boosting with the
logistic loss function. The C-statistic for the ensemble model with ten-fold cross validation
was 0.84 ± 0.02, which was significantly better (p=0.04) than the logistic regression models
derived before.

In contrast to logistic regression analysis, which can be represented by a single equation,
ensemble models are difficult to present directly in the form of a single equation. The
standard approach in the machine learning literature [10] is to visualize the model through
an “averaged variable importance plot”. The importance of a variable in an ensemble of
models is the reduction in prediction error that results from using that variable in a
component model, which is then summed over all the components of the ensemble [10]. We
average variable importance scores over ten cross-validation runs to produce the plot in
Figure 2. This figure groups variables according to their relative importance. As shown, the
24 week cytokine levels, BUN and LVEF were among the top variables in the analysis. The
cytokine levels at week 8 are more important than those for week 16. This sorting of the
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predictor variables allows us to gain insight into how the ensemble works. That is,
classifications were based primarily on the cytokine levels at week 24 and week 8, as well as
the BUN and LVEF, cardio-thoracic ratio and percentage lymphocytes at baseline. Of note,
these baseline variables have been shown to have prognostic importance in other studies.
Demographic variables like age, gender and weight and most baseline laboratory values,
other than BUN and percentage lymphocytes were not as useful for predicting 52 week
mortality.

These results are consistent with what we observed with the logistic regression model in the
previous section. The rise in predictive power comes from moving away from a global
model with a single set of coefficients, to a model with 100 different sets of coefficients to
capture the variability inherent in a large patient population. The decision regions defined by
an ensemble classifier implicitly group patients into cohorts with similar characteristics and
similar classifications. This is the essence of personalization as defined by Kohane [15].

A logical question that arises is whether it is possible to obtain similar performance benefits
by using ensemble models with baseline measurements alone. To explore this possibility, we
built an ensemble model of 100 decision stumps with gentle boosting on baseline data
without any cytokines. This model has a C-statistic of 0.74±0.04, which is a modest increase
over a single logistic regression model constructed from the same data. This result explains
the origin of the significant increase in the C-statistic to 0.84 in the ensemble model that
employed serial measurements of cytokines. The increase in the value of the C-statistic
comes primarily from the improved accuracy of the constituent classifiers, which use the
time series cytokine data, and secondarily from the error reduction effects of majority
voting.

Discussion
There are two major new findings of this study. The first is that a multivariate logistic
regression model of mortality that employs baseline and serial measurements of cytokine
and cytokine receptors levels up to 24 weeks (when added to a standard set of prediction
variables), predicts one-year mortality significantly better (C-statistic 0.81 versus 0.73; p
=0.001) than does a logistic regression model of mortality without the serial measurements
of cytokines and cytokine receptors. Importantly, the C-statistic for the logistic regression
model of mortality without serial measurements of cytokines and cytokine receptors was
similar to results that have been reported in the literature [7]. Moreover, adding baseline
cytokines to the model only improved predictive accuracy from 0.73 to 0.74, which is
consistent with a similar study done using the Seattle Heart Failure Model, in which the
addition of baseline levels of the biomarker, BNP, did not yield significant changes in
prediction accuracy to the overall model [8]. We also examined the accuracy of predicting
survival to 76 weeks with each of these models, so that the prediction horizon was 52 weeks
away from the 24 week measurement of cytokines. We find that the C-statistic for the model
with the time series data was 0.79, which was significantly better (p = 0.01) than the model
with baseline cytokines alone (0.74). The model without any cytokines had a C-statistic of
0.73. Thus, significant gains in accuracy of the prediction of one year mortality can be
obtained in chronic heart failure by using serial measurements of biomarkers rather than
baseline values alone.

The lack of widespread availability and costs of cytokine and cytokine receptor
measurements is a potential clinical limitation of our study. Accordingly, this study should
be viewed as a proof-of-concept study with respect to the potential advantage of time series
measurements in predicting survival. Unfortunately, we were not able to obtain time-series
measurements of different types of follow-up data from the VEST data base (including that
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for BUN, serum sodium, or blood pressure). However, it is likely that time series
measurements of standard clinical biomarkers may offer a similar increase in predictive
accuracy over multiple measurements obtained at a single point in time. To answer this latter
question we will require additional studies.

The results of this study support the point of view that clinical models that predict mortality
can be improved significantly by moving away from obtaining a large series of
measurements at a single point in time, and focusing instead on a smaller set of relevant
measurements (e.g. BUN, BNP, creatinine, troponin, systolic blood pressure) that can be
readily obtained during regular follow-up visits. Our data support the point of view that the
accurate assessment of patient prognosis is a dynamic, sequential process, rather a static
snap shot process based on measurements taken at a single time point. Changes observed
with serial measurements are more likely to lead to improved prognostic capability because
they reflect both ongoing changes in the underlying disease process, as well as the individual
response (i.e. responder or non-responder) of a patient to a given form of therapy. In
particular, changes in time series measurements may be especially useful for intermediate
risk patients in guiding clinical decisions about aggressive interventions.

It should be noted that while we used measurements at week 8, 16, and 24 from baseline in
this study, we do not wish to imply that these are the optimal intervals for serial
measurements. Indeed, the optimal timing of number of time series measurements is not
known, and will likely vary with the predicted mortality risk and the disease severity of the
patient cohort that one is following.

Our model can be easily implemented and adapted for routine clinical use with Web-based
calculators, since it mirrors the way physicians themselves update survival estimates based
on follow-up visits with their patients. This type of “real time” modeling of prognosis may
be invaluable for adjusting medication dose, the timing of implantation of circulatory assist
devices and/or cardiac transplantation. Indeed it extends the concept of using a single
biomarker to guide HF therapy, insofar as it simultaneously incorporates a variety of
different patient variables in the prognostic model.

A second major finding of this study is that an ensemble model learned by gentle boosting
[16] performed significantly better (p=0.04) than the standard logistic regression model that
employs time series data, and has a C-statistic of 0.84 in a ten-fold cross-validation. We
postulate that the reason for this significant increase in predictive accuracy with ensemble
modeling is that an ensemble of models adjusts better for the biological variability inherent
in clinical studies that are derived from patient data. An ensemble model may thus be useful
clinically in terms of predicting outcomes. Analysis of significant predictor variables in the
ensemble via the variable importance plot in Figure 2 reveals an important role of cytokine
levels in mortality prediction. As shown, the weights for the cytokines and cytokine
receptors at weeks 16 and 24 had a greater impact than more traditional markers of poor
outcome (e.g., creatinine clearance). These results suggest that ensemble models are likely
to be more effective than single models learned from large patient cohorts, and appear
promising for personalization of therapy for chronic HF. The inputs to such models will
include a selected set of baseline measurements and small amounts of follow-up data.
Ensemble models can also be easily adapted for routine clinical use.

As with any multivariate model for outcome prediction, overfitting of the model is an
important issue to consider. To reduce the risk of overfitting, we use ten-fold cross-
validation. Cross-validation allows various parameters of the model to be estimated and
evaluated against multiple subsets of the data set, which reduces the possibility of
overfitting. Secondly, the sample size of 963 is large relative to the number of parameters
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that we assess. Finally, we use regularized forms of the learning algorithms to control model
complexity and to minimize risk of overfitting. Further, since our models are derived from
the VEST trial and consist only of NYHA class III and IV patients in the VEST database,
there is the possibility of selection bias in the model. However, the demographics of patients
analyzed are precisely the ones for which accurate estimation of survival probabilities is
critical in a regular clinical setting. Finally, the effects of Vesnarinone also need to be taken
into account as the original trial showed that Vesnarione had a deleterious effect on
mortality with a 4% increase in short term morality over placebo. Vesnarinone was not a
significant parameter in our model and did not change the prediction ability even if included
by default in the model used. The most likely explanation for this discrepancy would be the
fact that our dataset of 963 patients in whom cytokine data was obtained, is a subset of the
3833 patients included in the VEST trial. The differences in mortality between Vesnarinone
and placebo were modest and the dataset of 963 used in this paper is not adequately powered
to show this difference. As the mortality prediction did not vary even if Vesnarinone was
used as a default parameter in the model, we think that it is unlikely to change the
generalizability of the model in predicting mortality in advanced HF.

In conclusion, we have developed a model for predicting mortality in patients with advanced
HF using baseline standard clinical data and time series data of serum cytokine and cytokine
receptor levels. Our results suggest that time series measurements of biomarkers predicts
one-year mortality significantly better than does a traditional logistic regression model of
mortality that does not incorporate any time series data. Moreover, our results suggest that
the predictive accuracy of HF mortality is improved (C-statistic of 0.84) using an ensemble
method, which was significantly better than either traditional logistic regression models and/
or time series measurements. While the clinical utility of the approach with more readily
available serial measurements remains to be assessed, we believe that these models can be
easily incorporated into a web based calculator in the clinic in order to provide a “real time”
assessment of patient prognosis that can be used to adjust therapeutic strategies while the
patient is still in the clinic. Using time series data rather than baseline values alone appears
to be the key in improving the accuracy of such prediction models. With that said, it bears
emphasis that the results obtained with time series measurements in the VEST data base
need to be validated in additional patient cohorts, as well as in prospective studies before
they can be used clinically.

Summary
We analyzed data on 963 patients enrolled in the Vesnarinone Evaluation of Survival
Trial (VEST), including circulating levels of two cytokines (TNF and IL-6) and their
receptors sampled at baseline, and at 8, 16 and 24 weeks. We built multivariate logistic
regression models using standard clinical variables and time-series of cytokine and
cytokine receptor levels, using independent components analysis to handle collinearity
among cytokine measurements, and L2-penalized stepwise regression for variable
selection. We also built ensemble models with these data using gentle boosting. Without
the serial cytokines, our baseline model has a C-statistic of 0.73±0.03, while our
ensemble model of 100 decision stumps with serial cytokine measurements has a
significantly better C-statistic of 0.84±0.02.

The results of our study support the point of view that clinical models that predict
mortality can be improved significantly by moving away from obtaining a large series of
measurements at a single point in time, and focusing instead on a smaller set of relevant
measurements (e.g. BUN, BNP, creatinine, troponin, systolic blood pressure) that can be
readily obtained during regular follow-up visits. Changes observed with serial
measurements are more likely to lead to improved prognostic capability because they
reflect both ongoing changes in the underlying disease process, as well as the individual
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response (i.e. responder or non-responder) of a patient to a given form of therapy. In
particular, changes in time series measurements may be especially useful for intermediate
risk patients in guiding clinical decisions about aggressive interventions.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The receiver operating curves for the three logistic regression models for one-year mortality
prediction in heart failure, developed in this paper. The three models use standard clinical
variables only (no cytokines, C-statistic of 0.73), standard variables and baseline cytokines
only (C-statistic of 0.74), and standard variables and serial cytokine measurements at
baseline, 8, 16 and 24 weeks (C-statistic of 0.81).
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Figure 2.
Average variable importance computed over ten cross-validation runs with gentle boosting
on 100 decision stumps. The horizontal lines are confidence bars.
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Table 1

Patient Demographics

Survivors (n=791) Deaths (n=172) p-value

Age, y 61.3 ± 12.2 62.1 ± 11.6 0.004

Male, % 76.4 82.6 0.09

NYHA class (III ), % 90 81 0.004

Ischemic etiology, % 56.6 61.5 0.004

Weight, kg 82.6 ± 20.1 81.3 ± 18.9 0.4103

Ejection Fraction, % 21.1 ± 6.0 18.4 ± 5.1 0.001

Cardio-thoracic ratio 0.55 ± 0.07 0.58 ± 0.07 0.001

Blood urea nitrogen 23.7 ± 12.4 33.7 ± 17.9 0.001

ALT, u/L 22.2 ± 12.4 23.7 ± 26.6 0.4863

AST, u/L 21.7 ± 14.7 21.4 ± 24.3 0.88

Serum sodium, mg/L 138.7 ± 3.4 137.6 ± 4.1 0.001

Potassium, mg/L 4.4 ± 0.49 4.4 ± 0.53 0.55

Digoxin dose, mcg/kg 2.6 ± 1.0 2.4 ± 1.0 0.02

Creatinine, mg/dL 1.42 ± 0.37 1.61 ± 0.44 0.001

Creatinine clearance, ml/min 68.8 ± 29.9 58.5 ± 29.1 0.001

Lymphocytes, % 23.8 ± 7.9 20.4 ± 8.2 0.001

Vesnarinone dose (0/30/60 mg) 256/271/326 54/56/62 0.5088

MLWHF score 51.7 ± 23.1 56.3 ± 23.5 0.02

log TNF-α at baseline 1.67 ± 0.54 1.77 ± 0.6 0.05

log sTNFR1 at baseline 7.4 ± 0.4 7.6 ± 0.5 0.001

log sTNFR2 at baseline 8.3 ± 0.4 8.5 ± 0.4 0.001

log IL-6 at baseline 1.4 ± 0.7 1.8 ± 0.8 0.001

log sIL6R at baseline 3.6 ± 0.3 3.7 ± 0.2 0.004

log TNF-α at 24 weeks 1.7 ± 0.5 1.9 ± 0.6 0.003

log sTNFR1 at 24 weeks 7.4 ± 0.45 7.7 ± 0.48 0.001

log sTNFR2 at 24 weeks 8.3 ± 0.4 8.6 ± 0.4 0.001

log IL-6 at 24 weeks 1.4 ± 0.7 1.95 ± 0.9 0.001

log sIL6R at 24 weeks 3.6 ± 0.26 3.7 ± 0.26 0.03
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Table 2

Logistic regression model for predicting 52 week mortality using standard baseline measurements

Variable Coefficient Std. error p-value

intercept −2.12 0.89 0.017

BUN 0.036 0.006 0.00001

ejection fraction −0.066 0.016 0.00002

lymphocytes −0.042 0.012 0.0007

cardio-thoracic ratio 3.163 1.263 0.012

C-statistic with ten-fold cross-validation = 0.73 ± 0.03
P(non-survival) = −2.12 + 0.036 * BUN −0.066 * EF −0.042 * lymph + 3.163 * CT-ratio
P(survival) = 1 − P(non-survival)
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Table 3

Logistic regression model for predicting 52 week mortality using standard baseline measurements and
baseline cytokines

Variable Coefficient Std. error p-value

intercept −2.287 0.919 0.013

BUN 0.035 0.006 0.00001

ejection fraction −0.068 0.016 0.00002

lymphocytes −0.028 0.013 0.02

cardio-thoracic ratio 3.108 1.31 0.021

X2 0.212 0.09 0.018

X3 −0.238 0.09 0.009

C-statistic with ten-fold cross-validation = 0.74 ± 0.04
X2 = 0.2 log TNF + 0.11 log sTNFR1 + 0.09 log sTNFR2 + 0.71 log IL6 + 0.008 log sIL6R
X3 = 0.4 log TNF − 0.09 log sTNFR1 − 0.08 log sTNFR2 − 0.134 log IL6 + 0.015 log sIL6R
P(non-survival) = −2.287 + 0.035 * BUN −0.068 * EF − 0.028 * lymph + 3.108 * CT-ratio + 0.212 * X2 – 0.238 * X3
P(survival) = 1 − P(non-survival)
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Table 4

Logistic regression model for predicting 52 week mortality with standard baseline measurements and
cytokines at baseline, 8, 16 and 24 weeks.

Variable Coefficient Std. error p-value

Intercept −2.88 1.01 0.044

BUN 0.038 0.006 0.00001

ejection fraction −0.055 0.018 0.003

lymphocytes −0.026 0.014 0.0056

cardio-thoracic ratio 2.98 1.454 0.04

X2 −0.809 0.084 0.00001

X3 0.233 0.121 0.05

X5 −0.305 0.099 0.002

C-statistic for ten-fold cross-validation = 0.81 ± 0.03
P(non-survival) = −2.88 + 0.038 * BUN − 0.055 * EF − 0.026 * lymph + 2.98 * CT-ratio − 0.809 * X2 + 0.233 * X3 − 0.305 * X3
Factor X2 is determined by sTNFR1 and sTNFR2 at weeks 16 and 24.
Factor X3 is determined by sTNFR1 and sTNFR2 at week 8.
Factor X5 is determined by IL6 at baseline, week 8 and week 24, and sTNFR2 at week 16.
For full definitions of the factors, please consult Supplemental Tables.
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