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The genes and molecular machines that allow for a thermoalkaliphilic lifestyle have not been defined. To
address this goal, we report on the improved high-quality draft genome sequence of Caldalkalibacillus ther-
marum strain TA2.A1, an obligately aerobic bacterium that grows optimally at pH 9.5 and 65 to 70°C on a wide
variety of carbon and energy sources.

Thermoalkaliphilic microorganisms are poorly understood
as a group, and there is very little information available on the
genes and molecular machines that allow for a thermoalkali-
philic lifestyle. To live at high pH and temperature, akin to a
proton desert, these bacteria must overcome a number of ther-
modynamic challenges. These include capturing and retaining
protons from an alkaline environment (pH 9.5) to drive endo-
thermic reactions in the cell membrane (2), increased mem-
brane permeability to protons at high temperature (16), and a
low protonmotive force that appears to be suboptimal for
growth (12). Studies of the membrane-bound F1Fo-ATP syn-
thase of Caldalkalibacillus thermarum strain TA2.A1 (formerly
Bacillus sp. strain TA2.A1) have revealed a number of unique
adaptations that enable this enzyme to function at extremes
of pH and temperature by using protons as coupling ions (2,
8, 9, 11, 13–15). Additionally, thermoalkaliphilic bacteria
with a respiratory metabolism have an obligate growth re-
quirement for iron (10). At alkaline pH, the solubility con-
stant for iron decreases far below the requirement for living
cells, and the concentration of bioavailable iron is estimated
to be approximately 10�23 M at pH 10 (3), suggesting that
thermoalka-liphilic bacteria must possess powerful, yet un-
discovered, mechanisms to sequester iron. Despite these
apparent thermodynamic problems and the challenge of se-
vere iron limitation, thermoalkaliphilic bacteria grow rap-
idly (doubling time � 60 min) under these conditions, dem-
onstrating that these bacteria are superbly adapted to
combat these challenges.

The sequencing of genomes from representative thermo-

alkaliphilic bacteria is required to identify and characterize
genomic, biochemical, metabolic, and physiological properties
responsible for microbial growth at high temperature and pH.
To address this objective, we sequenced the genome of the
thermoalkaliphilic aerobic bacterium Caldalkalibacillus ther-
marum strain TA2.A1. C. thermarum strain TA2.A1 grows
optimally at temperatures of 65 to 70°C at pH 9.5 and was
isolated from an alkaline thermal bore at Mount Te Aroha,
New Zealand. C. thermarum strain TA2.A1 grows on sucrose,
common C4-dicarboxylates, glutamate, pyruvate, and treha-
lose; however, glucose and fructose fail to support robust
growth (12–13).

Genomic DNA of C. thermarum strain TA2.A1 was isolated
as previously described (6). The genome size is �2.986 Mb,
which is based upon an average of �18� genome coverage for
454 GS FLX shotgun data and �216� coverage for 36-bp
Illumina paired-end data from a library with an average insert
size of 350 bp. It is defined as a “high-quality draft,” which is
a high-quality assembly with automated improvements (1), and
production methods have been described previously (4, 7).

The C. thermarum strain TA2.A1 draft genome consists of
247 contigs, with an average G�C content of 47.5%. A total of
3,105 protein-coding genes were predicted by the Prodigal
algorithm (5). The TA2.A1 genome sequence will allow the
genes and molecular machines of this thermoalkaliphile and
others to be studied in greater detail.

Nucleotide sequence accession number. The whole-genome
shotgun project has been deposited in DDBJ/EMBL/GenBank
under accession number AFCE00000000. The nucleotide and
protein sequences, the annotated genome sequence, a meta-
bolic reconstruction, and various query tools such as BLAST
are available at the Computational Biology at Oak Ridge Na-
tional Laboratory (ORNL) website (http://genome.ornl.gov
/microbial/guest/TA2_3/).
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