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Reports of a high frequency of the transmission of minority viral populations with drug-resistant mutations
(DRM) are inconsistent with evidence that HIV-1 infections usually arise from mono- or oligoclonal trans-
mission. We performed ultradeep sequencing (UDS) of partial HIV-1 gag, pol, and env genes from 32 recently
infected individuals. We then evaluated overall and per-site diversity levels, selective pressure, sequence
reproducibility, and presence of DRM and accessory mutations (AM). To differentiate biologically meaningful
mutations from those caused by methodological errors, we obtained multinomial confidence intervals (CI) for
the proportion of DRM at each site and fitted a binomial mixture model to determine background error rates
for each sample. We then examined the association between detected minority DRM and the virologic failure
of first-line antiretroviral therapy (ART). Similar to other studies, we observed increased detection of DRM at
low frequencies (average, 0.56%; 95% CI, 0.43 to 0.69; expected UDS error, 0.21 � 0.08% mutations/site). For
8 duplicate runs, there was variability in the proportions of minority DRM. There was no indication of
increased diversity or selection at DRM sites compared to other sites and no association between minority
DRM and AM. There was no correlation between detected minority DRM and clinical failure of first-line ART.
It is unlikely that minority viral variants harboring DRM are transmitted and maintained in the recipient host.
The majority of low-frequency DRM detected using UDS are likely errors inherent to UDS methodology or a
consequence of error-prone HIV-1 replication.

Using standard population-based genotypic assays of HIV
from individuals not yet treated with antiretroviral drugs, sev-
eral studies (43, 64, 69, 76) have estimated the rate of trans-
mitted drug resistance to be between 8 and 27% in countries
with the highest rates of antiretroviral therapy (ART) use. In
resource-limited settings, in which the introduction of ART
has been more recent, the estimated frequency of transmitted
drug resistance mutations (DRM) is substantially lower (41). It
appears, however, to be increasing in these settings as well (2,
14, 51). Using more-sensitive genotypic assays, different re-
search groups (15, 30, 32, 37, 48, 58, 65) have reported higher
proportions of transmitted DRM in ART-naive individuals.
The clinical importance of these low-level DRM remains un-
clear, as they have been associated with clinical consequences
in some (21, 24, 32, 36, 37, 40, 46, 54, 55, 63, 66, 71) but not all
(30, 47, 58) studies.

Highly sensitive assays for detecting low-frequency DRM
include point mutation assays and high-resolution sequencing
techniques. Point mutation assays, such as allele-specific PCR,
can detect DRM at frequencies as low as 0.01% of the sampled

viral population (31, 45, 53, 54), but they do not provide in-
formation about the sequence context surrounding a given
DRM and may be prone to false positives at the lower level of
detection (22). High-resolution sequencing techniques, such as
single genome sequencing (SGS) and ultradeep sequencing
(UDS), permit analyses of DRM in the context of the sur-
rounding genetic sequence and this allows the investigation of
accessory mutations (AM) that are often associated with DRM
during DRM selection (50). Recent studies have suggested
that highly sensitive PCR-dependent sequencing techniques
could also lead to spurious detection of DRM at low levels (29,
68, 72).

Recent analyses of genetic diversity in the HIV-1 env gene
during acute and early infection indicated that productive in-
fections are derived predominantly from a single, or less fre-
quently several, founder strains (1, 19, 25, 33). Differences in
routes of virus transmission, clinical stage, and viral load of the
source partner, as well as the presence of coinfections, may
influence the complexity of transmitted viral populations (7,
33, 39). The reported high prevalence of transmitted drug
resistance when the DRM in pol are present at very low levels
is not consistent with the descriptions of mono- or oligoclonal
transmission in the env coding region by SGS and UDS (1, 19,
25, 33). These discordant observations could be explained in
several ways: (i) DRM emerge de novo early after infection and
replicate as a relatively substantial proportion of the viral pop-
ulation, (ii) highly sensitive assays generate high rates of false
positives, and (iii) recombination occurs between env and pol
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during acute infection and is followed by selection (on env)
to yield a phylogenetically homogeneous population in env
but not in pol. To examine these hypotheses, we performed
UDS of the baseline samples of 32 recently HIV-infected
individuals and quantified sequence diversity, DRM preva-
lence and proportion, linkage to AM, selective pressure and
diversity levels at each site, experimental reproducibility,
and impact on first-line ART.

MATERIALS AND METHODS

Participants, sample collection, and clinical assays. Blood and urine samples
from 32 subjects from the San Diego Primary Infection Cohort (42) were ana-
lyzed. All samples were collected less than 4 months after each participant’s
estimated date of infection, as calculated using established algorithms (18, 27,
42). Upon collection, samples were aliquoted, frozen, and stored at �80°C. At all
time points, CD4 cell counts (LabCorp) and blood plasma HIV-1 RNA levels
(Amplicor HIV-1 Monitor Test; Roche Molecular Systems, Inc.) were quanti-
fied.

Population-based sequencing and subtyping. Standard genotypic HIV-1 drug
resistance tests were performed on baseline blood plasma samples and on the
first available specimen after viral failure using the population-sequencing-based
Viroseq platform (version 2.0; Celera Diagnostics, Foster City, CA). Baseline pol
sequences were used for HIV-1 subtype assignment using SCUEAL (http://www
.datamonkey.org/GASP) (35).

UDS. HIV-1 RNA was isolated from blood plasma (QIAamp viral RNA
minikit; Qiagen, Hilden, Germany), and cDNA was produced (RETROscript kit;
Applied Biosystems/Ambion, Austin, TX) according to the manufacturer’s in-
structions. If HIV-1 RNA levels (i.e., viral load) exceeded 20,000 HIV-1 RNA
copies/ml in the sample, then 500 �l of blood plasma was used; if the viral load
was below 20,000 HIV RNA copies/ml, then 1 ml of blood plasma was used.
Three coding regions—gag p24 (HXB2 coordinates 1366 to 1619), pol reverse
transcriptase (RT) (HXB2 coordinates 2708 to 3242), and env C2-V3 (HXB2
coordinates 6928 to 7344)—were amplified by PCR with region-specific primers
as previously described (8, 52). Rubber gaskets were used to physically separate
16 samples on a single 454 GS FLX titanium picoliter plate (454 Life Sciences/
Roche, Branford, CT), as previously described (52). For each sample, the cDNA
template input was calculated assuming 100% reverse transcription efficiency
and was expressed as the number of templates (log10) present in the 10-�l
reaction volume used for the first round of nested PCR (i.e., cDNA input before
any PCR amplification procedure). To validate our cDNA input estimation, we
quantified cDNA for 4 samples with real-time quantitative PCR (qPCR) (8). To
evaluate reproducibility, UDS was performed twice on the baseline samples for
eight participants, using the same cDNA products and the same experimental
conditions.

SGS. Using the same viral cDNA that was produced for UDS, SGS was
performed on seven patients (C7, I4, S1, U1, U7, N1, and Q9), as previously
described (8). The targeted regions for PCR amplification included env

C2-V3 (HXB2 coordinates 6928 to 7344) and pol RT (HXB2 coordinates
2708 to 3242), identical to the RT and C2-V3 regions amplified for UDS.

Quality control. To avoid cross-contamination, extraction procedures and
PCR were performed in separate rooms and on separate days with different sets
of micropipettes. Extraction was performed in a laminar flow cabinet. For every
experiment, negative controls were included to monitor cross-contamination.
Reads were checked for intersample and lab strain contamination by performing
MEGABLAST homology searches against each other and against the online
public Los Alamos HIV sequence database (http://www.hiv.lanl.gov/content
/sequence/BASIC_BLAST/basic_blast.html [accessed August 2010]). We also
evaluated UDS data for linked AM and divergent branches in phylogenies as
evidence for possible contamination.

UDS data analysis. Our UDS data analysis was performed as described else-
where (52; W. Delport, A. F. Y. Poon, and S. L. Kosakovsky Pond, submitted for
publication). This HIV-1 454 bioinformatics pipeline is publically available as a
part of the Datamonkey sequence analysis tool (http://www.datamonkey.org) (12,
60). Briefly, the analysis consisted of eight main steps.

(i) Quality filtering and extraction of gene-specific reads from multiplexed
samples. We utilized site-specific PHRED scores (16, 17) to filter the low-quality
base. By default, reads at least 100 nucleotides long and containing consecutive
PHRED scores greater than 20 (equivalent to �1% base calling error) were
retained for successive analyses. Since UDS errors are typically localized to
homopolymers (68), we allowed for reads to be broken into multiple fragments,
removing only the regions for which PHRED scores were less than the pre-
defined cutoff. These quality-controlled reads were subsequently filtered for each
of the sequenced coding regions (gag, env, and pol) by the use of an iterative
alignment procedure described elsewhere (Delport et al., submitted). Briefly, we
identified reads that were “mappable” against an HXB2 reference sequence
through the successive amino acid alignment of each read in each of six potential
reading frames (three forward and three reverse complemented). The reading
frame with the highest scoring read was retained if the per-site alignment score
exceeded five times the expected alignment score of a random sequence with
sample-specific base composition. The consensus of these mapped high protein
alignment scoring (HPAS) reads was constructed and utilized as a sample-
specific reference sequence for subsequent alignments. The remaining sequences
were aligned at the nucleotide level against this HPAS reference sequence and
retained if their alignment score exceeded the median score of the distribution of
HPAS reads. This nucleotide alignment step permits the correction of out-of-
frame indels or homopolymer length errors.

(ii) Estimate of sequence diversity. Overall sequence diversity was estimated
for each coding region as the maximum likelihood divergence using the HKY85
substitution model (26) in sliding windows of 125 nucleotides in width, with
25-nucleotide shifts in window placement, and a minimum site coverage of 500
reads.

(iii) Identification of DRM and AM. Using the Stanford Drug-Resistance
Database (http://hivdb.stanford.edu), we first identified 11 sites with associated
nucleoside reverse transcriptase inhibitor (NRTI) and nonnucleoside reverse
transcriptase inhibitor (NNRTI) DRM with scores greater than 35, indicating
that they confer moderate- to high-level resistance to ART (Table 1). Next, we
prepared a list of AM (see Table S1 in the supplemental material) that have been

TABLE 1. Drug resistance mutation sites with Stanford scores of �35a

Position HXB2 DRM
Drugs impacted by DRM

ABC DDI FTC 3TC D4T TDF AZT EFV ETR NVP

65 K R * * * * * *
100 L I * * *
103 K N, S, T * *
106 V A, M * *
179 V F
181 Y C, I, V * * *
184 M I, V * * *
188 Y C, L * *
190 G A, C, E, Q, S, V, T * *
215 T F, Y * *
230 M L

a Position based on HXB2 numbering. DRM indicates mutations associated with drug resistance with a Stanford score of �35. Letters represent the standard
one-letter amino acid code. ABC, abacavir; DDI, didanosine; FTC, emtricitabine; 3TC, lamivudine; D4T, stavudine; TDF, tenofovir; AZT, zidovudine; EFV, efavirenz;
ETR, etravirine; NVP, nevirapine. Shading indicates drugs affected by listed mutation, with the asterisk indicating a higher impact.
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reported to compensate for the loss of viral fitness incurred by acquiring DRM
(5, 6, 11, 23, 28, 49, 50, 56, 57, 62, 70, 75). UDS reads containing at least one site
of interest, either DRM or AM, were then analyzed. For each sample, reads were
categorized into four classes containing (i) both DRM and AM, (ii) DRM but no
AM, (iii) AM but no DRM, and (iv) neither DRM nor AM. We tested for the
enrichment of linked AM in each sample (i.e., reads with both DRM and AM)
using Fisher’s exact test (20), which was Bonferroni corrected to account for
multiple testing.

(iv) Estimation of site-specific diversity levels and diversifying/purifying se-
lection. To determine whether DRM sites tended to have higher diversity levels
or unique patterns of selection, we inferred nucleotide profiles at all sites with
sufficient UDS coverage (�50 reads). We estimated the per-site diversity level as
the proportion of non-HXB2 amino acids, assuming that each amino acid residue
is independent. Although this is probably an overestimate of the amount of
diversity, it is sufficient for the purposes of our analysis in the absence of a
phylogeny (4, 13). For each DRM site, we ranked the diversity level against all
other codons and assessed a median mutation rank for all DRM sites combined.
We determined whether this median mutation rank was significantly different
from random samples of non-DRM sites using a permutation test (n � 1,000).

Thereafter, we determined diversifying (or positive) and purifying (or nega-
tive) selection at each codon by inferring whether the ratio of observed nonsyn-
onymous to synonymous substitutions was significantly greater (diversifying se-
lection) or less (purifying selection) than expected, given the genetic code and
observed codon frequencies (34; Delport et al., submitted). The ratio of synon-
ymous to nonsynonymous substitutions was approximated by averaging over all
possible single-nucleotide substitution pathways between all pairs of observed
codons at a site, while assuming neutral evolution, as previously described (34;
Delport et al., submitted). We finally tested for the enrichment of diversifying
and purifying selection at DRM sites using Fisher’s exact test (20).

(v) Interrogation for methodological error. First, we determined multinomial
confidence intervals (CI) of percent DRM at any given codon to estimate the
reliability of our point estimate. Those DRM sites whose CI included zero were
considered to be a UDS error. Furthermore, in order to estimate a sample-
specific threshold for the identification of biologically meaningful minority poly-
morphisms, we fitted a binomial mixture model to site-specific diversity levels, as
previously described (10; Delport et al., submitted). This binomial mixture model
starts by evaluating the maximum likelihood fit of the data to a model that
assumes that single nucleotide polymorphisms (SNP) have equal probabilities of
being observed across all sites. Briefly, given the depth of sequence (c) and the
number of observed mutations (m), a binomial estimate of the likelihood of the
data at a site (i), given the probability of observing an SNP (r), can be obtained

as L�Di � r� � �mi

ci
�rmi�1 � r�ci�mi, and assuming independent sites, the mean

probability of observing an SNP across all sites can be estimated using the
product of these binomials, i.e., L�D � r� � �i�1

s L�Di � r�. Next, we iteratively
added additional SNP probability classes, each time estimating the model fit

using a binomial mixture model such that L�D� � �i�1
s �

j�1

K pjL�D � rj�, where pj

is the mixing proportion for each of K classes, each with its own probability of
observing an SNP (rj). All parameters were optimized using standard maximum
likelihood optimization techniques. The procedure of adding classes and opti-
mizing the assignment of sites to classes was repeated until the model fit, as
evaluated using Akaike information criterion (AIC) (3), was no longer improved.
The result of this binomial mixture model fitting procedure was (i) a statistical
estimate of the number of classes supported by the data, (ii) the estimation of a
class-specific probability of observing an SNP, and (iii) the assignment of sites to
each of those classes. We then assumed that the class with the lowest level of
diversity for each sample was equivalent to the proportion of the SNP expected
to arise from a UDS error, after filtering for context-dependent homopolymer
errors. This lowest level of diversity was then used as a sample-specific threshold
for the identification of minority variants. Given the estimated diversity level
(i.e., SNP probability), we calculated the posterior probability that a site be-
longed to each class using a naïve empirical Bayes procedure (74) and subse-
quently the posterior probability that a site does not belong to the background
diversity-level class, which was calculated as the sum of the posterior probabil-
ities for the nonbackground diversity-level classes.

(vi) Reproducibility of UDS data. We assessed the reproducibility of UDS
across eight samples by comparing the proportions of detected DRM for each of
the 11 analyzed codons between duplicate UDS runs. We also compared the
nucleotide composition of the entire sequence by analyzing every position (not
only DRM sites) with coverage of �200 reads in both duplicates. The primary
minority mutation was defined as the mutation with the second-highest fre-
quency at a site in the first run. Linear correlation was computed using the square
root-transformed frequencies.

(vii) Correlation analysis between sequence diversity, template input, and
EDI. To evaluate whether the occurrence of sites with detected minority variants
is the result of continued viral evolution, we evaluated for correlations between
sequence diversity, estimated duration of infection (EDI), and the number of
codons with detected minority variants in each sample for each coding region.
Minority variant sites were defined as those with a frequency of less than 10% in
the UDS reads and which were unlikely to have arisen from instrument error.
The latter was evaluated using three different approaches: (i) residue frequency
of �1%, (ii) residue frequency that is greater than the background error rate
estimated by the binomial mixture model, and (iii) residue sites that were not
probabilistically assigned to the background diversity-level class based on an
empirical Bayesian procedure (74). We also evaluated for correlations between
(i) sequence diversity for the three coding regions, (ii) input of cDNA templates
(and HIV-1 RNA viral loads) and sequence diversity, and (iii) sequence diversity
and number of codons with detected minority variants. Correlation analyses were
performed using both parametric (Pearson) and nonparametric (Spearman)
tests. The level of significance for all analyses was a P value of �0.05. Lastly, we
also compared mean sequence diversities for each coding region within partici-
pants according to the Fiebig classification (18) using the Wilcoxon signed-rank
test.

(viii) Treatment response. Using available longitudinal clinical data, we eval-
uated the impact that low-level (�20%) DRM detected by UDS may have had
on the observed rate of clinical failure of first-line ART. To investigate a possible
connection between virologic failure and observed low-level DRM at baseline,
we sequenced (by population-based sequencing) the HIV-1 RNA from the ear-
liest available sample after therapy failure for the six patients who experienced
virologic failure.

Virologic failure was defined as the observation of two or more viral loads of
greater than 500 HIV RNA copies/ml after initial suppression of the virus to
undetectable levels, i.e., �50 HIV RNA copies/ml.

RESULTS

Study cohort. Study participants were, predominantly, white
men with a mean age of 31 years who reported sex with other
men as their HIV risk factor. All but one were infected with
HIV-1 subtype B virus, the exception being an HIV-1 subtype
B/D recombinant. The mean EDI at sample collection was 2.8
months (range, 1.1 to 3.9 months; Fiebig stage IV or V). At the
time of sampling, the mean CD4 count was 602 cells/ml (range,
228 to 937 cells/ml) and the mean blood plasma viral load was
6.1 log10 HIV-1 RNA copies/ml (range, 3.5 to 7.5 log10). The
mean calculated cDNA input in the first-round nested PCR
was 4.8 log10 copies/10 �l (range, 2.5 to 6.2 log10). For 4
samples, the calculated and the measured cDNA values cor-
related at an R2 value of 0.92 (P � 0.04). Baseline character-
istics are summarized in Table 2.

TABLE 2. Participant characteristicsa

Characteristics Values

No. of participants in study (%) ...................................... 32 (100)
No. male (%)...................................................................... 31 (97)
Mean age, yr (range) ......................................................... 31 (20–58)
No. of MSM (%)................................................................ 31 (97)
No. Caucasian (%)............................................................. 26 (81.2)
No. HIV subtype B (%).................................................... 31 (97)
No. of DRM by bulk sequencing (%)............................. 4 (12.5)
No. of DRM by UDS (%) ................................................ 29 (91)
Mean EDI, mo (range) ..................................................... 2.8 (1.1–3.9)
Mean CD4, cells/ml (range) .............................................602 (228–937)
Mean HIV-1 VL, log10 copies/ml (range) ...................... 6.1 (3.5–7.5)
Mean cDNA input, log10 copies/10 �l (range) .............. 4.8 (2.5–6.2)

a MSM, men who have sex with men; DRM, drug resistance mutations with
Stanford score of �35; VL, viral load; UDS, ultradeep sequencing; EDI, esti-
mated duration of infection. Average cDNA input in log10 cDNA copies/10-ul
reaction (range).
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UDS and SGS coverage. The UDS methodology yielded an
average of 17,152 high-quality reads across all gene regions
(range, 2,216 to 35,160), with a mean read length of 152 nu-
cleotides (range, 98 to 195) (see Table S2 in the supplemental
material). In comparison, SGS produced on average 25 reads
(range, 20 to 30) with a mean read length of 400 nucleotides
for RT and 300 nucleotides for C2-V3. On average, 76.5% of
the quality-filtered UDS reads were successfully aligned to the
HXB2 reference sequences. Of these aligned reads, 38.4% on
average were C2-V3 (mean read length, 227 nucleotides),
33.7% p24 (mean read length, 192 nucleotides), and 27.9% RT
(mean read length, 166 nucleotides). No evidence for labora-
tory contamination of any sample was seen.

Reproducibility of UDS. The differences in estimated DRM
proportions between duplicate UDS runs were significant.
When at least one of the runs reported a DRM at any level
�20%, there was little agreement with the other run (Table 3).
Specifically, only in 3 of the 23 evaluated cases that had at least
one detected DRM did the second UDS run confirm a minor-
ity DRM greater than the calculated background. We further
compared all amino acid positions among those UDS runs with
coverage of �200 reads between the duplicate runs (not only
DRM sites). The consensus agreement was mostly conserved
within the two duplicate runs (range, 95 to 100%), and the
frequencies of primary minority residues (i.e., mutations with
the second-highest frequency) between duplicated runs were
strongly correlated (R2 range, 0.68 to 0.98). However, there
was much variability in the primary minority mutations iden-
tified in the replicated runs (range, 25 to 59% agreement
between runs) (see Table S3 in the supplemental material).

UDS error estimation. We used two approaches to estimate
UDS errors in our study: (i) multinomial CI for mutations and
(ii) a binomial mixture model. For approximately 60% of the
screened DRM sites, the multinomial CI for the DRM pro-
portions included the value zero and were therefore consid-
ered instrumental errors (see Table S4 in the supplemental
material). The mean frequency for the true DRM was calcu-
lated to be 0.56% (95% CI, 0.43 to 0.69). In our binomial

mixture model approach, we estimated diversity-level classes
across all sites in the UDS alignment. We assumed that the
smallest diversity level represented the background diversity
level and conservatively reflected the UDS background error
rate. Using this approach, we detected between two and eight
diversity-level classes, with a mean minimum diversity of
0.0021 	 0.0008 per site (Table 4). This corresponds to an
expected error percentage of 0.21 	 0.08 per site and is similar
to a previously published study (29). For most samples, a large
proportion of sites were assigned to this lower diversity class
(Table 4) and variants at these sites were therefore considered
to be likely technical errors. We then evaluated all UDS results
in relation to the specific diversity-level class and inferred the
background error rate in the sample identified by the binomial
mixture model.

Identification of DRM and AM and estimation of site-wise
diversity level and diversifying/purifying selection. We evalu-
ated the detection of DRM by (i) comparing inferred DRM
from UDS, SGS, and a population-based sequencing
method, (ii) estimating the frequency of DRM by each
method, (iii) comparing per-site diversity and selection pat-
terns at DRM and non-DRM sites, and (iv) evaluating AM
linked to detected DRM.

For 11 well-described DRM sites (Table 1), we compared
amino acid compositions identified by population-based se-
quencing, SGS, and UDS. Out of the 32 samples, population-
based sequencing and SGS (if available) detected DRM at 3 of
the 11 sites in four individuals (12.5%) (see Table S5 in the
supplemental material). In addition to the detection of this
same DRM, UDS also detected at least one additional DRM
at a frequency greater than the estimated UDS error rate
(median, 2 positions; range, 0 to 6) in 29 of the 32 individuals
(91%). The frequencies of detected DRM by UDS were be-
tween 0.1 and 17.74% (see Table S5 in the supplemental ma-
terial). Other non-HXB2 amino acid substitutions not associ-
ated with DRM were identified in five samples (15.6%) by
population-based sequencing and SGS. UDS also detected
other non-HXB2 and non-DRM variants (at a frequency of 0.1

TABLE 3. Percentages of detected DRM for 8 duplicate UDS runsa

PID UDS run BG error rate
% DRM for indicated HXB2 position in reverse transcriptase

65 100 103 106 179 181 184 188 190 215 230

I4 1 0.18 0.23 0.33 99.77 0.05 0.00 0.00 0.20 0.15 0.05 0.00 0.00
I4 2 0.18 0.18 0.00 99.32 0.10 0.00 0.06 0.25 0.06 0.00 0.08 0.00
J6 1 0.27 0.33 0.00 0.00 0.10 0.00 0.00 0.30 0.40 0.20 0.00 0.00
J6 2 0.18 0.60 0.00 0.00 0.20 0.00 0.00 1.90 0.00 0.38 0.00 0.00
L3 1 0.17 0.12 0.00 IR 0.00 0.00 0.00 0.14 0.57 0.00 0.00 0.00
L3 2 0.22 0.57 0.13 4.55 0.04 0.00 0.10 0.24 0.14 0.00 0.10 0.00
R2 1 0.38 0.00 0.00 17.74 0.00 0.00 0.00 0.00 0.81 0.00 0.00 IR
R2 2 0.27 2.27 0.00 IR 0.00 0.23 0.00 0.89 0.22 0.00 0.00 IR
R6 1 0.22 0.15 0.00 0.00 0.10 0.00 0.00 0.14 0.07 0.07 0.00 0.00
R6 2 2.36 0.17 0.09 1.19 0.00 0.00 0.00 0.30 0.00 0.11 0.00 0.00
U1 1 0.27 0.20 0.00 IR 0.00 0.00 0.17 0.17 0.00 0.00 0.00 0.64
U1 2 0.34 0.00 0.00 IR 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00
U6 1 0.25 0.00 0.00 0.00 0.20 0.00 0.00 0.25 0.08 0.00 0.00 0.00
U6 2 0.11 0.84 0.00 0.15 0.34 0.00 0.09 0.36 0.00 0.27 0.00 0.00
U7 1 0.35 0.00 0.00 100 0.00 0.00 0.25 0.25 0.00 0.00 0.00 0.63
U7 2 0.14 0.61 0.00 100 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.00

a PID, patient identification number; UDS, ultradeep sequencing; BG error rate, background UDS error (%) estimated using a binomial mixture model for each UDS
sample; IR, insufficient reads at site/sample. Bold type indicates percentage of drug resistance mutations (% DRM) exceeding the background error rate. Underlining
indicates those DRM that were detected by both population-based sequencing and SGS.
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to 70%) at 3 or more positions (median, 8; range, 3 to 11) in
every subject (100%).

We found no evidence for increased (or decreased) diversity
at DRM sites compared to all other sites. Indeed, for all indi-
viduals the rank of the median diversity level for DRM sites
was not significantly greater than a random selection of an
equivalent number of non-DRM sites from the same alignment
(see Table S6 in the supplemental material). Similarly, we
found evidence for diversifying or purifying selection at DRM
sites in only 2 of the 32 screened patients, despite detection of
DRM by UDS in 91% of the participants (P � 0.05). Of the
two subjects with evidence of selection at DRM sites, one
(subject R8) had evidence for diversifying selection, whereas
the other (subject U1) showed purifying selection. Interest-
ingly, a repeated UDS run for patient U1 did not confirm
purifying selection at DRM sites.

Finally, we screened for AM since their co-occurrence with
observed DRM would support the notion that a detected
DRM was less likely to arise as a random mutation. We eval-
uated whether UDS reads with identified high-level DRM
were more likely to have linked compensatory AM than ex-
pected (Bonferroni-corrected Fisher’s exact test). Only in one

sample (I4) did we observe the enrichment of reads containing
DRM (with a Stanford score of �35) and linked AM.

Comparison of sequence diversity between coding regions.
The transmission of minority drug-resistant viral variants, as
detected in pol, would require polyclonal transmission, which
contradicts the current evidence supporting mono- or oligoclo-
nal transmission in env (1, 19, 25, 33). This disparity may be the
result of recombination between strains from multiple trans-
mission events in which pol diversity is maintained, while env
diversity is not. To investigate this possibility, we compared
sliding windows of sequence diversity in three gene regions for
each sample (gag p24, pol RT, env C2-V3). Mean sequence
diversity was 0.012 for pol (range, 0 to 0.074), 0.016 for gag
(range, 0 to 0.086), and 0.068 for env (range, 0 to 0.217), and
diversity measures were highly correlated within coding re-
gions (P � 0.01).

Sequence diversity may also increase over time as a conse-
quence of viral evolution and is expected to be lower during
the earliest phases of HIV-1 infection, especially assuming a
mono- or oligoclonal transmission event (1, 19, 25, 33). Al-
though our sampling was within 4 months of the estimated
time of infection, we did not find any significant correlation
between viral population diversity and EDI for any of the three
analyzed coding regions (env, P � 0.67; gag, P � 0.99; pol, P �
0.93). Repeating the analysis using the Fiebig classification, we
did not find a significant difference between the mean diversi-
ties in patients with stage IV compared to stage V infection for
any of the three coding regions (env, P � 1.00; gag, P � 0.9441;
pol, P � 0.3828). However, we found a significant correlation
between higher cDNA levels (and HIV-1 RNA viral load) and
lower sequence diversity in all three regions (Spearman corre-
lation, P � 0.017 for pol and P � 0.01 for gag and env) (see Fig.
S1 in the supplemental material).

There was no correlation between overall sequence diversity
and number of codons with detected minority variants in pol,
gag, and env. This was true for each of the three described
approaches to filtering for methodological errors (i.e., [i] mi-
nority mutations at a frequency of �1%, [ii] minority muta-
tions at a frequency greater than the background diversity
estimated using a binomial mixture model, and [iii] frequency
of minority mutations probabilistically not assigned to the
background diversity class using an empirical Bayesian proce-
dure). Moreover, the number of codons with detected minority
mutations did not correlate with EDI or cDNA input (or
HIV-1 RNA viral load) for any of the three coding regions.

Treatment response. Since HIV-1 DRM can abrogate the
efficacy of ART (43, 59), we investigated whether the presence
of DRM identified by UDS at positions 65, 103, 181, 184, and
215 adversely impacted response to first-line ART. Virologic
failure was defined as two or more viral loads of �500 HIV-1
RNA copies/ml after initial HIV-1 suppression of the virus to
�50 copies/ml during first-line ART. Before the DRM results
from UDS were known, 17 of the 32 subjects started ART
during follow-up (Table 5). The ART regimen for seven of
these patients included the NNRTI efavirenz (EFV) and two
or three NRTI medications. Using UDS, two of these patients
appeared to be infected by a virus possessing a low-level DRM
at position 103 or 181, which can confer resistance to NNRTI.
None of the seven patients receiving an NNRTI experienced
virologic failure after a mean follow-up of 608 days (range, 28

TABLE 4. Background error rate as determined by the binomial
mixture modela

PID No. of
diversity levels

BG error
rate (%) BG proportion (%)

A7 8 0.02 8.56
R8 5 0.07 10.78
I9 5 0.11 33.20
U6 5 0.11 35.50
J7 5 0.12 54.47
L1 4 0.13 45.84
R4 5 0.13 60.53
U7 3 0.14 63.02
J8 5 0.17 27.51
I4 5 0.18 44.30
C4 4 0.19 71.34
N3 4 0.19 77.86
F8 5 0.20 73.97
N1 4 0.20 68.14
Q9 4 0.20 58.35
L2 6 0.22 69.16
L3 7 0.22 54.15
R6 4 0.22 82.12
S1 3 0.22 66.70
L6 3 0.23 91.27
R3 4 0.23 45.94
N6 5 0.24 60.04
Q1 4 0.24 77.00
C7 4 0.25 47.63
L5 2 0.25 86.65
M4 2 0.25 81.02
J6 5 0.27 58.84
N0 5 0.27 56.86
U1 7 0.27 64.86
R2 5 0.38 72.71
S3 2 0.39 83.89
J5 5 0.46 84.18

a PID, patient identification number. The number of diversity levels is the
number found in each sample. The background (BG) error rate is the lowest
inferred diversity-level class, and BG proportion is the proportion of sites as-
signed to this lowest diversity-level class per sample. Those sites are conserva-
tively assumed to have no mutations other than sequencing errors. Rows are
sorted according to the BG rate, from lowest to highest.
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to 1,743 days), including those two patients with an apparent
DRM that would influence NNRTI sensitivity. Additionally, 10
patients with a detected low-level DRM conferring resistance
to NRTI (range, 1 to 3) at position 65, 184, 188, or 215 started
ART, including NRTI. Four of these patients (40%) experi-
enced virologic failure after an average of 329 days of treat-
ment (range, 247 to 579). A review of clinical data revealed
clear nonadherence to ART in two of these four patients. Also,
two more patients without any detected DRM at baseline ex-
perienced virologic failure. Only two of the six patients with
virologic failure had an M184V DRM at the time of virologic
failure, and one of these had an apparent low-level DRM at
RT position 184 at baseline. By clinical records, he was also not
compliant with the prescribed ART (Table 5).

DISCUSSION

Using ultrasensitive genotypic assays, many research groups
have reported high proportions of transmitted DRM among
ART-naïve individuals (15, 30, 32, 37, 48, 58, 65), but these
findings are not consistent with the descriptions of mono- or
oligoclonal transmission in the env coding region by SGS and
UDS (1, 19, 25, 33). The primary goal of this analysis was to
investigate whether detected minority viral variants in the ear-
liest part of HIV-1 infection were (i) truly transmitted, (ii) a
consequence of viral evolution and selection early after trans-
mission, (iii) technical errors in highly sensitive detection
methods, or (iii) de novo mutations resulting as a consequence
of the high error rate of HIV-1 replication. To address these
issues, we performed bulk sequencing of HIV-1 pol and UDS
of three HIV-1 coding regions (partial gag, pol, and env) sam-
pled from 32 recently infected individuals. These data were
then used to evaluate overall and per-site diversity levels, se-
lective pressure, sequence reproducibility, DRM, and AM. A
series of statistical and computational analyses were applied to

help differentiate biologically meaningful mutations from
those caused by methodological errors. We also examined the
association between detected minority DRM and virologic fail-
ure of first-line ART. UDS of viral populations confirmed all
DRM detected by bulk sequencing, but it also identified mul-
tiple low-level variants in every individual evaluated, even after
removing likely sequencing errors through model-based statis-
tical filtering. Similar to previous studies, the use of UDS was
very likely to detect low-frequency variants harboring DRM
during recent infection, especially at frequencies of �1%.

Early recombination between env and pol could possibly
explain the conundrum of the frequent detection of low-level
DRM when evaluating pol but of oligo- or monoclonal trans-
mission when evaluating env using SGS (22). This study found,
however, that the overall sequence diversities for the three
coding regions were highly correlated (P � 0.01). This obser-
vation speaks against early recombination, since it would the-
oretically decrease diversity in some coding regions (e.g., env)
while maintaining diversity in others (e.g., pol). Additionally, if
multiclonal transmission had occurred (7, 39), then we would
expect that detected DRM would be associated with AM in the
same sequence, but we did not find that this was the case.
Alternatively, DRM could be positively selected for in a mi-
nority of transmitted variants, or transmitted DRM at a higher
frequency could be replaced by wild-type virus (negative selec-
tion) in the initial stages of infection (42). This study found,
however, that DRM sites had the same levels of residue diver-
sity as all other sites in pol from the same subject, and all
detected DRM were not significantly enriched for positive or
negative selection (except for one DRM site in one individual).
Taken together, these data do not support frequent transmis-
sion and early (negative or positive) selection of viral variants
with DRM. This is consistent with recent observations by
Wang et al. (73) and Fischer et al. (19), who investigated viral

TABLE 5. Outcome of first-line ART in 17 participants

PID
% DRM for HXB2 position:

ART VF
Duration
of ART
(days)

UDS to
ART
(days)

DRM at VF
65 103 181 184 188 215

A7 0.1 0.94 0 0.39 0 0 3TC/AZT/IND Yes** 148 1 M184MV
C4 0 0 0 0 0 0.51 3TC/AZT/NFV Yes 579 1 M184V, D30N, N88D
I4 *0.23 99.77 *0.06 0.2 0.15 *0.08 3TC/TDF/ATV/RTV No 1040 1223
I9 0.3 0.66 0 0.82 0 0 3TC/D4T/TDF/EFV No 1743 10
J5 0 IR 0 0 0 0 3TC/AZT/SQV/RTV Yes** 180 3 A71V
J6 0.6 0 0 1.9 *0.38 0 3TC/AZT/EFV No 1965 102
J8 1.36 IR 0 1 0.17 0 3TC/ABC/D4T/APV/RTV Yes 314 1 NONE
L1 0 IR 0 0.56 0.56 0 3TC/AZT/LPV/RTV Yes** 277 20 NONE
L6 0.27 2.99 0.12 0.12 0 0 FTC/TDF/ATZ/RTV No 115 613
M4 0.09 0.5 0 0.13 99.35 0.17 3TC/AZT/ABC/LPV/RTV No 1500 19
N0 0.23 IR 0.13 0.26 0.13 0 FTC/TDF/EFV No 840 574
R2 *2.27 17.74 0 *0.89 *0.81 0 FTC/TDF/EFV No 86 857
R3 0 0 0 0.17 0 0 FTC/TDF/EFV No 28 983
R4 0 IR 0 0 0 IR ABC/3TC/EFV No 168 676
S3 IR 0 0 0 0 IR TDV/FTC/ATZ/RTV Yes 378 10 L10I
U1 *0.2 IR *0.17 *0.17 *0.19 0 FTC/TDF/EFV No 34 490
U7 *0.61 100 *0.25 *0.25 0 0 ABC/3TC/FOS/RTV No 227 233

PID, patient identification number; ART, antiretroviral therapy; VF, virologic failure of ART; IR, insufficient reads at site/sample; *, DRM that were found in only
one of repeated runs; **, likely nonadherence to ART. Bold type indicates percentages of drug resistance mutations (% DRM) exceeding the background error rate.
Underlining indicates those DRM that were detected by both population-based sequencing and SGS. Duration of ART, follow-up in days from therapy start to viral
failure or to last available time point; UDS to ART, follow-up time in days from UDS to ART start; 3TC, lamivudine; AZT, zidovudine; IND, indinavir; NFV, nelfinavir;
TDF, tenofovir; ATV, atazanavir; RTV, ritonavir; D4T, stavudine; EFV, efavirenz; SQV, sequinavir; ABC, abacavir; APV, amprenavir; LPV, lopinavir; FTC,
emtricitabine; FOS, fosamprenavir.
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diversity during acute HCV and HIV-1 infection by the use of
UDS. These studies also showed that one or a few viral vari-
ants were present during transmission and that the detected
low-frequency variants were only one or two mutations distant
from the inferred transmitted variants.

As an alternative explanation, the detected DRM could
emerge de novo early after infection and replicate as a minor
but measurable proportion of the viral population. In contrast
to previous studies (33, 38), we did not find a significant cor-
relation between viral population diversity and EDI or Fiebig
stage of infection, as might be expected with viral evolution
following mono- or oligoclonal transmission. Our analysis did
find, however, that lower viral diversity correlated with higher
cDNA input into UDS and higher HIV-1 viral load and that
higher viral load correlated with more recent EDI (P � 0.02).
Overall, these data suggest that viral diversity is lower in the
earliest stage of infection when viral load is higher and that
over time, as viral load decreases, viral diversity increases.
Interestingly, there was no correlation between the number of
sites presenting minority mutations and overall sequence di-
versity for any of the three coding regions. This likely indicates
that the frequency of codons carrying minority mutations does
not increase over time in parallel with overall sequence diver-
sity, and these detected mutations are the likely consequence
of the daily appearance and disappearance of mutations across
the HIV-1 genome secondary to the error-prone reverse trans-
criptase of HIV-1.

The detection of DRM at very low levels during primary
HIV-1 infection is likely either a consequence of variants
emerging during viral replication or the result of technical
artifacts, especially near the lower limit of detection. Distin-
guishing true DRM present at low levels from technical error
is a challenge when using highly sensitive genotypic methods
such as UDS. To investigate this, we used a binomial mixture
model to identify different classes of diversity levels in each
UDS run and then used these diversity levels to evaluate pos-
sible error rates (10; Delport et al., submitted). This model-
based approach has the advantage of examining all of the data
to deduce an appropriate cutoff for each residue site by ac-
counting for (i) per-site coverage by UDS, (ii) the overall
distribution of mutations, and (iii) the diversity of the under-
lying viral population. In addition to instrument error and
baseline HIV-1 mutation rate, the number of diversity-level
classes would be influenced by overall sequence diversity (i.e.,
how many different viral sequences are circulating), natural
selection (i.e., some sites appearing more or less variable than
others), and population structure. Therefore, we conserva-
tively assumed that the lowest estimated diversity level corre-
sponds to the technical background error rate. In this analysis,
the estimated mean background error rate was 0.21 	 0.08%
per site, which is consistent with previous studies that reported
UDS error rates ranging from 0.05 to 1.0% (29, 44, 67, 68, 72,
77). This variation is likely due to multiple factors, including
subtle differences in the methods, gene-specific mutation pat-
terns, and UDS read coverages. Similarly, a previous study also
found that by using a filtering procedure similar to that applied
in this study, observed error rates were reduced from 0.5% to
0.25% (29). Taken together, these computed background error
rates allow for the most conservative estimation of detectable
DRM by UDS in our sample.

If technical errors were the reason for the frequent detection
of low-level DRM, then, we hypothesized, duplicated UDS
runs would demonstrate different results. We assessed the re-
producibility of UDS in eight samples by comparing the pro-
portions of detected DRM and the nucleotide composition of
the entire sequence when UDS coverage was �200 reads in
each duplicated run. Despite excellent agreement between
runs in recovering the majority residue at each position (see
Table S3 in the supplemental material), significant differences
in the inferred prevalence and frequencies of low-level DRM
in the eight replicated UDS assays were observed (Table 3).
The agreement was generally poorer for runs with lower num-
bers of reads. It is difficult to determine whether these incon-
sistencies are the result of technical errors or simply the failure
to amplify, sequence, and detect consistently low-frequency
variants. Variability between replicated UDS runs on the 454
platform has previously been reported (61, 68). For example,
Poon et al. (61) found that many minority variants detected at
levels between 1 and 5% in one replicate were undetectable in
another. Therefore, we believe that our filtering and back-
ground-calling procedure is unlikely to be the sole source of
incongruent results between duplicate UDS runs and that
other sources of noise could play a role, including PCR and
sampling biases and various UDS instrument errors. More-
over, in our analysis we still observed �60% of replicated UDS
runs to have some levels of discordance in detected/nonde-
tected amino acid residues. Thus, it remains a challenge to
distinguish low-level “true” variants from assay artifacts. The
confirmation of whether detection represents a “true” viral
variant or a false-positive result may be assisted by the use of
clonal analysis, as exemplified by Varghese and colleagues
(68), who found that when the K65R DRM was detected at a
frequency around 1% in an HIV-1 subtype C population by
UDS, these variants could not be confirmed by subsequent
clonal analysis.

We also hypothesized that if low-level DRM represent trans-
mitted variants, then they may negatively impact an individu-
al’s response to ART. We therefore investigated if the pres-
ence of DRM identified by UDS at positions 65, 103, 181, 184,
and 215 adversely impacted response to first-line ART in our
study cohort. There was no apparent correlation between de-
tected minority DRM and clinical outcome or detected DRM
in the first available blood sample after virologic failure of
ART. Of course, these observations are limited by the small
cohort sample size, the short duration of follow-up for most of
the participants, and other factors, like differences in medica-
tion adherence. These limitations could lead us to underesti-
mate the negative impact of detected minority DRM during
primary infection on first-line ART.

Other limitations include a large number of low-quality
UDS reads that had to be excluded from the analysis. Rela-
tively short lengths and uneven coverage of UDS reads repre-
sent a challenge for linked mutation analysis and the estima-
tion of underlying viral diversity. Additionally, low template
input into the UDS reaction could cause resampling of the
original viral population and negatively impact our ability to
estimate sequence diversity for these samples; however, this
study found a negative correlation between input cDNA and
observed viral population diversity, and this provides some
evidence against oversampling by UDS. Lastly, EDI determi-
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nation could be biased by various factors, including inaccurate
reporting of recent sexual risk contacts and variations in assays
used to estimate timing of infection. These biases could explain
the observed lack of correlation between EDI and diversity in
the study.

The sensitivity of detection methods depends on different
factors, namely, the number of templates that are interrogated,
the error rate and amplification bias of the PCR, and sequenc-
ing procedures. For UDS, the number of reads obtained for
each position and the efficiency of filtering procedures applied
during the data analysis play an important role. Relying on
UDS for the detection of low-level DRM will require the
development of more realistic statistical and computational
models, experimental replication, and confirmation using other
sequencing techniques. Low-level DRM are more likely to be
clinically relevant if present at frequencies higher than a spe-
cific model-based background threshold and in the right se-
quence context (e.g., with AM). However, no filtering can fully
account for errors due to sampling or experimental biases, and
new sequencing technologies that promise to deliver longer
reads with lower per-base error rates will undoubtedly prove to
be useful for future investigations of transmitted DRM and
minority populations. In conclusion, this study used one of the
largest available sets of UDS data and found a diverse popu-
lation of viruses rich in low-frequency mutants at nearly every
sequenced residue position in pol, even early during infection.
However, there was no evidence to support the hypothesis that
minor populations of DRM are frequently transmitted or se-
lected during the first months after infection. In conclusion, we
believe that these DRM detected at low levels during primary
HIV-1 infection likely represent the consequence of the high
error rate of HIV-1 replication (9) or experimental artifacts.
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