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Abstract
Recent studies suggest that the tail of the washout of tracer-labeled substances from physiological
systems can exhibit power-law behavior. In this work we develop a theoretical interpretation of
the power-law behavior of the flow-limited washout of tracer-labeled water from the myocardium.
Using minimal assumptions concerning the complicated structure of the coronary network we
show that the washout from a heterogeneous flow system is given by h(t) = A · p1(V/t)−β, where β
is close to 3, p1 is the probability density of flows through the system, V is a constant volume
associated with each pathway, and A is a constant. This prediction fits observed power-law
washout behavior of tracer water in the heart. This theory is general enough to lead us to speculate
that close examination of transport in other heterogeneously perfused systems is likely to reveal
similar power-law behavior.
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Motivation
The tail of the washout curve following an impulse injection of an inert tracer into the
coronary inflow is close to t−3.1 Is the power-law form of the tail a consequence of the
complex structure of the coronary network? One tends to assume that behavior as simple as
t−3 should be governed by an equally simple mechanism. It is observed for both real
coronary networks1 and the simulated networks that we have generated previously.2 A
theoretical treatment of this behavior is presented here, which relates the power-law
exponent of the washout to the probability distribution of capillary flows and transit times.

Regional distributions of flows in all organs examined carefully have been found to be
heterogeneous. In hearts3 and lungs5 not only is the heterogeneity broad [with standard
deviation (SD) over means of 20%–30% at spatial resolution of 1% of the organ size] but is
also dependent on spatial resolution in a logarithmic fashion describable as a fractal process.
4 Power-law behavior itself is a “self-similar” phenomenon, i.e., doubling (or other) of the
the time is matched by a specific fractional diminution of the function, and the degree of
fractional diminution is independent of the chosen starting time; “self-similiarity,
independent of scale” is equivalent to a statement that the process is fractal. This applies at
least over some limited range since there are no infinite fractals in nature.
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The classical method of extrapolating the tails of circulatory dye dilution curves and
washout curves as exponentials6 has its roots in linear compartmental analysis. We propose
that the tails of the curves obtained from a large class of washout processes are more
accurately modeled as power-law functions. Norwich9 contrasts compartmental models with
noncompartmental models that give rise to power functions. Sparacino et al.11 illustrate
forms of circulatory transport functions appearing to have multiexponential or power-law
tails. The following approach suggests a way to reconcile some of the differences between
compartmental and heterogeneous-flow distributed models of tracer kinetics.

Sums of Scaled Functions can give Power-Law Behavior
Bassingthwaighte and Beard1 showed that a power-law function can be represented as the
sum of a finite number of fractal-scaled basis functions. Any finite area probability density
function may serve as a basis function. Consider approximating the power-law function,
G(t), of Eq. (1) with Gs(t), the weighted sum of basis functions g(kit) in Eq. (2):

(1)

(2)

where ai is the amplitude scalar and ki is the time scalar for the ith member. Since the basis
functions are not necessarily orthogonal, a finite sum of N scaled basis function is
considered.

Each ai can be calculated by projecting the basis function g(kit) onto the power function:

(3)

This operation minimizes the mean square error, . From this one can
solve the relationship between ai and ki using a dummy variable, τ = kit, substituted into Eq.
(4):

(4)

or

(5)

where C is a constant that does not depend on ki. Note that this is true for basis functions
g(kit), which are strictly functions of kit. Note that if g is not strictly a function of kit, the
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form of Eq. (5) has to be adjusted. For example, for basis functions of the form kig(kit), ai

will be proportional to .

This simple result says that in order to represent a power-law function that diminishes as t−β
by a finite sum of some scaled basis function g(kit), the weighting of each scaled basis
function is determined by the scaling factor raised to the power-law exponent β:

(6)

In general, the ki can be chosen based on the interval over which the power-law slope is fit.
If the interval is defined by t = ta to t = tb, then k1 may be chosen by k1 = 1/ta or a
conveniently chosen value. In order to evenly distribute all of the ki in the log-time domain,
the rest of the ki can be calculated over the range chosen:

(7)

An example using exponentials as the basis function is demonstrated in Fig. 1. G and g are
given by G(t) = t−2 and g(kit) = e−kit. The finite-sum approximation is shown for N = 2, 3,

and 4 exponentials, where the constant C is chosen so that the areas  and 
are equal. An approximate fit is achieved using only four exponentials over the interval of ta
= 1 to tb = 100. In practice we find that making ta and tb outside of the desired region to be
fitted and increasing N allows one to approach exact power-law behavior arbitrarily closely.

Now, let us consider as the basis function a model composed of two identical mixing
chambers in series,

(8)

which is qualitatively a better choice for a washout function because it is a unimodal
function and has a value of g = 0 at t = 0. By choosing N = 10, β = 3, ta = 1, and tb = 1000,
and substituting into Eqs. (5), (6), and (7), we get the function plotted in Fig. 2. The finite
sum approximation follows the power-law behavior over a range of about 3 decades in time
(defined by the ratio tb/ta). Comparison of Figs. 1 and 2 demonstrates that different basis
functions will give the same power-law behavior when they are summed and scaled
according to Eq. (6).

Parallel Compartments can give Power-Law Behavior
The sum expressed by Eq. (6) can be related to a parallel combination of N models, each
defining a probability density function of transit times. Here, each model consists of two
well-stirred tanks in series. The impulse response from each system of serial stirred tanks is

, where ki is proportional to the flow in the ith pathway. If we assume that the
washout from the entire system hs(t) has a power-law tail, then by Eqs. (6) and (8):
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(9)

We also know that the contribution to the concentration in the outflow from each pathway is
proportional to the flow in that pathway times the probability of occurrence. Since the flow

is proportional to ki, hs(t) is proportional to , where P(ki) is the relative
weighting for each pathway, or its probability of occurrence in the system, and is equivalent
to the probability density function of regional flows in an organ.8 Clearly P(ki) is

proportional to . So the curve in Fig. 2 can be thought of as the impulse response from a
system of N parallel compartments, each weighted by P(ki).

We can now think of the N parallel pathways as a discrete distribution of pathways with
variable flow and constant volume. In order to relate this discrete distribution to a
continuous probability density function, p(ki), note that P(ki) = Δk · p(ki), and from Eq. (7):

(10)

Therefore, p(ki) is proportional to . So by setting β = 3, picking ki from a uniform
random distribution, and summing the flow-weighted washout for each ki, we should get the
same power-law behavior shown in Fig. 2. Figure 3 shows the results of picking 1000 values
of ki from a uniform distribution between 0 and 1 and summing the flow-weighted washout
function according to

(11)

The curve plotted in Fig. 3 has a power-law tail that clearly follows t−3. Therefore the
experimentally observed behavior of water washout curves is completely explicable by the
heterogeneity of the flow in the system. If we model the system by a number of parallel
pathways, then we must consider a uniform distribution of flow through those pathways to
get the tail of the washout curve to exhibit t−3 behavior. A different flow distribution will
produce a different washout curve. In fact, this is a startlingly simple result. Uniform
randomly distributed flows in parallel pipes give the power-law washout behavior shown for
water washout from rabbit hearts in Ref. 1.

Power-Law Tail of Washout can be Related to Flow Heterogeneity
Consider the probability density function of flows through a parallel-flow system, p1(f), and
the probability density function of pathways with a given transit time through the same
system, P2(t). This p2(t) is not the same as h(t), the probability density function of transit
times. The h(t) weights each element of p2(t) in proportion to the flow through the pathway.
The probability of a certain flow occurring over the interval f1 to f1 + df is given by

(12)
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for small but finite df. The probability of a transit time occurring in the interval t1 to t1 + dt
is given by

(13)

If we assume that all pathways have the same volume V and that P1 and P2 correspond to
the same interval, dt can be calculated by

(14)

(15)

(16)

Because they correspond to the same interval, we can set P1 and P2 equal:

(17)

Taking the limit as df → 0 and rearranging Eq. (17),

(18)

Substituting for f1 = V/t1 gives

(19)

Dropping the subscript on t1 and writing the washout from the system as the flow-weighted
distribution of pathway transit times gives

(20)

or

Beard and Bassingthwaighte Page 5

Ann Biomed Eng. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(21)

where A is some constant. The washout will follow t−3 only when t3 is changing much faster
than p1(V/t). Again we see that uniform flow distributions lead to approximately t−3 washout
behavior!

In the above derivation, one could allow V to vary randomly. If the random variation in V
were uncorrelated with flow, then the derivation would remain largely unchanged and Eq.
(21) would still hold. [Imagine a discrete distribution of V values. Then the output from each
set of pathways with the same volume would result in Eq. (21). These curves will sum
together to give the same power law.] If f and V are correlated (which they may be), then the
derivation will become more complicated, and the sensitivity of Eq. (21) to this correlation
would depend upon how it is formulated.

Washout from more general flow distributions will approach t−3 behavior for limiting cases.
For example, if p1 is a Gaussian distribution,

(22)

where tmf is the time corresponding to the mean flow and σf is the standard deviation of
flows.

The washout will diminish as t−3 for all times such that

(23)

If σf > f̄, then the washout will follow t−3 for t > tmf, where f̄, is the mean flow. If σf is not
that large, then the washout will follow t−3 when t≫tmf as the exponent of Eq. (22)
approaches a constant value.

Recommendations
Evidence for the power-law form of the washout from vascular networks that we propose
has come from our laboratory1,2 and others reviewed by Norwich9. Since little attention is
typically paid to the long-time behavior of washout processes, more experimental
measurements will be needed to test the generality of logarithmic kinetic processes of this
type.

Transport and exchange models of heterogeneous flow systems usually incorporate a finite
number of parallel, axially distributed or compartmental units with a fixed distribution (e.g.,
Gaussian) of flows through the units.8 To produce the appropriate power-law tail on
washout curves, the parallel units should be equally spaced in the log transit time (or,
equivalently, low flow) domain, as described by the example in the Appendix.
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Many models have been developed for describing tracer exchanges between blood and
tissue. Single capillary–tissue exchange unit models, even complex ones accounting for
solute binding and transformation such as the oxygen models of Li et al.,7 give rise to a tail
which is monoexponential. More complex multicomponent models for oxygen transport,
including diffusional exchanges between arteriolar and venular volumes through intratissue
diffusional exchanges, do give rise to multiexponential tails,10,12 but even these resolve
into a monexponential form at very long times. Thus it is clear that all of these types of
models must be extended into a network or multicapillary form if they are to provide good
fits to high resolution data at late times where washout follows power-law behavior.

Appendix: Example of Power-Law Washout with Stirred Tanks in Parallel
Given a set of basis functions representing a set of stirred tanks in parallel,

(A1)

then we need to define the conditions under which this sums to approximately a power-law
relationship h(t) ∼t−β.

The area under each kie−kit is unity. For all ai = 1.0, then the area under the summation in
Eq. (A1) is determined by the ratio ε = ki+1/kj, where 0<ε<l, the length of the series and the
value for β. The value of β determines the ratio γ = ai+1/ai:

For γ<1 the area under C(t) is 1 + γ+ γ2 + γ3 + ⋯ + γN, which is (1 − γN)/(l − γ). For β = 1
and for any ε, then Eq. (A1) gives a fit to t−1 to arbitrary accuracy. For higher accuracy more
terms are required, so one may use ε closer to 1 and larger N, picking the highest rate
constant k1 to cover the beginning of the range desired. The normalized version of Eq. (A1),
when β = 1 and therefore where a1 = 1, is

(A2)

When β is greater than 1, so that γ is necessarily less than 1,

(A3)

When 0<β<1, then γ>1, and since γ · ε<1 the series converges. For β = 0, h(t) = a1t0, and the
series does not converge. This stirred tank representation does not work for negative β.
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FIGURE 1.
Comparison of multiexponential fits to a power-law function. Log–log plot showing fits to
G = t−2 using two, three, and four exponentials with ta = 1, tb = 100, and C = 10.93, 2.16,
and 1.56, respectively.
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FIGURE 2.
Power-law fit using unimodal basis function. Log–log plot showing a fit to G = t−3 using
g(kit) = kite−kit with N = 10, ta = 1, and tb = 1000, and C = 0.1278.
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FIGURE 3.
Washout due to uniformly distributed random flows. Log–log plot showing

, where the ki are chosen from a uniform random distribution between 0
and 1.
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