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ABSTRACT

This paper takes a close look at balanced permutations, a recently developed sample reuse
method with applications in bioinformatics. It turns out that balanced permutation reference
distributions do not have the correct null behavior, which can be traced to their lack of a group
structure. We find that they can give p-values that are too permissive to varying degrees. In
particular the observed test statistic can be larger than that of all B balanced permutations of a
data set with a probability much higher than 1/(B + 1), even under the null hypothesis.
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1. INTRODUCTION

Sample reuse methods such as permutation testing and the bootstrap are invaluable tools in high-

throughput genomic settings, such as microarray analyses. They are used to test hypotheses and compute

p-values without making strong parametric assumptions about the data, and they adapt readily to complicated

test statistics.

Permutation tests, described in more detail below, work by permuting the treatment labels of the data and

comparing the resulting values of a test statistic to the original one. Suppose for example, that there are n

observations X1; . . . ;Xn in the treatment group and also n observations Y1, . . . , Yn in the control group. We

might measure the treatment effect via D̂D¼ �XX� �YY where �XX and �YY are averages of the treatment and control

observations, respectively. There are P¼ 2n
n

� �
¼ (2n)!=(n!)2 ways to redo the assignment of treatment versus

control labels, and they each give a value for the treatment effect. If the actual treatment effect is larger than

that from all of the other permutations, then we may claim a p-value of 1/P. More generally, if the observed

effect beats (is larger than) exactly b of these values we can claim p¼ 1� b/P. The smallest available p value

is 1/P because the actual treatment allocation is always included in the reference set.

One reason why permutation tests work and are intuitively reasonable is their symmetry. If D̂D is the actual

difference and D̂D� is the difference for any reassignment of labels, chosen without looking at the X and Y

values, then

Pr (D̂D ‡ D)¼ Pr (D̂�D�‡ D) (1)

holds for all D, under the null hypothesis H0 that Xi and Yi are all independent and identically distributed.

That is, D̂D and D̂D� have the same distribution.

Recently, a special form of permutation analysis, called balanced permutation, has been employed. In a

balanced permutation, we make sure that after relabeling, the new treatment group has exactly n/2 members

that came from the original treatment group and n/2 from the original control group. The number of balanced
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permutations is B¼ n
n=2

� �2
which can be much smaller than the total number P of permutations. Balanced

permutations require n to be even, but nearly balanced permutations are possible for odd n.

These balanced permutations are mentioned in remark E on page 1159 of Efron et al. (2001). This is the

earliest mention we have found. Since then, they have been applied numerous times in the literature on

statistical analysis of microarrays. As of 2008, the National Cancer Institute describes balanced permutations

in their page on statistical tests at http://discover.nci.nih.gov/microarrayAnalysis/Statistical.Tests.jsp. They

say that more extreme p-values typically result, but they remark on a granularity problem. For fixed n, 1/B is

bigger than 1/P, and so balanced permutations require larger sample sizes n than ordinary ones do, if one is to

attain very small p-values.

Balanced permutations are a subset of all possible permutations, and so equation (1) holds for them too.

Intuitively, a balanced permutation analysis should be even better than a permutation analysis. If

E(Xi)¼ lx[ly¼ E(Yi) then E(D̂D)[0 while E(D̂D�) remains at 0 due to cancellation. By contrast, for ordinary

permutations some of the E(D̂D�) are positive and some are negative.

Equation (1) is not enough to make balanced permutations give properly calibrated p-values. The theory

of permutation tests also requires a group structure for the set of permutations used, and balanced permu-

tations do not satisfy this condition.

Though they fail a sufficient condition for giving exact p values, that does not in itself mean that they give

bad p values. The goal of this paper is to investigate the p-values produced via balanced permutations. What

we find is that those p values can be much smaller than they should be. This is most extreme in the case

where the original test statistic beats all of the balanced permutations.

The outline of this paper is as follows. Section 2 describes permutation based inferences including

balanced permutations and it distinguishes balanced from stratified permutations. Section 3 shows through

theory and simulations that the reference distribution provided by balanced permutations can lead to per-

missive p-values, sometimes by astonishingly large factors.

The major use of balanced permutations is in estimating a pooled p-value distribution for N test statistics

assumed to have the same distribution, and for estimating the false discovery rate (FDR) of a procedure.

Section 4 looks at balanced permutations for pooled reference distributions. It is well known that including

non-null cases makes a permutation analysis conservative. We find that including non-null cases in the

balanced permutation scheme has the opposite effect, making it overly permissive. Even purely null cases

can give rise to a permissive test, though this problem diminishes in large scale problems, when the null

cases are independent of the one being tested. Section 5 summarizes our conclusions on balanced permu-

tations, recommending against their use.

2. BACKGROUND

To be concrete, suppose that we are comparing gene expression for two groups of subjects, treatment and

control. Gene expression is a proxy measurement for the amount of product, either protein or RNA, made by

a gene. In the past decade, various high-throughput technologies, generally termed microarrays, have made it

possible to measure the expression activity of all genes in a genome with a single assay. We will later look at

the issues that arise when there are many gene expression measurements to consider. For simplicity, we

begin with the expression of a single gene.

We have n� 2 subjects in each group. For the treatment subjects we measure Xi 2 R for i¼ 1, . . . , n and

for the control group we measure Yi 2 R for i¼ 1, . . . , n. We assume an unpaired framework, so there is no

connection between Xi and Yi. The Xi are modeled as n independent samples from a distribution F and the Yi

are similarly sampled from G. We will always assume that F and G both have finite means. This is

reasonable for the applications we have in mind and it rules out uninteresting corner cases.

We are usually interested in H0 : E(X)¼ E(Y). We also consider the stricter hypothesis H0 : F¼G. There is

no exact nonparametric test for a one-sample mean (Bahadur and Savage 1956) and so we cannot expect one

for H0 either. One often makes do with exact tests for H0.

The customary test for H0 is Student’s t test. Let �XX¼ (1=n)
Pn

i¼ 1 Xi and �YY ¼ (1=n)
Pn

i¼ 1 Yi. Then under

H0, the statistic

t¼
�XX� �YY

s=
ffiffiffiffiffiffiffiffi
2=n

p (2)
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where

s2¼ 1

2n� 2

Xn

i¼ 1

(Xi� �XX)2þ
Xn

i¼ 1

(Yi� �YY)2

 !
,

has the t(2n�2) distribution. The t-test rejects H0 if jtj[t
1� a=2
(2n� 2). There are also one tailed versions.

The t test is designed for the case where Xi and Yi are normally distributed with common variance and

possibly different means. The test holds up fairly well for non-normal data. In this particular setting with

equal sample sizes of n, it is also reasonably accurate when Xi and Yi have unequal variances. For a

discussion of the properties of t tests when assumptions may be violated, see Miller (1986).

2.1. Permutation tests

Permutation tests are very simple and intuitive. The original treatment assignment is one of P¼ 2n
n

� �
possible assignments. Under the null hypothesis, they all have an equal chance to be the most extreme. The

explanation is not based on the P test statistics being independent and identically distributed. In fact, they are

not independent. The explanation comes from a symmetry argument which in turn stems from the group

structure of the set of permutations.

Here we make a formal presentation of permutation tests of H0, so that we may later highlight their

differences with balanced permutations. Balanced permutations also seem intuitively reasonable and even

seem intuitively better than ordinary permutations. Readers who primarily want to apply permutation

methods may prefer to skip this subsection.

We suppose as before that Xi*F and Yi*G are all independent, for i¼ 1, . . . , n. The sample mean

difference is D̂D¼ �XX� �YY ¼
P2n

i¼ 1 Zixi, where

Zi¼
Xi 1 £ i £ n

Yi� n n + 1 £ i £ 2n

�
,

and xi¼
1=n 1 £ i £ n

� 1=n n + 1 £ i £ 2n

�
:

We use Z¼ (Z1, . . . , Z2n) to represent both samples combined.

Suppose that we relabel the data, changing which subjects are treatment and which are control. Any

relabeling of the data can be obtained via a permutation of indices as follows. Let p(1), . . . , p(2n) be a

permutation of the integers 1, . . . , 2n. We shuffle the components of Z obtaining the vector

p(Z)¼ (Zp(1), Zp(2), . . . , Zp(2n)). We use the symbol p for two meanings, a permutation of indices and the

resulting rearrangement of a vector, but this should cause no confusion.

Now let

D̂D(p(Z))¼
X2n

i¼ 1

Zp(i)xi: (3)

Under H0 the distribution of D̂D(p(Z)) is the same as that of D̂D(Z), for all permutations p.

The set of all permutations of f1; . . . ; 2ng comprises a group, called S2n. The group operation is com-

position. For two permutations p; epp 2 S2n their composition, denoted by p � epp, is the permutation one gets

by applying epp first and then applying p to the result.

Although there are M¼ (2n)! permutations of f1, . . . , 2ng there are only P¼ 2n
n

� �
¼ (2n)!=(n!)2 distinct

cases for D̂D(p(Z)) determined by which n observations get p(i)� n and which get p(i)> n. The ratio

M/P¼ (n!)2 reflects the fact that there are n! ways to permute the observations with p(i)� n, (and similarly

the ones with p(i)> n) without affecting D̂D(p(Z))).

A permutation test uses the uniform distribution on all M possible sample values of D̂D(p(Z)) as a reference

distribution for D̂D, to test H0. In practice we accomplish the permutation test by the shortcut of computing

only the P distinct cases. Those cases all have multiplicity M/P and so we can still use a uniform distribution

on them. When even P is too large for enumeration to be feasible, then one commonly substitutes a very

large random sample of permutations for the complete enumeration.

Here we construct permutation tests of H0 at level a 2 (0, 1) based on Chapter 15.2 of Lehmann and

Romano (2005). We will work with all M relabelings, instead of reducing to the P distinct ones, in order to

use the simple group structure of S2n.
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To test H0, let T be a real valued function such that T(D̂D) takes larger values in response to stronger

evidence against H0. For example T (D)¼ |D| for a usual two tailed test and T (D)¼D or �D for one

tailed tests. To get a test with level a we reject H0 if the observed T(D̂D) is larger than Ma of the permuted

values. We sort the M values of the permuted test statistics T(D̂D(p(Z))), as p ranges through S2n, getting

T (1)(Z) £ T (2)(Z) £ � � � £ T (M)(Z):

Let k¼M�bMac. Roughly speaking, the test will reject H0 if T(D̂D(Z)) is larger than T (k)(Z) but the

recipe below takes care of ties, the number of which can in principle depend on the dataZ. We let Mþ (Z) be

the number of T (r)(Z) values strictly larger than T (k)(Z) and M0(Z) be the number of T (r)(Z) values exactly

equal to T(k). Then define the tie breaker quantity a(Z)¼ (Ma�Mþ (Z))=M0(Z) and let

w(Z)¼
1 T (D̂D (Z))[T

(k)
(Z),

a(Z) T (D̂D (Z)) = T
(k)

(Z),

0 T (D̂D (Z))\T
(k)

(Z).

8<:
By construction X

p2S2n

w(p(Z))¼Ma (4)

holds for any Z 2 R2n.

The interpretation of c is as follows. If c¼ 1 then we reject H0. If c¼ 0 then we don’t reject it. If

0<c< 1 then we reject H0 with probability c. It is best to have all the c values equal to 0 or 1 to avoid

randomized decisions. We can usually do this for special choices of a. For continuously distributed data all

P possible sample differences are distinct with probability one. Then taking a¼A/M for a positive integer

A<M yields a(Z)¼ 1 and so eliminates randomized decisions.

Theorem 1. Suppose that Xi*F and Yi*G for i¼ 1, . . . , n are all independent and that H0:F¼G

holds. For a test statistic T (z) and the randomization test quantity c constructed above from the permutation

group S2n, E(w(Z))¼ a.

Remark. Theorem 1 follows from Theorem 15.2.1 of Lehmann and Romano (2005) of which it is a

special case. We recap their proof, for later use.

Proof. Using H0 and then equation (4), we get

E(w(Z))¼ 1

M

X
p2S2n

E(w(p(Z)))¼ 1

M
E
X
p2S2n

w(p(Z))

 !
¼ Ma

M
¼ a:

j

When we have arranged for c to be either 0 or 1, then E(w(Z))¼ Pr (w(Z)¼ 1). Therefore, the test rejects

H0 with probability a. The p value is the smallest a rejected (among the non-randomized choices).

2.2. Stratified permutations and balanced permutations

Two different ideas have been called ‘‘balanced permutation’’ in the literature. In one kind of balanced

permutation, the subjects can be split into two groups in two different ways. The split of primary interest is

treatment versus control. The second split has levels that are variously called strata or blocks. It may already

be known to be quite important, but it is not of primary interest. For example, test and control might

correspond to young and old mice while the strata might correspond to two different strains. We might want

a test for age that adjusts for known differences between strains.

Suppose that we have n test subjects, where n is even for simplicity, with n/2 from stratum A and n/2 from

stratum B. Similarly, there are n/2 control subjects from each stratum. This study design has balanced the

treatment versus control dichotomy with respect to the strata, and it is reasonable to enforce such a balance

on all the permutations. To get a permutation that is balanced with respect to the stratification, we may select

n/2 of the subjects from stratum A and n/2 of the subjects from stratum B to be relabeled as test subjects. The

remaining n subjects are relabeled as controls, and of course are also balanced. Stratified permutation tests of

this type can be generalized to stratification factors with more than 2 levels and also to settings with more

than 1 factor.
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Tusher et al. (2001) employed this form of stratification to compare effects of radiation on genes, adjusting

for cell lines. Their subjects had a third dichotomy, corresponding to aliquots, that need not concern us here.

The other method called balanced permutations is the one described in the introduction. These balanced

permutations are not the same as stratified permutations. The difference is that the former stratifies on a

covariate dichotomy, while the latter stratifies on the dichotomy of interest. Stratification on a covariate is

sometimes studied as a restricted randomization and has a long history in nonparametric methods; for

example, see Good (2000) and Edgington and Onghena (2007).

We will use the term ‘‘balanced permutation’’ to describe only the new method of stratifying on the

variable of interest. As described in the introduction, there is reason to be optimistic about the performance

of balanced permutations. On the other hand, an ordinary unbalanced permutation test applied to �XX� �YY , is

asymptotically equivalent to Student’s t-test. That test is the appropriate one for Gaussian data, and is

asymptotically well behaved otherwise, under mild moment conditions. We might therefore expect that there

is little room for improvement from balanced permutations, at least for �XX� �YY and moderately large n.

To justify using balanced permutations to construct a reference distribution, we need to apply a result like

Theorem 1. The key ingredient is the group structure. Stratification has a group structure. In the setting above

we may employ permutations pA and pB within strata A and B respectively. The permutation of the whole

data set may be represented by the pair (pA, pB). These pairs have a group structure. Formally, it is the direct

sum of the groups to which pA and pB belong. Practically, the permutations for strata A and B are just handled

separately and independently. The group structure can extend to three or more strata.

The set B2n of balanced permutations is not a group. To begin with, the original data Z are the identity

permutation of the data, but the identity permutation is not a balanced permutation. We might simply include

the identity permutation, with the same multiplicity as each balanced permutation into B2n, getting the

set B2nþ . Then our putative p value is the proportion of permutations p 2 B2nþ for which T(Z) ‡ T(p(Z))

holds.

The problem with this approach is that the set B2nþ is not a group either, under composition. A balanced

permutation of a balanced permutation is not necessarily another balanced permutation. Therefore, B2n and

B2nþ both fail the closure requirement of a group. An example is illustrated in Figure 1.

T

C

Original
allocation

1st balanced
permutation

2nd balanced
permutation

FIG. 1. This figure shows that the result of applying two balanced permutations in succession need not be another

balanced permutation. The first column shows treatment and control groups, T and C, of four observations each. The

middle column shows the results of a balanced permutation that swapped two of the treatment subjects for two of the

controls as indicated by line segments. The third column shows the result of a second such swap. The final treatment group

has three members of the original treatment group and one member of the original control group, and so it is unbalanced.
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It is not obvious at first sight where the proof of Theorem 1 makes use of the group property of S2n. But

if we replace the group S2n by B2n (or B2nþ), and follow the steps, the proof fails at the third equality

sign. We can still pick k so that T (k)(Z) is beaten by a fraction a of T (r)(p(Z)) taken over balanced

permutations p. For a group of permutations, that means T (k) will be beaten by a fraction a of all

T (k)(epp(p(Z))) as epp ranges over the group and p is any fixed group member. This happens for the group S2n,

because fepp � p j epp 2 S2ng¼S2n. But no such result holds for B2n or B2nþ . For balanced permutations, the

set of ordered values of T (r)(epp(p(Z))) as epp varies for fixed p is not constant. That set depends on p and so its

1� a quantile will in general depend on p.

3. COVERAGE PROPERTIES OF BALANCED PERMUTATION

Because balanced permutations do not satisfy Theorem 1, we cannot be sure that they provide a suitable p

value for H0. We look at some theoretical and empirical results to see how they do.

In microarray experiments, n is often small, because arrays are costly. For example, Tusher et al. (2001)

compare two groups of n¼ 4 arrays. Our main interest is therefore in values of n between 4 and 20. We

also look briefly at n¼ 2 because a mathematical answer is possible there and because it illustrates the

issues.

3.1. Theory for n¼ 2

For n¼ 2 there are only B¼ 4 distinct balanced permutations, and so we can easily look at all of them.

Suppose that D̂D(Z)¼ �XX� �YY . Then we can write out results from all of the balanced permutations as a vector

D̂D�1
D̂D�2
D̂D�3
D̂D�4

0BB@
1CCA¼ 1

2

1 � 1 1 � 1

1 � 1 � 1 1

� 1 1 1 � 1

� 1 1 � 1 1

0BB@
1CCA

X1

X2

Y1

Y2

0BB@
1CCA:

Theorem 2. Suppose that X1, X2, Y1, and Y2 are independent random variables with the same continuous

distribution F. Let b¼
P4

j¼ 1 1fD̂D[D̂D�jg be the number of balanced permutations that the original per-

mutation beats. Then Pr(b¼ k)¼ 1/6 for k 2 f0, 1, 3, 4g and Pr (b¼ 2)¼ 1=3.

Proof. We easily find that D̂D[D̂D�1 if and only if X2>Y1. From the other three cases, we find that D̂D beats

all 4 balanced permutations if and only if both Xi are larger than both Yi. This has probability 1/6 by

symmetry. A similar argument shows that D̂D has probability 1/6 of beating none of the D̂D�j. For D̂D to beat

exactly 3 of the D̂D�j, the X’s must rank first and third among the four data points. Thus Pr(b¼ 3)¼ 1/6 as well.

Similarly Pr(b¼ 1)¼ 1/6, and by subtracting we find Pr(b¼ 2)¼ 1/3. &

Thus, for n¼ 2, the balanced permutation histogram for comparing means is not uniform. It is slightly

conservative. When the original permutation beats all 4 balanced permutations, we would naively claim a p

value of 1/5. But this event only has probability 1/6 of happening. Balanced permutations are not likely to be

applied when n¼ 2, except perhaps when results from multiple genes are to be pooled as described in

Section 4. Unfortunately, when n gets larger, the non-uniformity does not disappear, and the method

switches from conservative to permissive.

It is interesting to note that the number of permutations beaten has a double high spike in the middle at 2. If

we insert a pseudo value D̂D�5¼ 0, then by symmetry we split that spike into 2 equal pieces and obtain a

uniform histogram for
P5

j¼ 1 1fD̂D[D̂D�jg. This spike at the median appears in all of the balanced permutation

histograms for treatment effects that we have investigated. It is not a simple consequence of the histogram

being symmetric. For instance, the histogram for the full permutation set is symmetric but it does not have a

double high spike in the middle.

3.2. Numerical results for small n>2

The method used to prove Theorem 2 does not give us an answer for n> 2. When n¼ 4 the argument there

shows that the observed difference will beat all 36 balanced permutations if and only if the smallest n/2¼ 2

of the Xi have a higher sum than the largest 2 of the Yi. The probability of this event depends on the

underlying distribution of Xi and Yi. We proceed numerically, using the N(0, 1) distribution for illustration.
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For n¼ 4 observations per group there are now B¼ 4
2

� �2¼ 36 balanced permutations. The observed �XX� �YY
will beat some number in f0; 1, . . . , 36g of them. Ideally, the number of balanced permutations giving

p( �XX� �YY)\ �XX� �YY should have the uniform distribution on those 37 levels. The top plot in Figure 2 shows the

actual distribution, from 10,000 simulations of the case where X1, . . . ;X4, Y1, . . . , Y4 are independent N(0,

1) random variables. The histogram is nearly uniform except that the bars at 0, 18, and 36 are about twice as

high as desired. There is also a slight tendency for small and large multiples of 3 to have higher bars than

their neighbors.

The bottom plot in Figure 2 considers the case of n¼ 6. Now there are B¼ 400 balanced permutations.

The bar at 200 is about twice the desired height, while the ones at 0 and 400 are about 6.8 times as high as

they should be.

Histograms for n¼ 8 and 10 (not shown) are also nearly flat except for extra height in the middle and much

greater height at the ends. The heights at the extreme ends are described in Section 3.3, for values of n from 2

to 20.

The p values quoted above are one-tailed. For two-tailed p-values one might simply double both the

nominal and observed quantities. The true two-tailed p value for a mean that beats all 400 balanced

permutations would be about 2 · 6:8=401¼: 0:034 instead of 2=401¼: 0:005. In principle we might be better

Table 1. Results of 100,000 Simulations of a Balanced

Permutation Test for the Difference

of Means with n¼ 4 per Group

Exp.< 36 Exp.¼ 36

Gaussian< 36 94217 801

Gaussian¼ 36 370 4612

The simulation was run with Gaussian values (all observations in both

groups were independent N (0, 1)). Then it was rerun with values from the

exponential distribution of mean 1.The simulations were coupled. The table

shows counts of the number of times that the original permutation beat all 36

balanced permutations.

0           5 10 15 20 25 30 35

0.
0

0.
5

1.
0

1.
5

2.
0

Balanced permutation distribution, n=4

0 100 200 300 400

0 
   

  2
   

   
4 

   
   

6
Balanced permutation distribution, n=6

FIG. 2. These figures plot the probability mass function of the number of balanced permutations of X� Y beaten by

the original mean difference. The scale is chosen so that the heights of the bars average to 1 in each figure. The top

figure is for n¼ 4 N(0,1) random variables contributing to each of �XX and �YY . With n¼ 4 there are 36 balanced

permutations. The bottom figure is for n¼ 6 where there are 400 balanced permutations. Both figures differ from the

ideal in which all bars have height 1.
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off putting both �XX� �YY and �YY � �XX into the reference group. Then the two-tailed p-value would be about

2�6.8/402, but changing the denominators from 401 to 402 is a much smaller effect than the others we’re

studying, so we don’t consider it further.

For n¼ 2 there is enough symmetry to determine the histogram of p values. For larger n and Gaussian data

it may be possible to apply computational geometry. For example, when the treatment difference beats all

balanced permutations the combined vector Z lies in an intersection of n
n=2

� �2

half spaces in R2n. But as

remarked above, the answer is not distribution free. To confirm this distribution effect, we compared results

for exponential data to those for normal data for n¼ 4.

Results of a simulation of 100,000 cases for n¼ 4 are reported in Table 1. The simulations were run with

independent N (0, 1) data for all Xi and Yi. We counted how many times the observed �XX� �YY beat all 36

balanced permutation values. Then the simulation was rerun changing the N(0, 1) values to exponential

(mean 1) values. The second simulations were coupled to the first by the probability integral transformation,

� log (1��� 1(X)) which turns a N(0, 1) random variable X into an exponential one. There were 370 cases

where the Gaussian simulation beat all 36 of its balanced permutations while the exponential did not. There

were 801 reverse cases. This matched pair difference is statistically significant by McNemar’s test. It is

equivalent to more than 12 standard deviations using equation 10.4 of Agresti (2002). The size of the effect

however is not extremely large. For Gaussian data, the observed treatment effect beats all 36 balanced

permutations about 1.843 times as often as it should, while for exponential data the ratio is about 2.003.

3.3. Results for larger n

The most interesting feature of the balanced permutation histogram is the probability that D̂D is larger than

all Bn¼ n
n=2

� �2

balanced permutations. It is fairly easy to investigate this probability in the Gaussian setting

because of the following lemma.

Lemma 1. Let n� 2 be an even integer, and suppose that X1, . . . , Xn and Y1, . . . , Yn are independent N

(m, s2) random variables for some s> 0. Then the observed treatment effect D̂D¼ �XX� �YY is statistically

independent of the whole collection of balanced permutation treatment effects D̂D�1, . . . , D̂D�Bn
.

Proof. Under the hypothesis Z¼ (X1, . . . , Xn, Y1, . . . , Yn) has a multivariate normal distribution.

Therefore, so does (D̂D, D̂D�1, . . . , D̂D
�
Bn

). Because of the balance, the correlation between D̂D and D̂D�j is zero.

Therefore, D̂D is independent of (D̂D�1, . . . , D̂D�Bn
). &

Lemma 1 lets us estimate the probability that D̂D beats all Bn balanced permutations by sampling Xi and

Yi for i¼ 1, . . . , n many times, computing D�(Bn)¼ max1 £ j £ Bn
D̂D�j each time, and then averaging the values of

Table 2. Rounded Numerical Estimates of the Probability

that an Estimated Treatment Effect from n Observations

per Group Beats All Bn
n
2

� �2
of its Balanced

Permutation Treatment Effects

n p̂pn ĥhn 2.57CVn

2 0.166000 0.83 0.006

4 0.051000 1.89 0.008

6 0.016700 6.71 0.011

8 0.005700 27.90 0.014

10 0.001980 125.00 0.017

12 0.000699 596.00 0.021

14 0.000248 2,920.00 0.026

16 0.000089 14,800.00 0.030

18 0.000032 75,500.00 0.037

20 0.000012 401,000.00 0.046

The estimate p̂pn is in the second column. The normalized estimate

ĥhn(Bnþ 1)p̂pn is in the third colunn. Ideally this should be near 1. The fourth

column has F�1 (0.995)¼ 2.57 times the sampling coefficient of variation of

ĥhn. For example, the approximate 99% confidence interval for y8 is 1.4%

higher or lower than the estimate 27.9.
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g¼ Pr (D̂D[D�(Bn) j D
�
(Bn))¼� �

ffiffiffi
n

2

r
D�(Bn)

r

� �
:

The results of this computation are shown in Table 2. For each even n from 2 to 20 inclusive, 100,000 data

sets were investigated. The probability pn of beating all balanced permutations grows much faster than

1/(Bnþ 1). By n¼ 20 the p values are off by roughly 400,000. A least squares fit of log (p̂pn(Bnþ 1)) versus

n has intercept �2.335, slope 0.745 and an R2 of 0.995. While the fit is good over the range 2 to 20, there is

also positive curvature suggesting that extrapolating this model will underestimate the ratio.

3.4. Balanced permutation tests based on t statistics

In high-throughput settings, permutation tests are often run on the t-statistic of equation (2), instead of the

raw treatment effect D̂D. Let t* be the value of t computed after a reassignment of the treatment versus control

labels.

For a single test statistic this may seem redundant, because the permutation test on D̂D already behaves

similarly to the t statistic. But in high throughput settings we often have many test statistics, for instance one

per probe, whose underlying data have extremely different variances. The D̂D� from different probes are not

comparable. The t* values are more comparable because they normalize D̂D� by a standard error. Permuta-

tions of t* from one probe may thus be useful in forming a test for another probe.

The theorem below shows that balanced permutations of t statistics have the same calibration prob-

lem that balanced permutations of treatment differences do. As a result, the values in Table 2 apply to t tests

too.

Theorem 3. Let n� 2 be an even number. Let X1, . . . , Xn, Y1, . . . , Yn be distinct numbers and let

X�1 , . . . , X�n , Y�1 , . . . , Y�n be those same values after a possible relabeling. Let D̂D¼ �XX� �YY , let t be the t statistic

in (2) and take D̂D� and t* to be the analogous quantities on the relabeled values. Then D̂D‡ D̂D� holds if and only

if t� t*

Proof. The value D̂D� is a strictly increasing function of �XX
�
, as we vary the labelling. The proof follows by

showing that t* is also strictly increasing in �XX
�
. For notational simplicity we show that t is strictly increasing

in �XX.

Let m¼ ( �XXþ �YY)=2¼ ( �XX� þ �YY
�
)=2. Then D̂D¼ 2( �XX�m), where m does not depend on the labeling. Let D be

the positive square root of
Pn

i¼ 1 (Xi� �XX)2þ
Pn

i¼ 1 (Yi� �YY)2, so that t¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n(n� 1)
p

( �XX�m)=D. We need to

show that ( �XX�m)=D is strictly increasing in �XX, where D depends on the labeling.

Introduce S¼
Pn

i¼ 1 (Xi�m)2þ
Pn

i¼ 1 (Yi�m)2 which does not depend on labeling. Replacing Xi� �XX
by Xi�mþm� �XX in D2, and similarly for the Y values, we get D2¼ S� 2n(m� �XX)2 after simplification.

Now

t

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n(n� 1)
p ¼

�XX�m

(S� 2n( �XX�m)2)1=2
: (5)

The derivative of (5) with respect to �XX is 1=Dþ 2n( �XX�m)2=D3, which is strictly positive, and so t is

increasing in �XX. &

Theorem 3 shows that we get the same calibration problem whether we use t or D̂D when using a one tailed

criterion. The same equivalence holds for the two tailed criteria jtj and jD̂Dj. Both jtj and jD̂Dj are increasing in
�XX over the range �XX[ �YY both are decreasing in �XX when �XX\ �YY , and both are 0 when �XX¼ �YY .

The assumption that all 2n values are distinct can be weakened. It ensures that D is never 0, but that can be

enforced with a weaker condition.

3.5. Practical consequences

What we see in the figures is that the reference histogram is roughly uniform but with a spike in the middle

and two more at the ends that grow quickly with n.

The spikes at the ends are the most serious because they strongly affect p-values. Suppose for example that

n¼ 10. Then when the treatment effect beats all balanced permutations we might naively quote a one-tailed

p value of 1=(1þ 10
5

� �2
)¼: 1:57 · 10� 5. However, the proper p-value in that setting is about 1.98�10�3,

roughly 125 times larger.
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In studies that screen for interesting genes, using a small number n of arrays per group, the case where the

observed effect beats all permutations is the most important one. When many genes are investigated, one has

to make adjustments for multiple comparisons. Step down methods start by looking at the most significant

genes first before choosing a cutoff and quoting a false discovery rate. For an account of multiple testing

procedures, see Dudoit and van der Laan (2008). When the very smallest p-values are permissive, the whole

process will be adversely affected.

The problem is not confined to the very smallest p-value. If the original treatment effect beats all but one

of the balanced permutations, then the claimed p-value is about (125þ 1) / 2¼ 63 times as small as it should

be, assuming that the second bar from the right in the reference histogram has nearly its proper height.

Similarly, outcomes that are near the ends of the histogram will get permissive p-values.

4. POOLED BALANCED PERMUTATIONS

As mentioned previously, microarray technologies can simultaneously measure the expression levels of

thousands of genes at once. To this end, most microarrays use multiple measuring points (probes) for every

gene. The main use of balanced permutations in high throughput problems is to calibrate a p value for one

probe, by pooling data from a large number N of similar probes. It is also used to compute summaries of N

linked tests, such as estimated FDRs. Sometimes there is a near one to one match relating probes to genes,

but in other settings there can be numerous probes per gene. Typically, N is in the thousands, while n is much

smaller.

Fan et al. (2004) use balanced permutations to get a pooled reference distribution to set N p-values. Jones-

Rhoades et al. (2007) use them to estimate a rate for false discovery of genes, in a procedure that merges

nearby differentially expressed probes into up and downregulated genomic intervals and then searches for

new genes in those intervals.

Suppose that we are making N tests of type H0, one for each probe. For the i’th probe we get a t statistic ti.

The null distribution of ti will not be exactly the t(2n�2) distribution, if the underlying data are not normally

distributed. Furthermore, one might replace the t test by some quantity that is more robust to very noisy

estimates of probe specific standard deviations.

Either a permutation or a balanced permutation analysis generates B permutations of the data and forms a

reference distribution of BN test statistics tij for probes i¼ 1, . . . , N and permutations pj for j¼ 1, . . . , B.

With such a reference distribution, the p value for ti0 is

1

BN

XN

i¼ 1

XB

j¼ 1

1fT(ti¢) ‡ T(tij)g (6)

where the usual choice for T is T(t)¼ jtj. In using equation (6) the original permutation of the data should be

one of the B included.

Table 3. This Table Presents the Probability that a Null t Statistic

Beats the Largest t Statistic Among Balanced Permutations

of Independent Non-null Data

n¼ 4 n¼ 6

m¼ 0 m¼ 1 m¼ 2 m¼ 0 m¼ 1 m¼ 2

0.971 1.936 4.234 1.813 6.144 20.64

0.030 0.025 0.017 0.043 0.037 0.021

The values shown in the top row are
�

1þ n
n=2

� �2�
Pr (t ‡ maxj t�j ), which should be 1

for a properly calibrated reference set. Here t is a t statistic computed with independent Xi,

Yi*N (0, 1) for i¼ 1, . . . , n and t�j are all of the balanced permutations of a t statistic, on

data where Xi*N (m, 1) and Yi*N (0, 1) independently of each other and of t. The

second row gives 99% relative error values. There were 10,000 simulations of each case.
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4.1. NON-NULL GENES

There are known problems with pooling permutation-based statistics from N problems, whether the

permutations are balanced or not. The main one is that the presence of non-null genes among the N cases

tested distorts the reference distribution. In a full permutation analysis, many of the sampled permutations

are very unbalanced for the treatment effect and they generate a heavy tailed reference distribution. The

result is a conservative method that over-estimates FDR. Fan et al. (2005) and Xie et al. (2005) both raise this

issue and seek to apply the permutations only to those genes that are not differentially-expressed. Identifying

null genes is at least as hard as identifying non-null genes. Yang and Churchill (2007) compare methods that

attempt to remove non-null genes.

The opposite occurs in balanced permutations. The balance has the effect of inflating the denominators of

t statistics while the treatment effect cancels out of the numerators. The result is a resampled test statistic

distribution with tails that are too short. Then, to the extent that these genes are included in the permutation,

the FDR will be underestimated.

Table 3 shows some results of this type. Let the non-null data have Xi*N(m, 1) and Yi*N(0, 1) all

independent, and suppose that the null data have a common N(t, s2) for all of Xi and Yi. The table presents

the probability that t computed from the null data beats all the balanced permutation t statistics from the non-

null data. The effect grows with m and with n. The case with m¼ 0 and n¼ 4 is not permissive, but m¼ 0 is a

null case, described in more detail below.

There is partial remedy for the non-null case, described by Pan (2003), which should be helpful when n is

large. Notice that each observation belongs to either the test or control group in the original data and to either

the test or control group in the permuted data. This yields four different sets of observations in any balanced

permutation. The idea of Pan (2003) is to form the variance estimate in the denominator of the t statistic by

pooling sample variances from these four subsamples instead of just the permuted treatment and control

groups. This will remove mean differences from variance estimate in the denominator of t. Unfortunately,

the degrees of freedom for the resulting reference distribution are 2n� 4 instead of 2n� 2, which will be an

important difference when n is small.

Scheid and Spang (2006, 2007) also note the problem from including non-null genes in the reference

distribution. They have proposed a method of filtered permutations. Instead of filtering the list of genes to be

mostly null, they filter the set of permutations to be the ones p for which a subsequent permutation epp � p
gives nearly U(0, 1) distributed p values for a comparison of the two permuted groups. That is, they employ

0            5 10 15 20 25 30 35
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Balanced permutation null distribution of t 

Normal data, n=4

0 100 200 300 400

Balanced permutation null distribution of t 

Normal data, n=6

FIG. 3. These plots show histograms of the number of balanced permutations of the t statistic from one data set that

are beaten by a t test from an independently sampled data set. All data values were independent N(0,1) in both data sets.

The top figure is for n¼ 4, and the bottom one is for n¼ 6.
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an iterated permutation analysis. By considering permutations of permutations their method might be

accomplishing numerically what the group structure provides mathematically. But there is as yet no theo-

retical analysis of filtered permutations.

4.2. Null genes

In the case of balanced permutations, there are also difficulties in the distribution of p values from the null

genes. For any probe i, we know that the uniform distribution on T(tij) for j 2 B2n or j 2 B2nþ fails to be a

good reference distribution. However, when we combine all N of these test distributions into a single

reference distribution, then for whichever probe i0 we are testing, our reference distribution is dominated by

data from probes i= i0. Hence we need to look at how a reference distribution from one probe works for data

from another probe.

A precise comparison of T(ti0) with p(T (ti)) depends on the dependence between data from probes i and i0.
There is usually some dependence, because different genes on the same array tend to be correlated. The case

where probes i and i0 are highly correlated should be similar to that in which a probe is compared to its own

balanced permutations. The case of independent probes is easier to study than probes with arbitrary de-

pendence, and this case should be favorable to the use of balanced permutations. So we consider

Xi1, . . . , Xik, Yi1, . . . , Yik that are independent of Xi¢1, . . . , Xi¢k, Yi¢1, . . . , Yi¢k.

For the test statistic D̂D¼ �XX� �YY , on normal data, we find from Lemma 1 that it makes no difference whether

probe i is compared to balanced permutations of itself or of another null probe i0.
As mentioned above, when multiple genes are used to calibrate each other, it is more reasonable to

permute t statistics. In Table 3, the values for m¼ 0 correspond to independent null probes. Figure 3 shows

histograms of the number of balanced permuted t statistics from one sample that are beaten by a t statistic

from another independently generated sample. Because the second sample is independent of the first we can

use the known t distribution to advantage. In this simulation, we generated the list of balanced t values 1000

times. For each of these times, we sorted the 36 possible values, splitting the real line into 37 bins, and

evaluated the probability that an independent t random variable would land in each of those bins. The bars

shown are the averages of these probabilities over the 1000 simulations.

When n¼ 4 the spikes at the ends have vanished, but the one in the middle remains at about 2.0. So for this

case we would get very nearly the desired flat histogram from the device of inserting 0 as a pseudo value.

When we repeat the simulation for n¼ 6, there are spikes at the end. The t statistic computed on one data set

with n¼ 6 has about twice the chance it should have of beating all the balanced permutations from another

data set.

4.3. Multiple independent null genes

Now suppose that probe i0 under test is compared to a reference distribution made up of numerous probes

indexed by i¼ 1, . . . , I and that all Iþ 1 of the probes are statistically independent. Probe i0 may tend to beat

0 5 10 15 20 25
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8

FIG. 4. This figure shows that a reference distribution based on balanced permutation t tests of I> 1 independent null

probes is not as permissive as one using a single independent null probe. The horizontal axis shows the number I of

independent probes used in a simulation of balanced permutation t tests for two groups of n¼ 6 observations each. The

vertical axis shows 200 I times the probability that the original data has a value of |t| larger than that of all 200 I

balanced permutation |t| values in the reference set. The dots show estimated probability ratios, the curves show upper

and lower 99% pointwise confidence limits, and there is a horizontal reference line at 1.
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all balanced permutations of any probe i more often than it should. But when the I probes are independent of

each other it becomes less likely that i0 beats all balanced permutations of all I other probes.

We generated 1,000,000 normally distributed data sets of two groups with n¼ 6 observations each. From

each of these, we found t� ¼ maxp2B2n
jt(p(Z))j, the maximum of 200 two-tailed t statistics on 10 degrees of

freedom each. These million values were then arranged into roughly 106/I lists of I values each. The

probability that an independently generated value of |t(10)| exceeds the largest of these I values should

average to 1/(200I) for proper calibration. Figure 4 shows corresponding sample averages presented as a

multiple of 1/(200I), as I varies from 1 to 25. We see that pooling independent null data from balanced

permutations is somewhat permissive but that the effect disappears by around I¼ 15 to 25.

The same pattern holds for n¼ 8 observations per group. There the ratio starts nearer to 4.0 but is again

close to 1 for I¼ 20.

If we can successfully eliminate the non-null cases and then pool a large number of independent probes, we

will get a suitable reference distribution. Then again we might also do that with ordinary permutations, and

should we miss some non-null cases, the consequence would be a conservative test instead of a permissive one.

5. DISCUSSION

We find no reason to prefer balanced permutations to ordinary permutations, for genomic applications.

The intuitive argument that leads one to expect greater power for them, is countered by them producing

permissive p-values when there is no effect. At a minimum, more work is required to justify their use or

properly calibrate them.

When used to judge the sampling distribution of a test statistic from N different genes, balanced per-

mutation reference sets are adversely affected by non-null cases among those permuted. So are ordi-

nary permutations. But where ordinary permutations yield a conservative reference distribution, balanced

permutations provide a permissive one, when based on the t statistic or on a difference in means. Such

permissive methods are more likely to lead to false discoveries.

In practice, it is important to attempt to remove the non-null cases before constructing a permutation-

based reference distribution. When the balanced permutations are applied to null cases, we find that balanced

permutations can still be mildly permissive. Fortunately, the effect seems to disappear when a large number

of null cases have been pooled. However, that disappearance was for null cases that were independent of the

case being tested, a condition not required for ordinary permutations. Correlations among the null cases and

between the null cases and the gene being tested could result in a distortion that does not decrease for large

numbers of pooled reference genes.

For the problems that we have analyzed, it is clear that balanced permutations cannot simply be used as a

substitute for full permutation methods. Our analysis does not cover very complicated methods such as the

one Jones-Rhoades et al. (2007) used or the empirical Bayes analysis proposed by Efron et al. (2001). We

would hesitate to use balanced permutations as an ingredient in more complicated analyses, because they

work poorly in simple situations.

We started looking at balanced permutations as an ingredient in a similarly complicated analysis, in-

volving data from the AGEMAP study of Zahn et al. (2007). We considered near balanced permutations with

respect to age (old versus very old mice) within strata defined by male and female mice. It could only be near

balance because there were 5 mice of each sex at each age. For each mouse, there were 14 tissues. The effects

of interest were related to differences in the gene-gene correlation matrices at the two ages. Simulations of

even a simple before versus after correlation for just one pair of genes whose correlation does not change

revealed permissive p-values like the ones we report here. As a consequence that work continued with

ordinary permutations instead of balanced ones.

A final disadvantage of balanced permutations is the one mentioned at the NCI website. There are fewer

balanced permutations, so that granularity properties are exacerbated.
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