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An ongoing loss of cardiomyocytes to apoptotic and necrotic cell death pathways contributes to the progressive nature of heart failure. The
pathophysiological origins of necrotic cell loss relate to the neurohormonal activation that accompanies acute and chronic stressor states and
which includes effector hormones of the adrenergic nervous system. Fifty years ago, Albrecht Fleckenstein and coworkers hypothesized the
hyperadrenergic state, which accompanies such stressors, causes cardiomyocyte necrosis based on catecholamine-initiated excessive intra-
cellular Ca2+ accumulation (EICA), and mitochondrial Ca2+ overloading in particular, in which the ensuing dysfunction and structural
degeneration of these organelles leads to necrosis. In recent years, two downstream factors have been identified which, together with
EICA, constitute a signal–transducer–effector pathway: (i) mitochondria-based induction of oxidative stress, in which the rate of reactive
oxygen metabolite generation exceeds their rate of detoxification by endogenous antioxidant defences; and (ii) the opening of the mitochon-
drial inner membrane permeability transition pore (mPTP) followed by organellar swelling and degeneration. The pathogenesis of stress-
related cardiomyopathy syndromes is likely related to this pathway. Other factors which can account for cytotoxicity in stressor states
include: hypokalaemia; ionized hypocalcaemia and hypomagnesaemia with resultant elevations in parathyroid hormone serving as a
potent mediator of EICA; and hypozincaemia with hyposelenaemia, which compromise antioxidant defences. Herein, we revisit the Fleck-
enstein hypothesis of EICA in leading to cardiomyocyte necrosis and the central role played by mitochondria.
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Neurohormonal activation

Introduction
An ongoing loss of cardiomyocytes via apoptotic and necrotic cell
death pathways contributes to the progressive nature of heart
failure. As depicted in Figure 1, apoptotic cells are rapidly scavenged
by macrophages; they neither disintegrate nor lose their contents
to stimulate the immune system. As a result, serum troponin levels
are not elevated and a wound healing response is not invoked.1 –3

Dying necrotic cells, on the other hand, release troponins and
other intracellular contents, which serve as danger signals to the
immune system and chemoattractants that promote invasion of
inflammatory cells to the site of injury. These cells, together with
myofibroblasts, account for subsequent tissue repair. Foci of
microscopic scarring are the final outcome. Hence, elevations in
serum troponins and cardiac fibrosis are each footprints of

cardiomyocyte necrosis. Scattered foci of fibrosis are found
throughout both ventricles of the explanted failing human heart
and are considered the major component of the pathological
structural remodelling of myocardium.4 This would not only impli-
cate the importance of cardiomyocyte necrosis, but would also
suggest it to be an ongoing process. The loss of cardiomyocytes
and their replacement with stiff fibrillar collagen each contribute
to the progressive failure of this muscular pump. Elevations in
serum troponins are found in patients hospitalized because of
their congestive heart failure (CHF) and are associated with an
increased risk of morbidity and mortality from cardiovascular
events.5 –14 In ambulatory asymptomatic elderly men, followed
for 11 years in a community in Sweden, the appearance of elevated
serum troponin predicted an increased risk of heart failure.15

Factors other than overt ischaemia with a segment of infarcted
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myocardium can account for cardiomyocyte necrosis (vide infra).
An understanding of pathophysiological mechanisms involved
becomes essential to the optimal evaluation and management of
these patients. Towards this end, the origins of the CHF syndrome
provide crucial insights.

Congestive heart failure has its origins rooted in inappropriate
neurohormonal activation. This includes the hypothalamic–pitu-
itary–adrenal axis (HPA), the adrenergic nervous (ANS), and
renin–angiotensin–aldosterone (RAAS) systems. Their effector
hormones are cytotoxic to cardiomyocytes.16–18 Some 50 years
ago, Albrecht Fleckenstein and coworkers at the University of Frei-
burg im Breisgau hypothesized that hyperadrenergic state which
accompanies stressor states, such as CHF, would lead to
catecholamine-mediated excessive intracellular Ca2+ accumulation
(EICA), particularly involving cardiac mitochondria. The ensuing
dysfunction of Ca2+ overloaded mitochondria, coupled with the
diminished synthesis of high-energy phosphate and structural
degeneration of these organelles, would lead to cardiomyocyte
necrosis. They validated their hypothesis using
isoproterenol-induced cardiac injury in rodents in which cotreat-
ment with a calcium-channel blocker, verapamil, proved cardiopro-
tective.19,20 Later, others confirmed this paradigm and provided
further insights into the adverse consequences of elevated
plasma epinephrine levels (5000 pg/mL) comparable with those
found in man during acute and chronic stressor states.18,21–24

Today, the importance of catecholamine excess that accompanies
marked emotional stress or acute stressor states, such as head
trauma or subarachnoid haemorrhage, is now recognized as
leading to stress-related cardiomyopathy syndromes (e.g. apical
ballooning or Takotsubo cardiomyopathy).25

In recent years, two other factors, together with EICA, were
identified to be major participants in a signal–transducer–effector
pathway to cardiomyocyte necrosis during acute or chronic hyper-
adrenergic states (see Figure 2). This includes the genesis of oxi-
dative stress, where the rate of reactive oxygen and nitrogen
species generation overwhelms their rate of elimination by
endogenous antioxidant defences, invoked in response to EICA.
Second, the role of the mitochondrial inner membrane per-
meability transition pore (mPTP) opening which leads to organellar
dysfunction, osmotic swelling, and ultimate structural degeneration
of these organelles. Other pathophysiological responses that
accompany catecholamine excess and which extend beyond the
importance of Ca2+ overloading can also be cytotoxic. They

cannot be overlooked and include a dyshomeostasis of essential
cations which are manifested as hypokalaemia, ionized hypomagne-
saemia and hypocalcaemia, hypozincaemia, and hyposelenaemia.
Herein, we introduce and highlight this broader perspective of
cation dyshomeostasis in revisiting the Fleckenstein hypothesis
and cardiomyocyte necrosis.

Acute stressor states and cation
dyshomeostasis

Neurohormonal activation
Acute stressor states are broadly referred to as representing acute
bodily injury in one form or another. For example, they include:
acute myocardial infarction; major cardiac or noncardiac surgery;
thermal or electrical burns; head or musculoskeletal trauma; and
subarachnoid haemorrhage or intracerebral bleed. An acute sys-
temic inflammatory response invoked by sepsis or diabetic ketoa-
cidosis is another example. Acute stressor states are inextricably
linked to neurohormonal activation involving the HPA axis as
well as the ANS and RAAS, and whose effector hormones are inte-
gral to acute stressor state-mediated homeostatic responses. Cat-
echolamines, parathyroid hormone (PTH), angiotensin II, and
endothelin-1 account for homeostasis gone awry to beget dyshomeos-
tasis at cellular and molecular levels involving the heart and sys-
temic organs. This includes a dyshomeostasis of mono- and
divalent cations. At the time of or shortly after hospital admission,
a dyshomeostasis of a whole host of electrolytes and trace
elements are manifested contemporaneously in critically ill patients
(Figure 3). These effector hormones orchestrate the concordant
appearance of hypokalaemia, ionized hypocalcaemia and hypomag-
nesaemia, hypozincaemia and hyposelenaemia. The shift in electro-
lytes from blood to soft tissues accounts for ionized hypocalcaemia
and hypomagnesaemia which will invoke secondary hyperparathyr-
oidism (SHPT) with the parathyroid glands’ elaboration of the cal-
citropic PTH (Figure 4) seeking to restore the homeostasis of these
circulating divalent cations through bone mineral resorption. Intra-
cellular cation shifts, particularly catecholamine- and
PTH-mediated EICA, converge on mitochondria to induce oxi-
dative stress and raise the opening potential of their inner mem-
brane mPTP (Figure 2). The ensuing loss of intracellular cationic
homeostasis and diminished ATP synthesis, together with
osmotic swelling of mitochondria, lead to organellar degeneration.

Figure 1 Heart failure involves an ongoing loss of cardiomyocytes to apoptosis and necrosis. See text.
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Cardiomyocyte necrosis follows with the leakage of troponins ulti-
mately appearing in the circulation as biomarkers confirmatory of
necrosis.

Hypokalaemia
Catecholamines promote hypokalaemia. Struthers et al.26 –28

administered intravenous epinephrine to normal human volun-
teers and demonstrated a prompt and marked fall in serum

K+ of 0.8+0.19 mEq/L (from 4.0 to 3.2 mEq/L) which was pre-
vented by a b2-adrenergic receptor blocker. A simultaneous fall
in serum Mg2+ and Ca2+ also occurred. In patients with acute
bodily injury accompanied by haemorrhagic shock, endogenous
plasma catecholamines are markedly elevated to promote arter-
iolar vasoconstriction and in so doing raise fallen arterial
pressure. When these levels are further elevated by pharmaco-
logical doses of exogenous norepinephrine, epinephrine, or
dopamine, given to further raise blood pressure from shock
levels, the reductions in serum K+ (,3.0 mEq/dL) and Mg2+

(,1.5 mg/dL) can be more profound and lead to serious atrial
and malignant ventricular arrhythmias.29

The underlying K+ balance prior to bodily injury determines the
severity of the ensuing hypokalaemia during an acute stressor state.
Pretreatment of normal volunteers with a thiazide diuretic predis-
posed them to marked hypokalaemia in response to epinephrine
infusion.30 Spironolactone (Spiro), an aldosterone antagonist, was
protective against hypokalaemia in this setting.31 Patients with
arterial hypertension or CHF who are receiving long-term thiazide
or loop diuretic treatment, respectively, may have marginal K+ and
Mg2+ reservoirs, which are then further compromised by a hyper-
adrenergic state that accompanies bodily injury or acute myocar-
dial infarction leading quickly to marked hypokalaemia and
hypomagnesaemia with consequent QTc prolongation and a
greater propensity for arrhythmias. Inhaled albuterol can likewise
predispose to hypokalaemia and hypomagnesaemia in normal vol-
unteers and those receiving diuretics.27 Chronic excessive use of
b2 receptor agonists also lead to marked hypokalaemia and
arrhythmias and injury to the heart and skeletal muscle.32

Drug-induced prolongation of myocardial repolarization, as
reflected in the lengthening of the QTc interval of the electrocar-
diogram, usually accompany certain antibiotics, antidepressants,
and antipsychotics.33,34 Prolongation of the QTc interval enhances
the risk of polymorphic ventricular tachycardia, also known as tor-
sades de pointes. Risk factors for drug-related QTc prolongation
include hypokalaemia, sympathomimetics, and the concomitant

Figure 2 Catecholamine-mediated cellular and subcellular Ca2+ overloading with induction of oxidative stress and reactive oxygen species
generation and opening of the mitochondrial inner membrane permeability transition pore that leads to solute entry, osmotic swelling and
structural degeneration of these organelles. Cell death follows with a leak of intracellular troponins, which raise serum troponin levels, and
ultimate appearance of replacement fibrosis, or scarring.

Figure 3 An acute stressor state, such as bodily injury, acti-
vates the hypothalamic–pituitary–adrenal axis with resultant
release of adrenocorticotropin hormone, which promotes the
adrenals’ release of cortisol and aldosterone, and catecholamines
from the adrenal medulla. The acute phase reactant, angiotensi-
nogen, is released by the liver during stressor states and is
accompanied by activation of the renin–angiotensin–aldosterone
system . In turn, elevated plasma catecholamines, norepinephrine,
and epinephrine, promote a coordinated cation translocation
from the vascular space to tissue compartment accounting for
a concordant fall in their serum concentrations and presenting
as hypokalaemia, ionized hypocalcaemia and hypomagnesaemia,
hypozincaemia and hyposelenaemia.
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administration of several of these agents.35 Furthermore, hypoka-
laemia has been associated with cardiomyocyte necrosis and resul-
tant cardiac pathology.36

Hypomagnesaemia
Dietary Mg2+ deficiency can cause cardiovascular lesions that
eventuate in heart failure.37,38 Elevations in plasma catecholamines
associated with an acute stressor state are accompanied by hypo-
magnesaemia which is related to a cyclic AMP-mediated rise in
intracellular Mg2+, together with increased lipolysis and Mg2+

binding to free fatty acids.39 Hypomagnesaemia is common in cri-
tically ill children and adults with such predisposing risk factors as
hypokalaemia, hypocalcaemia, thiazide and loop diuretics, and
sepsis. The hypomagnesaemia prevalent on admission in critically
ill patients may worsen during prolonged hospital stay due to
ongoing excretory losses and reduced Mg2+ intake.40–42 More-
over, atrial and ventricular arrhythmias appear when hypomagne-
saemia is of moderate to marked severity (,1.70 mg/dL).43– 45

Concurrent hypokalaemia and
hypomagnesaemia
Contemporaneous hypokalaemia and hypomagnesaemia are
common in critically ill patients. The interactions of K+ and

Mg2+ are multifactorial and complex, including the importance
of Mg2+ deficiency that interferes with K+ retention.46 The
ability to successfully correct hypokalaemia mandates the simul-
taneous reversal of hypomagnesaemia.47 – 49 The cell membrane’s
Na+/K+-ATPase pump maintains the crucial electrochemical K+

gradient between high-intracellular K+ concentration with
lower K+ concentration of the extracellular compartment (see
Figure 5). Activated by Mg2+ this pump requires ATP as its
energy source and hence Mg2+ participates in maintaining intra-
cellular K+, which falters during Mg2+ deficiency with suboptimal
amounts of K+ pumped into cells. As a result, Mg2+ deficiency
contemporaneously begets K+ deficiency. Digoxin, a Na+/K+

ATPase inhibitor, can worsen this dyshomeostasis by limiting
renal tubular reabsorption of Mg2+ and thereby raising urinary
Mg2+ excretion which exacerbates hypomagnesaemia and
further predisposes to arrhythmias in this setting.50 In order to
resolve hypokalaemia, the Mg2+ deficiency must first or simul-
taneously be restored. In the absence of gastrointestinal losses
or diuretic and digoxin usage, hypomagnesaemia and hypokalae-
mia due to impaired renal tubular reabsorption, in the form of
urinary K+ and Mg2+ wasting, must be considered. Inheritable
renal tubular disorders, such as the Gitelman syndrome in
adults and Bartter syndrome in children, should be addressed
when prompt resolution of these cations using oral Mg2+ and
K+ supplements proves difficult to achieve.51 Regular serum elec-
trolyte measurements should be augmented with serial ECG
monitoring of the QTc interval, a useful biomarker of intracellu-
lar K+ and Mg2+ levels. QTc prolongation (.460 ms) demon-
strates their deficiency while its normalization serves to
address the adequacy of their cellular replacement. The attain-
ment of QTc of ,460 ms with these supplements may require
several additional days compared with the relatively rapid
return of their normal serum levels.

Figure 4 An acute stressor state with elevated circulating cat-
echolamines is responsible for intracellular Ca2+ overloading with
a subsequent fall in plasma ionized [Ca2+]o, which in turn pro-
vokes the parathyroid glands to release parathyroid hormone, a
calcitropic hormone, also contributing to intracellular Ca2+ over-
loading. In cardiomyocytes this is accompanied by the induction
of oxidative stress, which leads to the opening of the mitochon-
drial permeability transition pore and osmotic injury of these
organelles. The necrosis of cardiomyocytes follows accompanied
by the leak of intracellular troponins into the interstitial space
accounting for the ultimate rise in plasma troponins. Cardiac
myocytes lost to necrosis are replaced by fibrous tissue, or scar-
ring, which preserves the structural integrity of the myocardium.
Adapted from Whitted AD et al. Am J Med Sci. 2010;340:48–53.

Figure 5 The sodium pump of the cardiomyocyte is an energy
consuming, Mg2+-dependent Na+/K+ ATPase which is respon-
sible for the extrusion of three Na+ ions and entry of two K+

ions. Pump activity falters with Mg2+ deficiency accompanied
by reduced intracellular K+ and prolongation of the QTc interval
of the electrocardiogram. In the presence of hypokalaemia and
hypomagnesaemia, digoxin, a Na+/K+ ATPase inhibitor, would
further reduce intracellular K+ to raise the potential for
arrhythmias.
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Hypocalcaemia and intracellular Ca21

overloading
Reductions in plasma ionized [Ca2+]o are commonly found in the
emergency department and intensive care units in patients having
an acute stressor state with elevated plasma catecholamines
(Figure 4). The fall in [Ca2+]o correlates with the severity of the
hyperadrenergic state and, in turn, the severity of illness. Ionized
hypocalcaemia serves as an in-hospital predictor of survival.52–61

Hypoalbuminaemia can contribute to reduced total Ca2+ concen-
tration. In response to hypocalcaemia, the Ca2+-sensing receptor
of the parathyroid glands provokes stimulated secretion of PTH.
The ensuing SHPT seeks to restore extracellular Ca2+ homeostasis
by promoting the resorption of bone Ca2+ and increased Ca2+

absorption from the gut and kidneys. When hypocalcaemia is
associated with hypomagnesaemia, PTH secretion may be impaired
but can be rapidly resolved by reversing hypomagnesaemia.

The appearance of acute ionized hypocalcaemia in critically ill
patients is caused by a shift in Ca2+ from the circulating pool to
the intracellular compartment of various tissues, including the
heart and skeletal muscle. This cation shift occurs in response to
catecholamine-induced intracellular Ca2+ overloading followed
by PTH-mediated excessive Ca2+ entry (Figure 4). Thus,
catecholamine- and PTH-facilitated intracellular Ca2+ overloading
of cardiomyocytes, in keeping with the Fleckenstein hypothesis,
converge into mitochondrial Ca2+ overloading and is coupled to
the induction of oxidative stress. The ensuing necrotic death of
cardiomyocytes is followed by tissue repair and a consequent
replacement fibrosis. Such scarring preserves the structural integ-
rity of the myocardium. However, this structural remodelling has
adverse consequences. These include compromised myocardial
stiffness and ventricular function which collectively serve as sub-
strate for reentrant arrhythmia.

The catecholamine-induced disintegration of necrotic cardio-
myocytes is accompanied by the release of troponins, an intracellu-
lar enzyme that plays a crucial role in revealing myocardial injury
(Figure 2). Catecholamine-induced cardiomyocyte necrosis with
increased plasma troponin levels occur in critically ill patients,
including those having sepsis, haemorrhagic shock, subarachnoid
haemorrhage, trauma, gastrointestinal bleeding, or pulmonary
embolus.62– 65 The levels to which plasma troponins rise in such
patients, however, do not reach the more marked elevations
seen with the segmental loss of infarcted myocardium that accom-
panies an acute reductions in coronary blood flow due to a throm-
bosed coronary artery.

Hypozincaemia
Hypozincaemia appears in critically ill patients, including those
having an acute myocardial infarction66–73 where it persists
during much of the first week and then slowly recovers.74,75 It
also appears during week 1 following major trauma and is
related to excessive urinary excretion and fluid losses, reduced
Zn2+ intake and preferential redistribution of Zn2+ to injured
tissues.76 Tissue Zn2+ contributes to antioxidant defences, and
are integral to wound healing.77– 79 Hypozincaemia is frequently
associated with hyposelenaemia.77,80,81

Hyposelenaemia
Hyposelenaemia has been identified on admission in patients with
an acute myocardial infarction, where it correlates with the rise in
serum troponin levels.82 In critically ill patients having the systemic
inflammatory response syndrome, hyposelenaemia is accompanied
by reduced plasma Se-glutathione peroxidase (GSHPx) activity.83

Since thyroid hormone is a selenoprotein, thyroid function can
be compromised with hyposelenaemia.

Summary
The complex dyshomeostasis of electrolytes and trace elements
that occurs with acute stressor states has broad and diverse patho-
physiological sequelae, including cardiomyocyte necrosis. To mini-
mize adverse cardiovascular consequences during hyperadrenergic
states, systematic and serial surveillance of serum K+, Mg2+, and
Ca2+ is warranted. Complementary protective measures should
include QTc interval monitoring with serial ECG, a biomarker of
myocardial repolarization. Prolonged QTc, due to reduced intra-
cellular K+ and Mg2+ or to drug therapy, raises the vulnerability
of the heart to atrial and/or ventricular arrhythmias. The mainten-
ance of serum K+ and Mg2+ within the strictly defined narrow
physiological threshold (i.e. K+ ≥4.0 mEq/L and Mg2+ ≥2.0 mg/
dL) will inevitably prove most effective in preventing arrhythmias.
An awareness of hypozincaemia and hyposelenaemia also broad-
ens our clinical perspective on the acute stressor state paradigm
to include their deleterious impacts on the compromised efficiency
of metalloenzyme-based antioxidant defences to combat oxidative
stress.

Chronic stressor states and cation
dyshomeostasis
Chronic stressor states include: a failure of the heart, kidneys, lungs,
or liver, irrespective of aetiological origins; and chronic inflamma-
tory diseases, such as rheumatoid arthritis, psoriasis, and inflamma-
tory bowel disease. We now focus on the chronic neurohormonal
activation involving the HPA axis, ANS, and RAAS which are inte-
gral pathophysiological features of CHF, and which occurs irre-
spective of its aetiological origins or patient age. Elevated plasma
levels of cortisol, renin activity, angiotensin II, aldosterone, epi-
nephrine, norepinephrine, and endothelin–1 are each found in
CHF.84–88

Hypokalaemia and hypomagnesaemia
Renin–angiotensin–aldosterone system activation in patients with
systolic or diastolic heart failure leads to a salt-avid state with Na+

and water retention that eventuates in the appearance of symp-
toms and signs of the CHF syndrome. Urinary and faecal excretion
of K+ and Mg2+ are increased during CHF based on the endocrine-
mediated actions of circulating aldosterone acting at these sites,
where high-density aldosterone receptor binding occurs. The
loss of these cations is accentuated by loop diuretics commonly
used in the management of CHF.47,89 Chronic hypomagnesaemia
is frequently associated with hypokalaemia and hypocalcaemia
and portends an adverse prognosis.90 Loop as well as thiazide
diuretics promote excessive urinary loss of K+ and Mg2+ that
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can lead to both hypokalaemia and hypomagnesaemia. Combining
either of these diuretics with Spiro preserves K+ and Mg2+

homeostasis,30 provided renal function is not markedly impaired
(serum creatinine ,2.0 mg/dL) and K+ supplements are
discontinued.

The importance of hypokalaemia on patient mortality has been
well documented. The Digitalis Investigative Group (DIG) trial
database involving more than 7700 patients revealed that in ambu-
latory patients having either systolic or diastolic heart failure,
serum K+ ,4.0 mEq/L and Mg2+ ,2.0 mg/dL were associated
with increased mortality.91,92 The same was true in patients with
heart failure having associated chronic kidney disease.93 This data-
base also revealed the adverse impact of loop diuretics on death,
cardiovascular mortality, and heart failure-related hospitalization
in ambulatory patients, including the elderly.94,95 This raises the
prospect that prolonged routine use of a potent loop diuretic, in
the absence of symptoms and signs of salt avidity, can be quite
deleterious and should be discontinued and milder diuretics
implemented, if necessary, in salt-sensitive patients.96 However,
the loop diuretic can be reinstituted, if and when the patient is
again avidly and persistently retaining Na+ and water.

In the Study of Left Ventricular Dysfunction (SOLVD) trial with
a cohort of more than 6700 patients, such adverse events were not
seen with potassium-sparing diuretics, such as Spiro, amiloride, or
triamterene. Indeed, these agents may be associated with reduced
risk of all-cause mortality or death from or hospitalization for pro-
gressive heart failure.97– 99 Spiro, an aldosterone receptor antagon-
ist, conserves both K+ and Mg2+. In the Randomized Aldactone
Evaluation (RALES) trial the efficacy and safety of Spiro, when
combined with an ACE-Inhibitor or angiotensin receptor blocker
and a loop diuretic, was demonstrated and included a 30% risk
reduction for all-cause and cardiovascular-related mortality and
sudden cardiac death and cardiovascular morbidities.99

Ionized hypocalcaemia and intracellular
Ca21 overloading
The secondary aldosteronism of CHF in man leads to increased
faecal and urinary Ca2+ excretion and consequent ionized hypocal-
caemia and, in turn, SHPT with elevated plasma PTH levels.80,100– 103

As noted earlier, dyshomeostasis of divalent cations frequently
occurs in patients hospitalized with decompensated biventricular
failure having a dilated cardiomyopathy. Elevated plasma PTH
levels and SHPT are also found in patients with pulmonary hyper-
tension or obstructive airway disease,104,105 in which RAAS acti-
vation with secondary aldosteronism is expected due to reduced
systemic blood flow that includes renal perfusion. This hormonal
profile is found in patients with primary aldosteronism,106– 109

where aberrations in serum ionized and total Ca2+, together
with elevated PTH, are normalized by either Spiro or adrenal
surgery.108,109 Furthermore, elevated PTH is a known stimulus to
adrenal aldosterone production and can further account for elev-
ated plasma aldosterone levels. In patients with primary hyperpar-
athyroidism, preoperative PTH levels in excess of 100 ng/mL are
independent predictors of abnormally elevated plasma aldosterone
levels.110 The impact of chronic aldosteronism on the increased
incidence of adverse cardiovascular outcomes in patients with

primary hyperparathyroidism remains uncertain.111 However,
experimental findings congruently point towards the importance
of PTH-mediated intracellular Ca2+ overloading and induction
of oxidative stress as major pathogenic events accounting for
adverse myocardial remodelling, as contrasted to elevations in
circulating aldosterone, per se.112 – 114

Abnormal elevations in serum PTH (.65 pg/mL), a calcitropic
hormone and mediator of EICA in cardiomyocytes and mitochon-
dria,112,115,116 are found in patients hospitalized with decompen-
sated heart failure and those awaiting cardiac
transplantation.100,103,117,118 In outpatients having heart failure,
elevated serum PTH levels are also identified and serve as an inde-
pendent predictor of CHF and the need for hospitalization.119 – 121

Plasma PTH levels were shown to be an independent risk factor
for mortality and cardiovascular events in patients undergoing cor-
onary angiography in Austria,122 and increased risk for cardiovascu-
lar mortality and the risk of heart failure were predicted in a
community-based cohort of elderly men followed longitudinally
for 8 years or more in Sweden.123,124 We found SHPT to be
especially prevalent in African-Americans (AA) with protracted
decompensated biventricular failure, where chronic elevations in
plasma aldosterone account for symptoms and signs of CHF.103

Secondary hyperparathyroidism is also related to the prevalence
of hypovitaminosis D in AA with CHF.103 The increased melanin
content of darker skin in AA serves as a natural sunscreen. Accord-
ingly, the prevalence of hypovitaminosis D, often of marked sever-
ity (,10 ng/mL), compromises Ca2+ homeostasis predisposing AA
to hypocalcaemia and consequent SHPT.103,125,126 Vitamin D
deficiency is also common in Caucasians and Asians with heart
failure.119,127– 129

Other factors which may be associated with compromised
Ca2+ stores and contribute to the appearance of SHPT,
especially in AA with CHF, include: reduced dietary Ca2+

intake because of lactose intolerance and an active avoidance
of dairy products rich in Ca2+130; and a preference for a
high-Na+ diet that enhances urinary Ca2+ excretion. A high-salt
diet and consequential hypercalciuria is well known for predis-
posing patients to ionized hypocalcaemia and SHPT with resorp-
tion of bone which is invoked to restore extracellular Ca2+

homeostasis. Over time, osteopenia and osteoporosis appear
as an adverse outcome to SHPT invoked by the hypercalciuria
of long-term dietary Na+ excess further predisposing to atrau-
matic bone fractures.131,132 Patients with heart failure have
reduced bone density, which is related to SHPT and vitamin
D deficiency coupled with reduced physical activity that may
be a cofactor of their effort intolerance due to symptomatic
failure.100,117,133 – 137 The risk of such fractures is increased in
elderly patients with heart failure,138 where SHPT may be con-
tributory, and which appears to be preventable when Spiro is
combined with today’s standard of care.139

Elevations in serum troponins, biomarkers of cardiomyocyte
necrosis, but not due to acute MI or renal failure, are
found in patients hospitalized because of their decompensated
heart failure and are associated with increased in-hospital and
overall cardiac mortality.5– 14 The role of intracellular Ca2+

overloading and oxidative stress, induced by neurohormonal
activation that includes calcitropic hormones, catecholamines
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and PTH, in promoting myocardial cell loss in these patients is
not absolutely clear, but must be explored. An ongoing loss of
cardiomyocytes contributes to the progressive nature of heart
failure.

Zn21 and Se21 dyshomeostasis
In addition to hypokalaemia, ionized hypocalcaemia and hypomag-
nesaemia that accompany increased urinary and faecal losses of
these divalent cations with the aldosteronism of CHF, there also
is a concomitant dyshomeostasis of Zn2+ with hypozincaemia.81,140

Furthermore, urinary Zn2+ excretion is increased in response to
angiotensin-converting enzyme inhibitor or angiotensin receptor
antagonist, commonly prescribed agents in the management of
patients with CHF and where hypozincaemia is associated with
abnormalities in taste (or dysgeusia).141,142 Serum Zn2+ and Se2+

levels are reduced in AA patients.80,102 This includes those with
decompensated failure and compensated failure, as well as with
heart disease but without heart failure. Interactions between
Zn2+ and Se2+ have been reported.143 Underlying causes for the
simultaneous deficiencies of these divalent cations in AA, including
inadequate dietary intake, are presently uncertain.

The prooxidant effect representing intracellular Ca2+ overload-
ing that accompanies elevations in either plasma catecholamines or
PTH is intrinsically coupled to Zn2+ entry acting as an antioxi-
dant.115,116,144,145 Although less robust, Zn2+ entry is known to
occur via L-type Ca2+ channels whereas more substantive
amounts ingress by Zn2+ transporters activated by oxidative
stress. The release of inactive Zn2+ bound to metallothionein-1
contributes to increased cytosolic-free levels of Zn2+, which can
also be achieved by a ZnSO4 supplement or Zn2+ iono-
phore.145,146 These cumulative salutary observations raise the
therapeutic prospect that cation-containing nutriceuticals capable
of favourably influencing extra- and intracellular Ca2+ and Zn2+

equilibrium, which is pivotal to combating oxidative injury and pro-
moting repair, could attenuate or even prevent cardiomyocyte
necrosis and myocardial scarring.

Selenium is a cofactor of antioxidant selenoenzymes, such as
GSH-Px and thioredoxin reductase, that promote optimal antiox-
idant/oxidant balance.147 Monitoring serum Se levels,
Se-dependent enzymatic activities, and Se-GSH-Px mRNA
expression are clinically useful in addressing optimal Se supplemen-
tation.148,149 Appearance of a dilated cardiomyopathy in greater
abundance has been reported in general populations, in which
dietary Se2+ deficiencies are found, such as in the Se-poor soil
of the Keysan Province of China, or when parenteral nutrition
was inadvertently deficient in Zn and/or Se.150 –152 The
selenium-deficiency-induced cardiomyopathy is often reversible
with Se2+ replacement.153

Summary
Thus, neurohormonal activation that accompanies CHF is compar-
able with acute stressor states (Table 1). Together with the adverse
impact of loop diuretics, there is a concerted and contempora-
neous complex dyshomeostasis of K+, Mg2+, and Ca2+ associated
with adverse pathophysiological consequences. Compromised
Ca2+ stores related to excretory losses and/or altered dietary
intake, together with vitamin D deficiency, predispose to SHPT

with compromised cardiomyocyte survival and impaired skeletal
health.

Taken together, the multitude of evidence gathered to date
congruently supports the Fleckenstein hypothesis which invokes
catecholamine- and PTH-mediated intracellular Ca2+ overloading
as the most tenable mechanism leading to the induction of oxi-
dative stress, where ROS and RNS, primarily derived from mito-
chondria in cardiomyocytes and membrane-bound NADPH
oxidase in vascular tissue, overwhelm cellular antioxidant defences.
This scenario anticipates the question whether ensuing adverse
consequences are the result of an excessive generation of proox-
idants or due to compromised endogenous antioxidant defences,
or both. Zn2+ supplementation, serving as antioxidant, has
shown promise in enhancing antioxidant defences in experimental
animals receiving aldosterone/salt treatment or having
streptozocin-induced diabetes.115,145,146,154 A polynutrient sup-
plement, however, which includes these cations and vitamin D,
at a minimum, will likely be necessary. Promising results with a
polynutrient supplement have been reported in critically ill
patients, including those with heart failure.155 –159

Summary and conclusions
Acute and chronic stressor states are each accompanied by neuro-
hormonal activation that includes the ANS. As Fleckenstein and
coworkers originally envisaged, the hyperadrenergic state is
accompanied by cardiomyocyte Ca2+ overloading, particularly
involving their mitochondria, with resultant dysfunction and disin-
tegration of the organelles and ensuing necrotic cell death. More
recent studies have identified subsarcolemmal mitochondria-based
induction of oxidative stress and opening of their inner membrane
mPTP as other major components of the pathophysiological
signal–transducer–effector pathway to cardiomyocyte necrosis
which eventuates in the release of troponins causing elevated
serum troponins and a consequent wound healing response
leading to scattered foci of microscopic scarring. Fibrosis is a
major component to the adverse structural remodelling of failing

. . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 A common signal–transducer–effector
pathway to cardiomyocyte necrosis in acute and chronic
stressor states

Stressor state

Acute Chronic

Neurohormonal activation

HPA axis + +
ANS + +
RAAS + +

Cation dyshomeostasis

� [Ca2+]i & [Ca2+]m + +
� [Zn2+]i & [Zn2+]m + +

Oxidative stress . antioxidant defences + +
mPTP opening + +
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myocardium and whose ongoing appearance accounts for the pro-
gressive failure of this normally efficient muscular pump.

Furthermore, neurohormonal activation, including HPA axis,
ANS and RAAS, and their effector hormones, orchestrate the con-
cordant appearance of hypokalaemia, ionized hypocalcaemia and
hypomagnesaemia, hypozincaemia and hyposelenaemia, and is
based on the coordinated translocation of cations to injured
tissues. Intracellular cation shifts adaptively regulate the equilibrium
between prooxidants and antioxidants, a critical determinant of
cardiomyocyte survival. The intrinsically coupled dyshomeostasis
of Ca2+ and Zn2+, representing prooxidant and antioxidant,
respectively, can be uncoupled in favour of increased intracellular-
free Zn2+ and antioxidant defences. In so doing, cardiomyocytes
that are on the brink of necrotic death can be rescued. The use
of nutriceuticals to achieve these lofty goals ought to be con-
sidered as complementary to today’s standard of care using phar-
maceuticals alone.
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