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Abstract
Background—C-reactive protein (CRP) is a heritable marker of chronic inflammation that is
strongly associated with cardiovascular disease. We aimed to identify genetic variants that are
associated with CRP levels.

Methods and Results—We performed a genome wide association (GWA) analysis of CRP in
66,185 participants from 15 population-based studies. We sought replication for the genome wide
significant and suggestive loci in a replication panel comprising 16,540 individuals from ten
independent studies. We found 18 genome-wide significant loci and we provided evidence of
replication for eight of them. Our results confirm seven previously known loci and introduce 11
novel loci that are implicated in pathways related to the metabolic syndrome (APOC1, HNF1A,
LEPR, GCKR, HNF4A, and PTPN2), immune system (CRP, IL6R, NLRP3, IL1F10, and IRF1), or
that reside in regions previously not known to play a role in chronic inflammation (PPP1R3B,
SALL1, PABPC4, ASCL1, RORA, and BCL7B). We found significant interaction of body mass
index (BMI) with LEPR (p<2.9×10−6). A weighted genetic risk score that was developed to
summarize the effect of risk alleles was strongly associated with CRP levels and explained
approximately 5% of the trait variance; however, there was no evidence for these genetic variants
explaining the association of CRP with coronary heart disease.

Conclusion—We identified 18 loci that were associated with CRP levels. Our study highlights
immune response and metabolic regulatory pathways involved in the regulation of chronic
inflammation.

Keywords
genome-wide association; C-reactive protein; inflammation; epidemiology; coronary heart disease
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C-reactive protein (CRP) is a general marker of systemic inflammation. High CRP levels are
associated with increased risks of mortality1 and major diseases including diabetes mellitus2,
hypertension3, coronary heart disease4, and stroke5. The heritability of CRP levels is
estimated to be 25–40%6–8, suggesting that genetic variation is a major determinant of CRP
levels. A genome-wide association (GWA) study in 6,345 women found seven loci
associated with CRP levels9. These loci were in or close to genes encoding CRP (CRP),
leptin receptor (LEPR), interleukin 6 receptor (IL6R), glucokinase regulator (GCKR),
hepatic nuclear factor 1 alpha (HNF1A), apolipoprotein E (APOE), and achaete-scute
complex homolog 1 (ASCL1). Findings from other genome-wide association studies did not
extend the number of loci related to CRP10,11.

In this study, we set out to discover additional genes related to CRP levels using GWA scans
in 66,185 participants from 15 population-based cohort studies and replicate our findings in
16,540 participants from ten independent studies. To investigate whether the genetic variants
identified interact with non-genetic determinants of CRP such as age, sex, smoking and
body mass index (BMI) we examined gene-environment interactions. Finally, it is still
unknown to what extent the genes associated with circulating CRP levels, individually or
jointly, affect the risk of cardiovascular diseases. To address this question we examined the
association of genetic variants with myocardial infarction (MI) and coronary heart disease
(CHD).

Methods
Subjects and Measurements

Participants were of European ancestry. All studies had protocols approved by local
institutional review boards. Participants provided written informed consent and gave
permission to use their DNA for research purposes. Baseline characteristics for all
participating studies are presented in Supplementary Tables 1. Baseline measures of clinical
and demographic characteristics were obtained at the time of cohort entry except for B58C,
FHS, NFBC66, and ARIC in which measures were obtained at the time of phenotype
measurement.

GWA analysis
Genome-wide scans were performed independently in each cohort using various genotyping
technologies (Supplementary Table 7). Each study carried out association analysis using the
genotype-phenotype data within their cohort. Each study imputed SNPs with reference to
HapMap release 22 CEU and provided results for a common set of SNPs for meta-analysis.
Except for FHS, all studies conducted a linear regression analysis adjusted for age (except
for NFBC66 and B58C), sex (except for WGHS), and site of recruitment (if necessary) for
all SNPs based on an additive genetic model. In the ERF study, adjustments for the family
structure in the GWA analysis was based on the model residuals in the score test, which
accounted for pedigree structure as implemented in GenABEL software12 function
“mmscore”13. In FHS, a linear mixed effects model was employed using the lmekin function
of the kinship package in R with a fixed additive effect for the SNP genotype, fixed
covariate effects, and random family specific additive residual polygenic effects14. In each
study, we estimated the genomic inflation rate, stated as lambda (λgc), by comparing each
study’s median chi-square value to 0.4549, the median chi-square for the null distribution15

(Supplementary Table 1). P-values for each cohort were adjusted for underlying population
structure using the genomic inflation coefficient.
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Discovery panel and the replication panel
The 15 study discovery panel included five studies from the Cohorts for Heart and Aging
Research in Genomic Epidemiology (CHARGE) Consortium16, four studies from the
European Special Population Network (EUROSPAN), and six additional independent
studies comprising 66,185 participants. The replication studies included ten independent
studies and 16,540 participants.

Meta-analysis
To calculate the combined p-values and beta coefficients we used an inverse-variance
weighted fixed-effects meta-analysis. We used METAL, a software package designed to
perform meta-analysis on GWA datasets17. We applied an a priori threshold 5.0×10−8 for
genome-wide significance 18. When more than one genome-wide significant SNP clustered
at a locus, we took the SNP with the smallest p-value as the lead SNP. To investigate the
validity of our findings, we sought replication of the lead SNP in genome-wide significant
(p<5×10−8) loci and sought additional evidence for suggestive loci 5×10−8<p<10−5) in our
replication panel. We ran a fixed-effect meta-analysis to combine the results of the
discovery and replication panels. The first GWA study on serum CRP published by Ridker
et9 al was based on part of the WGHS population. In order to confirm that our findings were
not entirely influenced by these previously published results, we performed a meta-analysis
excluding the WGHS population.

Examination of heterogeneity
We examined between-study heterogeneity using Cochran’s Q test. Based on Bonferroni
adjustment for 18 tests, heterogeneity was considered significant at a p-value less than
2.8×10−3. We explored the source of heterogeneity for significant SNPs by fitting a
covariate (age, gender, BMI, or smoking) in a meta-regression model.

Gene-environment interaction
For all genome-wide significant SNPs, we examined gene-by-age, gene-by-sex, gene-by-
BMI and gene-by-smoking interactions in each study by introducing an interaction term into
a linear model with age, sex, and the covariate of interest as the independent variables and
natural log transformed CRP as the outcome. A meta-analysis was performed to combine the
reported interaction beta and p-values across studies for each of the top SNPs. Based on
Bonferroni adjustment for 72 tests (18 SNPs for four environmental factors), we used a
significance threshold at 6.9 × 10−4.

Genetic Risk Score
To model the cumulative effect of the identified loci, we created a genetic risk score
comprising information from the genome-wide significant SNPs. The risk score was
computed for each subject by multiplying the number of alleles associated with higher CRP
by the beta coefficient from the combined meta-analysis, and taking the sum over the SNPs.
To make the genetic risk score easier to interpret, we rescaled to range from zero (low CRP
level) to 100 (high CRP level).

Association with MI and CHD
The association of the genome-wide significant SNPs and the genetic risk score with clinical
events was tested in ARIC, AGES, CHS, FHS, RS, and WGHS using incident cases of MI
and CHD (i.e. occurring after CRP concentrations were measured). Incident MI included
fatal and non-fatal MI. Incident CHD included incident fatal and non-fatal MI, fatal CHD
and sudden death. Each study examined the associations using a Cox proportional hazards
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model adjusted for age and sex. We subsequently combined these results by performing a
meta-analysis.

Results
The basic characteristics of the participating studies are shown in Supplementary Table 1.
Supplementary Figure 1 shows the QQ-plot (λ = 1.09) and Supplementary Figure 2 presents
the p-values for > 2.5 million SNPs across 22 autosomal chromosomes. A total of 953 SNPs
in 17 loci exceeded the genome-wide significance threshold (p<5×10−8) (Table 1).
Moreover, we found suggestive signals (p<10−5) in 47 loci. Sixty four lead SNPs including
17 SNPs from the genome-wide significant loci and 47 SNPs from the suggestive loci were
chosen for the replication stage (Supplemental Table 2). Six SNPs close to CRP, APOC1,
HNF1A, LEPR, IL6R, and IL1F10 exceeded the Bonferroni significance level (0.05/64 =
7.8×10−4) in the replication stage. In a fixed-effects meta-analysis of the discovery and
replication panel, 18 loci showed a genome-wide significant association; 15 loci out of the
17 genome-wide significant loci (Table 2) and three loci out of the 47 suggestive loci (Table
3). In addition to confirming seven previously-reported associations the genome-wide
significant signals marked 11 novel associations within or close to the NLR family, pyrin
domain containing 3 (NLRP3), interleukin 1 family, member 10 (IL1F10), protein
phosphatase 1, regulatory (inhibitor) subunit 3B (PPP1R3B), hepatocyte nuclear factor 4,
alpha (HNF4A), RAR-related orphan receptor A (RORA), Sal-like 1 (SALL1), poly(A)
binding protein, cytoplasmic 4 (inducible form) (PABPC4), B-cell CLL/lymphoma 7B
(BCL7B), proteasome assembly chaperone 1 (PSMG1), protein tyrosine phosphatase, non-
receptor type 2 (PTPN2), G protein-coupled receptor, family C, group 6, member A
(GPRC6A), and interferon regulatory factor 1 (IRF1). Furthermore, our meta-analysis
excluding the WGHS population (Supplementary Table 3) confirmed the association of
seven previously known genes9, CRP, APOE (APOC1), HNF1A, LEPR, IL6R, GCKR, and
ASCL1 with CRP levels (Bonferroni significance level: 0.05/7 = 7.1×10−3).

Figure 1 presents the average CRP levels across the genetic risk score in the whole
population. Individuals in the highest gene score group had a mean CRP level (4.12 mg/L;
95%CI: 4.96–5.25) that was more than double the level observed for individuals in the
lowest gene score group (1.40 mg/L; 95%CI: 1.31–1.49). The percentage of overall variance
in CRP which was explained by the genetic risk score ranged from 1.2% to 10.3% across
studies in the discovery and replication panel and was more than 5% in half of the studies.

After adjustment for number of tests, significant heterogeneity was found for rs2794520,
rs4420065, rs4129267, rs1260326, and rs10745954 (Tables 2 & 3). Meta-regression was
used to explore the source of heterogeneity. Sex was associated with heterogeneity for
rs10745954 (p < 2.8×10−5) (Supplementary Table 6).

All 18 SNPs that showed genome-wide significant results in the combined meta- analyses
were studied for interactions with age, sex, BMI and smoking (Supplementary Table 4).
After adjustment for the number of tests we found a significant interaction between BMI and
the LEPR SNP, rs4420065 (p<2.9×10−6).

We examined the association of the SNPs related to CRP with risk of MI and CHD. These
studies comprised 1845 cases of MI and 2947 cases of CHD. Neither the individual SNPs
nor the combined genetic risk score showed consistent or genome-wide significant
associations with risk of clinical events (Figure 2).
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Discussion
Through a meta-analysis of GWA scans from 15 cohort studies comprising 66,185 subjects
and a replication sample of 16,540 subjects, we identified 18 loci associated with circulating
CRP levels and provided evidence of replication for eight of them. Our results confirm
seven gene annotated loci reported by Ridker et al9. Furthermore, we introduce 11 novel loci
associated with CRP levels, annotating NLRP3, IL1F10, PPP1R3B, HNF4A, RORA, SALL1,
PAPBC4, BCL7B, PTPN2, GPRC6A, and IRF1.

A number of these genes including APOC1, HNF1A, LEPR, GCKR, HNF4A, and PTPN2
are directly or indirectly related to metabolic regulatory pathways involved in diabetes.
Mutations in HNF1A are associated with impaired insulin secretion and maturity onset
diabetes of the young (MODY) type 319. HNF4A is part of a complex regulatory network in
the liver and pancreas for glucose homeostasis20. Mutations in the HNF4A gene cause
MODY type 121. HNF4A is a transcription factor involved in the expression of several liver-
specific genes including HNF1A21. Defects in the expression of GCKR results in deficient
insulin secretion22. PTPN2, which modulates interferon gamma signal transduction at the
beta cell level23, was recently identified as a novel susceptibility gene for type 1 diabetes24.
PTPN2 also is linked to the inflammatory pathway. The nuclear isoform of PTPN2 is a
regulator of transcription factor STAT3 in the downstream of IL-6 signaling and may affect
CRP expression in Hep3B cells25.

CRP, IL6R, NLRP3, ILF10, and IRF1 are associated with CRP levels at least partly through
pathways related to innate and adapted immune response. NLRP3 encodes a member of the
NALP3 inflammasome complex26. The NALP3 inflammasome triggers an innate immune
response and can be activated by endogenous ‘danger signals’, as well as compounds
associated with pathogens27,28. Activated NALP3 inflammasome functions as an activator
of NF-kappaB signaling. NF-kappaB is a transcription factor which affects CRP expression
in Hep3B cells29.

Our genetic risk score explained approximately 5% of the variation in CRP levels, showing
that genetic factors are of importance in determining CRP levels. In comparison, BMI as the
main non-genetic determinant of CRP was reported to explain 5–7% of the variation in CRP
levels in AGES30 and up to 15% in FHS31. Ridker et al reported that seven SNPs discovered
in their study explained 10.1% of the variation in CRP levels after adjustment for age,
smoking, BMI, hormone therapy, and menopausal status. However, without adjustment for
these covariates, less than 5% of the variation in CRP levels was explained (D. Chasman,
personal communication).

Adipose tissue can induce chronic low-grade inflammation by producing proinflammatory
cytokines such as interleukin-632. Therefore, we examined whether adiposity modifies the
effect of any of the 18 genes on CRP. We found that BMI modifies the strength of the
association between LEPR and CRP. This interaction was initially found in WGHS33.

There is ample evidence that chronic inflammation is involved in atherosclerosis and
cardiovascular disease. In this study, we found no association between genetically elevated
CRP and risk of CHD. In agreement with our results, Elliot et al reported in a recent study
that variations in the CRP gene are not associated with risk of MI and CHD, but they found
associations of LEPR, IL6R, and APOCE-CI-CII with CHD10. However, the lack of
association with clinical events in our study could also be due to lack of power.

Our study has the benefit of a large and homogenous sample size of 82,725 subjects of
European ancestry. This enabled us to find novel genes with small effect on CRP level.
Furthermore, this large sample size enabled us to study gene-environment interaction which
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hitherto has been less feasible. In contrast to most other studies, we used only incident cases
of cardiovascular events from well defined population-based studies to examine the relation
between the identified SNPs and clinical disease. The study has several limitations.
Although we identified 18 loci associated with CRP levels, other genetic loci associated
with CRP concentrations may still be missed by our study. Six of the genome-wide
significant loci from the discovery panel were significant after Bonferroni correction in the
replication panel. The other identified loci need replication for confirmation in larger
samples. We acknowledge that our genetic risk score is based on our own findings and may
render less efficient when used in another population. Finally, we did not fine map the
identified loci; so we acknowledge that the identified SNPs may be in linkage disequilibrium
with non-HapMap variants causally related to CRP levels.

In conclusion, we identified 11 novel loci and confirmed seven known loci to affect CRP
levels. The results highlight immune response and metabolic regulatory pathways involved
in the regulation of chronic inflammation, as well as several loci previously unknown to be
related to inflammation. Furthermore, LEPR was found to affect CRP differently in the
presence of low or high BMI, which may lead to new insights in the mechanisms underlying
inflammation.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
This figure shows the mean CRP level (right vertical axis) as solid black dots connected by
solid lines for categories of the genetic risk score. The shaded bars show the distribution of
the genetic risk score in the whole population (left vertical axis). The CARLA Study was not
included due to missing values for some of the selected SNPs.
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Figure 2.
The forest plots show the meta-analysis of the association of the CRP genetic risk score with
MI(a) and CHD(b). The horizontal axis indicates the hazard ratio for MI or CHD per unit
increase in the rescaled genetic risk score.
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