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ABSTRACT

Classification methods are commonly divided into two categories: unsupervised and super-
vised. Unsupervised methods have the ability to discover new classes by grouping data into
clusters or tree structures without using the class labels, but they carry the risk of producing
noninterpretable results. On the other hand, supervised methods always find decision rules
that discriminate samples with different class labels. However, the class label information
plays such an important role that it confines supervised methods by defining the possible
classes. Consequently, supervised methods do not have the ability to discover new classes. To
overcome the limitations of unsupervised and supervised methods, we propose a new method,
which utilizes the class labels to a less important role so as to perform class discovery and
classification simultaneously. The proposed method is called SPACC (SPectral Analysis for
Class discovery and Classification). In SPACC, the training samples are nodes of an undirected
weighted network. Using spectral analysis, SPACC iteratively partitions the network into a
top-down binary tree. Each partitioning step is unsupervised, and the class labels are only used
to define the stopping criterion. When the partitioning ends, the training samples have been
divided into several subsets, each corresponding to one class label. Because multiple subsets
can correspond to the same class label, SPACC may identify biologically meaningful sub-
classes, and minimize the impact of outliers and mislabeled data. We demonstrate the effec-
tiveness of SPACC for class discovery and classification on microarray data of lymphomas and
leukemias. SPACC software is available at http://icbp.stanford.edu/software/SPACC/.
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1. INTRODUCTION

Classification methods are commonly used for mining microarray gene expression data (Lockhart

and Winzeler, 2000; Young, 2000) to gain biological insights on the class structure underlying the

experimental samples and predict the relationship of new samples to the existing samples. Typical appli-

cations of classification analysis include inferring the molecular stratification of disease (Dalgin et al., 2007)

or the likelihood of response to a treatment (Lin et al., 2006). Classification methods are commonly divided

into two categories: unsupervised versus supervised. In unsupervised methods, such as hierarchical clustering

(Eisen et al., 1998), local maximum clustering (Wu et al., 2004), self-organizing map (Kohonen, 2000) and
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K-means (Tavazoie et al., 1999), samples are grouped into clusters or tree structures based on the expression

data. If information about the samples, typically referred to as the class labels, is provided to describe a

phenotypic property, it is only used for interpreting the clustering results. Because the class label information

is not involved in the clustering process, unsupervised methods have the ability to discover new classes, but

they carry the risk of producing non-interpretable results. On the other hand, supervised methods—such as

nearest neighbors (Duda et al., 2000), neural networks (O’Neill and Song, 2003), and support vector machine

(Furey et al., 2000)—use training samples to define a rule that separates samples with different class labels.

Supervised methods do not have the risk of producing non-interpretable results. However, in supervised

methods, the class label information plays such an important role that it confines the supervised methods

by defining the possible classes. Consequently, supervised methods do not have the ability to discover

new classes. Moreover, outliers and mislabeled samples in the training data may have undesirable effect on

the classification. To overcome the limitations of unsupervised and supervised methods, we propose a new

classification method, which assumes the class label information is available, but uses it to a less important

role so as to perform class discovery and classification simultaneously.

The proposed method is called SPACC (SPectral Analysis for Class discovery and Classification). In

SPACC, the training samples are considered as inter-connected nodes that form an undirected weighted

network, where an edge exists between each pairs of nodes (or samples). The weights of the connections are

defined by similarity measures of the microarray expression data, independent of the class labels. Using

spectral graph analysis (Pandana and Liu, 2005), the network is iteratively partitioned into two subnet-

works in an unsupervised manner, forming a top-down tree-like representation of the data. The class

labels are only used to examine the two subnetworks after each partitioning. If most of the nodes (or

samples) in one subnetwork share the same class label, this subnetwork becomes a leaf of the tree;

otherwise, the subnetwork is subject to further partitioning. Hence, the class label information supervises

the partitioning process only by defining the criterion to stop partitioning the network along one branch of

the tree. Once the terminals of all the branches are identified, SPACC has produced a top-down binary tree,

where each terminal or leaf of the tree represents a subset of the training samples, assigned to one particular

class. Several subsets may correspond to the same class, which is an indication that new classes beyond the

known class labels may exist. Data outliers will be automatically partitioned into singletons. Therefore,

SPACC has the potential to improve the quality of the training data, in terms of discovering new classes and

identifying outliers. Classification of the testing samples can be performed using a variation of the nearest

neighbor method. For each testing sample, SPACC computes its distance to those subsets, and make

classification decision based on its nearest neighbor subset.

The remainder of this article is organized as follows. In Methods, SPACC is described in greater detail.

In Results, the application of SPACC is illustrated on real microarray data. Discussion summarizes the

advantages and limitations of SPACC, in the context of other classification methods, and is followed by

Conclusion.

2. METHODS

In this section, the proposed method SPACC for class discovery and classification is further described.

We start with a brief summary of how spectral analysis can be applied to partition a network into two

subnetworks. Then, we describe how to use the partitioning method to construct a top-down binary tree of

the data, how the class labels of the training data are used to supervise the process, and how classification

decisions are made.

2.1. Spectral analysis for graph partitioning

A graph (network) can be represented by G(N, A), where N is the set of nodes, and A is the adjacency

matrix that describes the edges,

A(u, v)¼ 1, if u 6= v, and, u, v are adjacent

0, if u = v, or, u, v are not adjacent

�
(1)

where two nodes are adjacent if there is an edge between them. For each node, the degree is defined as the

number of edges that connect to it. Another way to represent a network is the Laplacian matrix, which is
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defined as L¼D�A. D is a diagonal matrix whose diagonal elements are the degrees of the nodes. The

Laplacian matrix can be written as follows:

L (u, v)¼
dv, if u = v

� 1, if u and v are adjacent

0, otherwise

(
(2)

where dv is the degree of node v. Note that the Laplacian matrix is symmetric, and the column sums are 0.

Several properties in the spectral domain of the Laplacian matrix L are related to the connectivity of

the network. All eigenvalues are non-negative. At least one eigenvalue equals zero, and the zero-valued

eigenvalue may have more than one multiplicity. If it has multiplicity n, the network is disconnected and

contains n disjoint components. If the network is connected, the second smallest eigenvalue is called the

Fiedler value, and its associated eigenvector is called the Fiedler vector. To partition the network into two

subnetworks by removing the least number of edges, an approximation of the optimal solution can be derived

from the Fiedler vector (Chung, 1997), whereby its the positive entries and negative entries, respectively,

correspond to the nodes of the two resulting subnetworks after the partitioning.

The above arguments can be extended to an undirected weighted network, represented by a Laplacian

matrix, where each connection is represented by the negative of its weight instead of �1, and the diagonal

elements are chosen such that the column sums are 0. Therefore, for an undirected weighted network, the

Laplacian matrix becomes

L (u, v)¼

Pn
i¼ 1 wu, i, if u = v

�wu, v, if u and v are adjacent

0, otherwise

8<
: (3)

We model the experimental samples as an undirected weighted network, where each node represents a

single microarray sample. An edge exists between all possible pairs of nodes (or samples), and the weight

of each edge is determined by the similarity between the gene expressions of the two connected nodes,

wu, v¼
1

1þ du, v� min
i, j

(di, j)

0
@

1
A

K

(4)

where du,v is the Euclidian distance between the expression data of nodes u and v. K is a tuning parameter,

similar to that in the power adjacency function (Zhang and Horvath, 2005). Higher similarity implies higher

weight, while lower similarity implies lower weight. All weights are normalized into the numerical range of

(0, 1).

Using the weights in equation (4), we construct the Laplacian matrix in (3) and compute its Fiedler value

and Fiedler vector. The network is partitioned into two subnetworks based on the signs of the elements in

the Fiedler vector. The nodes that correspond to the positive entries belong to one subnetwork; the nodes

that correspond to the negative entries belong to the other subnetwork; all edges between the two sub-

networks are removed. Generally, the Fiedler vector will not contain zero entries. Zero entries only occur in

the Fiedler vector in special cases, such as when the network is symmetric with respect to a certain node. In

such special cases, we can randomly assign the nodes with zero entries to either of the two subnetworks

after the partitioning. Therefore, using the Fiedler vector, we partition the network into two subnetworks, or

equivalently we divide the microarray samples into two non-overlapping subsets of samples. The parti-

tioning is based on the distance measures of the gene expression data in an unsupervised fashion. The class

label information is not incorporated at this stage.

2.2. Simultaneous class discovery and classification

In the previous subsection, we described an unsupervised method to partition a network into two

subnetworks, or equivalently divide a set of microarray samples into two non-overlapping subsets. Given a

set of training samples, we can iteratively apply this partitioning method to divide the training samples into

a top-down full binary tree until each leaf corresponds to one training sample. However, a full binary tree

would not be helpful for classification, because it does not provide a systematic decision rule (Natsoulis

et al., 2005). A proper stopping criterion is needed to divide the training samples to a level that is suitable

for classification.
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We define the stopping criterion based on the class labels of the training samples. After each partitioning,

we examine the class labels of the two resulting subsets. If the purity of a subset exceeds specified

threshold, that is most samples in the subset share the same class label, we specify this subset as a leaf of

the tree and stop partitioning. If a subset does not meet the stopping criterion, it is subject to further

partitioning. The process iterates and results in a top-down binary tree, where each leaf corresponds to a

subset of the training samples and the majority of samples in the subset share the same class label. In the

resulting subsets, there may exist several subsets that correspond to the same class. This suggests new

classes may exist beyond the known class labels. Data outliers will be automatically partitioned into

singletons, and thus are easily identified. Resulting subsets may contain some samples that have different

class labels from that of the majority. These samples may be outliers or mislabeled samples.

Since the class label information supervises the training process only by defining the stopping criterion,

the class label information plays a much less important role when compared to other supervised methods.

The rationale for our approach is: let the data manifest itself. If what the data shows after partitioning

agrees with what we already know from the class labels, then we stop the partitioning. Otherwise, the data

is revealing new information that is beyond what is captured by the known class labels, enabling us to

potentially discover new classes.

For the purpose of classifying the testing samples, we choose to use a variation of the nearest neighbor

algorithm. We represent each subset of the training samples by the mean expression of its members. The

distance between one testing sample and one subset can be represented by the distance between the testing

sample’s expression data and the mean expression of the subset. For each testing sample, we make clas-

sification decision based on the subset that is nearest to the testing sample. As a comparison, in the simple

nearest neighbor algorithm, the classification decision is based on the individual training sample which is

nearest to the testing sample. In the proposed method, the classification decision is based on the nearest

subset of training samples.

Since our method applies spectral analysis for partitioning and can perform both class discovery and

classification, we call it SPACC for ‘‘SPectral Analysis for Class discovery and Classification.’’ SPACC is

implemented in Matlab and is available at http://icbp.stanford.edu/software/SPACC/.

2.3. Related methods in the literature

Supervised methods based on classification trees (CART) (Breiman et al., 1984) also produce top-down

binary trees for classification. The important distinction between these approaches and SPACC is how the

class label information is used. In CART, the class labels are part of the objective function in finding the

best feature and threshold for each split. CART aims to find the tree structure that best fits the known class

labels. On the other hand, each partitioning step in SPACC is unsupervised, and the class labels are only

used to check whether there is need to perform further partitioning. Therefore, the class labels do not affect

the splits in SPACC, allowing the data to better manifest its own structure. Another difference is that, each

split in CART is based on only one feature, while in SPACC each partitioning is based on all features.

Hierarchical clustering (Eisen et al., 1998) is an unsupervised method that constructs trees to explore

gene expression data. Hierarchical clustering and SPACC differ in the use of class labels. Hierarchical

clustering does not use class labels and SPACC does. Another difference is how the trees are constructed.

Hierarchical clustering in Eisen et al. (1998) is agglomerative, building trees from bottom up. If one wish to

prune a hierarchical clustering tree, additional statistical criteria are needed. On the contrary, SPACC build

trees divisively, from top down. Using class label information, the divisive process is stopped at a level that

is suitable for the purpose of classification.

3. RESULTS

3.1. SPACC analysis on B-cell lymphoma data

We apply SPACC to a published gene expression dataset on diffuse large B-cell lymphoma (Alizadeh

et al., 2000) to highlight the class discovery ability of SPACC. The dataset contains the expression of 4026

genes in 81 samples, which consist of 9 follicular lymphoma (FL) samples, 11 chronic lymphocytic

leukaemia (CLL) samples, 42 diffuse large B-cell lymphoma (DLBCL) samples, 3 Tonsil samples, and 16

Blood B/T samples. The histologies are the class labels. In the following Examples 1–5, we consider
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different combinations of this data by varying the class label information. We will demonstrate that when

the training samples contain subclasses which are not represented in the class label information, SPACC is

able to identify the presence of subclasses.

Example 1. We first construct a training set, which contains the three B-cell malignancies: the FL, CLL,

and DLBCL samples. All 4026 genes are considered. This training set, together with the correct class

labels, are input to SPACC. The result is shown in Figure 1. The horizontal and vertical axes are the

coefficients of the first two principal components of the training data. Each node represents one training

sample and its shape indicates the input class label: circles represent the 42 DLBCL samples, triangles

represent the 9 FL samples, and diamonds represent the 11 CLL samples. Using SPACC, we partition the

training samples into three subsets and two outliers, which are shown by the polygons. The three resulting

subsets are consistent with the input class labels.

Example 2. We consider the same training data as in Example 1, but vary the class label information to

represent only two of the three classes as known. In Figure 2a, the class labels are chosen to represent only

two classes. Circles are non-CLL samples (both DLBCL and FL) and triangles represent CLL samples. The

SPACC result is shown by the polygons. Although there are only two classes in the input class labels,

without knowing the subclasses in the non-CLL class, SPACC correctly divides the training samples into

three subsets, one corresponding to the CLL class and the other two corresponding to the non-CLL class. In

this example, other supervised classification methods will only learn the difference between CLL and non-

CLL, and assign a testing sample to either of the two. However, SPACC is able to discover the subclasses

beyond the known class labels, and classify testing samples into three categories, CLL, non-CLL-1 and

non-CLL-2. The two non-CLL classes correctly capture the difference between DLBCL and FL in the non-

CLL class.

Example 3. We consider the same training data as in Example 1, but vary the class labels for DLBCL and

CLL. In Figure 2b, the input class label contains two classes FL and non-FL, where non-FL contains both

DLBCL and CLL samples. Without knowing the subclasses in the non-FL class, SPACC divides the

training samples into three subsets, where the two subtypes in the non-FL class are successfully identified.

−40 −30 −20 −10 0 10 20 30 40 50

−30

−20

−10

0

10

20

DLBCL

FL

CLL

FIG. 1. SPACC applied to B-cell lymphoma gene expression data, example 1 in Results. The horizontal and vertical

axes are the coefficients of the first two principal components. The shape of the nodes represents the input class labels.

SPACC divides the samples into three subsets, which are indicated by the polygons. The resulting subsets are consistent

with the input class labels.
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Example 4. We consider the same training data as in Example 1, but vary the class labels for FL and

CLL. In Figure 2c, the input classes are DLBCL and non-DLBCL (FL and CLL). SPACC does not identify

the FL and CLL subtypes in the non-DLBCL class. The results suggest that FL and CLL are more similar to

each other than either is to DLBCL. This finding was confirmed in Alizadeh et al. (2000), which showed

that both FL and CLL are relative indolent malignancies with low proliferation rates, while DLBCL is more

aggressive with rapid proliferation.

Example 5. We apply SPACC to all 81 samples in Alizadeh et al. (2000), with the correct class labels. As

shown in Figure 3, samples are marked using five different shapes, indicating that samples are categorized

into five classes by the input class labels. The horizontal and vertical axes again are the coefficients of the

first two principal components of the training data. Since we are considering more training samples, the

principal components are different from those in Examples 1–4, and Figure 3 appears different from

Figures 1 and 2. Figure 3 shows that SPACC divides the training data into six subsets. The FL, CLL and

DLBCL classes are correctly separated. One of the three Tonsil samples is grouped with the DLBCL

samples and the other two are grouped with the FL samples. Moreover, the Blood B/T samples (stars) are

divided into three subsets. Interestingly, in Alizadeh et al. (2000), it is noticed that the three stars in the
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Non CLL
CLL
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Non FL
FL
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b

FIG. 2. SPACC applied to B-cell lymphoma data, examples 2–4. (a) The shapes of the nodes indicate that input class

labels only distinguish CLL from non-CLL. SPACC divides the samples into three subsets, which are shown by the

polygons. Without prior knowledge of the subclasses in the non-CLL class, SPACC is able to divide the non-CLL

samples into two subsets, which correctly captures the difference between FL and DLBCL in the non-CLL class. (b)

When the input class labels contain only two classes (FL and non-FL), SPACC correctly divides the non-FL class into

two subsets, corresponding to CLL and DLBCL respectively. (c) When the input class labels represent DLBCL and

non-DLBCL, SPACC does not identify the substructures within the non-DLBCL class, suggesting a high degree of

similarity between FL and CLL compared to DLBCL.
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subset at the bottom correspond to blood T-cells; the three stars in the upper right subset are resting blood

B-cells; and the rest are activated blood B-cell samples. Therefore, separating the Blood B/T samples into

the three subsets in Figure 3 is biologically meaningful.

Note that in Figure 3, some subsets appear to overlap, because we use the first two principal components

to display the data. If we examine other principal components, we will notice that the different subsets do

not overlap.

3.2. SPACC analysis on ALL-AML data

To demonstrate SPACC’s ability to perform class discovery and classification, we apply SPACC to the

ALL-AML dataset (Golub et al., 1999). This dataset contains two classes of samples, acute lymphoblastic

leukemia (ALL), and acute myeloid leukemia (AML). We choose this dataset because it contains a training

set (27 ALL, 11 AML) and an independent testing set (21 ALL, 14 AML). In the SPACC analysis, we

consider the top 1000 genes that are most differently expressed in the two classes in the training samples.

We input the 38 training samples and the corresponding class labels (ALL vs. AML) into SPACC. The

training samples are shown in Figure 4a, where the horizontal and vertical axes are the coefficients of the

first two principal components of the training samples. Circles represent the ALL samples, and triangles

represent the AML samples. As demonstrated by the resulting polygons, SPACC divides the training

samples into three subsets and two outliers. Interestingly, the AML training samples are divided into two

subsets. According to the clinical information provided in Golub et al. (1999), we are unable to tell

the difference between the two subsets of the AML training samples. However, by visually inspecting the

testing samples in Figure 4b, we can observe similar structure in the testing set, which supports the

possibility that the two subsets of AML training samples are biologically different. Note that, in order to

make Figure 4a and Figure 4b comparable, we project the testing samples to the subspace spanned by the

first two principal components of the training samples.

For the purpose of classifying each testing sample, we compute the distance between the testing sample

and the mean expression of each of the three subsets. The classification decision is made based on the

class label of the nearest subset. Therefore, the proposed method is a nearest-subset-center method. The
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Blood B/T

FIG. 3. SPACC applied to the B-cell lymphoma data, example 5 in Results. The shapes of the nodes indicate that the

samples are categorized into five classes by the input class labels. The polygons show the subsets obtained by SPACC.

The FL, CLL and DLBCL classes are correctly separated. The three Tonsil samples are grouped with either DLBCL or

FL. Interestingly, the Blood B/T samples (stars) are divided into three subsets, which correspond to blood T-cells,

activated blood B-cells, and resting blood B-cells, respectively. Therefore, SPACC successfully identifies subclasses in

the Blood B/T class.
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classification accuracy of SPACC is 91.4%. In Figure 4b, the incorrectly classified testing samples are

highlighted. As a comparison, we apply the simple nearest neighbor algorithm, and obtain 82.9% accuracy.

One may argue that, the improved performance of SPACC over the near neighbor algorithm is due to the

fact that SPACC is based on the nearest subset of training samples, while the nearest neighbor algorithm is

based on the nearest individual training sample. To address this point, we examine a nearest-class-center

method, where we compute the distance between a testing sample and the mean expression of each class in

the training set define by the training labels, and make classification decision based on the nearest class.

a

b

−50 −40 −30 −20 −10 0 10 20 30 40

−50 −40 −30 −20 −10 0 10 20 30 40
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ALL−testing
AML−testing

FIG. 4. (a) Training samples of the ALL-AML data. The polygons indicate the subsets obtained by SPACC, where

the AML samples are divided into two subclasses. (b) Testing samples. SPACC achieves 91.4% classification accuracy,

which is higher than the nearest neighbor method. The incorrectly classified testing samples are highlighted. SPACC

offers more information than other supervised classifiers. Other supervised methods only classify a testing sample to

either the ALL class or the AML class. On the other hand, SPACC is able to classify testing samples into three

categories (ALL, AML-1, and AML-2), which may correspond to biologically meaningful subtypes.
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The nearest-class-center method gives an accuracy of 88.6%, which is still lower than SPACC. This result

also supports our previous argument that, dividing the AML training samples into two subsets is likely to be

biologically relevant.

We are not claiming that SPACC will outperform all other classifiers in terms of classification accuracy.

But we are claiming that its class discovery feature enables SPACC to provide more information than other

supervised classification methods. In this example, other supervised methods only classify a testing sample

to either the ALL class or the AML class. However, SPACC is able to classify testing samples into three

categories (ALL, AML-1, and AML-2), where the two AML subclasses may correspond to biologically

meaningful subtypes.

4. DISCUSSIONS

We introduced a novel classification method, SPACC, and demonstrated its class discovery ability and

classification performance on gene expression microarray data for B-cell lymphoma and ALL-AML. While

other methods may outperform SPACC for either class discovery or classification, we are not aware of

another method like SPACC that can simultaneously perform class discovery and classification. This ability

allows SPACC to provide more information than other classification methods.

Feature selection is an important issue in SPACC, as it is in other classification approaches. In SPACC,

we convert the gene expression data to a similarity matrix, which is further converted to the weights in the

Laplacian matrix. Since the number of genes under consideration does not affect the size of the Laplacian

matrix, in theory we are able to handle a large number of genes. However, in practice, we have to be careful

about feature selection. Because SPACC partitions samples into subsets based on the distances among the

expression data, when there are too many irrelevant gene features, the distances among samples will be

more noisy and SPACC will lose its ability to separate different classes. Therefore, even though we do not

need to limit the number of genes that can be analyzed by SPACC, we need to ensure that the majority of

selected features are relevant to the classification problem.

We described SPACC as a supervised approach. However, if we remove the stopping criterion, SPACC

becomes an approach of unsupervised hierarchical clustering. Different from the agglomerative hierar-

chical clustering method in Eisen et al. (1998), SPACC is divisive and produces a top-down binary tree. If

we define a data-driven stopping criterion, we will be able to build an unsupervised clustering method that

does not need to require prior knowledge of the number of clusters. We pursued this idea by using stopping

criteria derived by thresholding the Fiedler value at each partitioning, or via the statistics that evaluate

between- and within-subset variances. However, we found that these stopping criteria were not universally

applicable to a variety of datasets. Related discussions can be found in CLICK developed in Sharan et al.

(2003).

5. CONCLUSION

We propose a novel classification method SPACC for simultaneous class discovery and classification of

microarray data. Compared to other supervised methods, SPACC utilizes the class label information to a

lesser extent, so as to perform class discovery and classification simultaneously. In addition to identifying

new classes that may provide new biological insights, SPACC can be useful in identifying outliers and

mislabeled training samples. To the best of our knowledge, SPACC is the first approach that can simul-

taneously perform class discovery and classification. Using two publicly available gene expression mi-

croarray datasets, we demonstrate SPACC’s ability for class discovery and classification.
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