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Abstract

Cogpnitive process models, such as Ratcliff’s (1978) diffusion model, are useful tools for
examining cost- or interference effects in event-based prospective memory (PM). The diffusion
model includes several parameters that provide insight into how and why ongoing-task
performance may be affected by a PM task and is ideally suited to analyze performance because
both reaction time and accuracy are taken into account. Separate analyses of these measures can
easily yield misleading interpretations in cases of speed-accuracy tradeoffs. The diffusion model
allows us to measure possible criterion shifts and is thus an important methodological
improvement over standard analyses. Performance in an ongoing lexical decision task (Smith,
2003) was analyzed with the diffusion model. The results suggest that criterion shifts play an
important role when a PM task is added, but do not fully explain the cost effect on RT.
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Event-based prospective memory (PM) tasks involve remembering to perform intended
actions after a delay, when a specific target event occurs. Such tasks often occur in the midst
of other activities that must be interrupted to perform the intended action. To capture this
aspect of real world PM, the PM task is embedded in an ongoing task in the typical
laboratory paradigm (Einstein & McDaniel, 1990). For instance, participants may be busily
engaged in an ongoing lexical decision task, and at the same time must remember to
interrupt their decisions to carry out another action (i.e., press a certain key on a computer
keyboard) when a particular target occurs (e.g., the word tiger appears on the screen).

Much theoretical and experimental work on PM has focused on the processes involved in
retrieving such intentions (e.g., Einstein & McDaniel, 1996; West, 2007; Smith, Hunt,
McVay, & McConnell, 2007). Particularly, researchers have examined whether successful
PM always requires resource-demanding preparatory attentional processes (Smith, 2003,
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2008, 2010), or whether spontaneous retrieval of the intention occurs under specific
circumstances (McDaniel & Einstein, 2000, 2007). The empirical approach towards
addressing this question rests on the analysis of ongoing-task performance in the presence
versus absence of a PM task. The cost- or interference effect of PM refers to the finding that
reaction time (RT) on non-PM-target trials in the ongoing task can be increased by the need
to remember the PM task, and can covary with PM performance (Smith, 2003). It is
assumed that RT can increase as PM absorbs attentional resources that would otherwise be
devoted to the ongoing task. In the last decade, numerous studies have examined cost effects
(see Smith et al., 2007, for an overview) and their relationship with characteristics of the PM
targets, such as salience and focality (Einstein et al., 2005), individuals’ resource allocation
(Marsh, Hicks, & Cook, 2005), and potential boundary conditions to demonstrations of cost
effects (Cohen, Jaudas, & Gollwitzer, 2008; but see Smith, 2010). However, to date
surprisingly little is known about the specific processes that lead to the slowing when cost
effects occur. Why and how does processing change in the ongoing task with an additional
requirement to remember an intention?

In this article, we argue that cognitive process models, such as the diffusion model (e.g.,
Ratcliff, 1978), are useful tools for addressing these questions through the measurement of
latent variables assumed to underlie performance in ongoing tasks. We will first describe the
diffusion model in more detail and point out the importance of considering speed-accuracy
tradeoffs in task performance. We will then present a model-based reanalysis of data from
Smith (2003, Experiment 1) to demonstrate how additional insight into cost effects can be
gained.

The Diffusion Model

In cognitive psychology, the diffusion model has been successfully applied to a variety of
paradigms in which individuals make simple and fast two-choice decisions, with mean
latencies not much over 1 to 1.5 s. Previous applications of the model have included, among
others, lexical decisions (Ratcliff, Gomez, & McKoon, 2004; Wagenmakers, Ratcliff,
Gomez, & McKoon, 2008), animacy categorization (Spaniol, Madden, & Voss, 2006),
recognition memory (Criss, 2010; Ratcliff, 1978), practice effects (Dutilh, VVandekerckhove,
Tuerlinckx, & Wagenmakers, 2009), and the identification of factors underlying age-related
slowing (e.g., Ratcliff, Thapar, Gomez, & McKoon, 2004; Ratcliff, Thapar, & McKoon,
2006). See Ratcliff and McKoon (2008) and Wagenmakers (2009), for reviews of the model,
Gardiner (2004) and Smith (2000) for mathematical foundations, and Ratcliff and
Tuerlinckx (2002), and Voss and VVoss (2008) for different methods of parameter estimation.
In general, the diffusion model provided a close fit to the observed RT distributions and
response accuracy in most applications. Many ongoing tasks routinely used in PM research
could provide appropriate data; the current experiment used a lexical decision task, which
has been studied in detail with the diffusion model (Ratcliff, Gomez, et al., 2004;
Wagenmakers et al., 2008), and which is a frequently used ongoing task in PM research
(e.g., Marsh et al., 2005).

A basic assumption of Ratcliff’s diffusion model is that two-choice decisions are based on
continuously accumulating information, starting from a value z on a decision-related
strength-of-evidence axis (y-axis in Figure 1). A diffusion process moves from this starting
point z over time (x-axis in Figure 1) until one of two thresholds, associated with a decision
(“A” vs. “B"), is reached. The average speed of information uptake (i.e., the ratio of
accumulated evidence per time unit) is a systematic influence (drift rate parameter v) that
drives the process to one of the thresholds. A positive slope of v (as shown in Figure 1)
indicates that relatively more evidence is collected for the upper (“A”) than the lower (“B”)
threshold, whereas negative slopes of v imply the opposite. Drift rate determines processing
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efficiency in the actual decision phase, with high absolute values predicting both fast and
accurate decisions. However, the accumulation process within a trial is also affected by
random noisel, implying that trials with the same drift rate do not always terminate at the
same time or threshold (thereby producing RT distributions and errors, respectively; see the
different process tracks in Figure 1). Parameter a represents the distance between the two
decision thresholds (the value of the lower threshold is set to 0) and quantifies the amount of
evidence that is required until a decision is made. This parameter reflects the decision
maker’s speed-accuracy criterion. Smaller values of parameter a predict faster RTs and more
errors (a liberal speed-accuracy setting), whereas higher values predict slower RTs and
fewer errors (a conservative speed-accuracy setting). The relation of the starting point z to
the thresholds is an indicator of response bias. If a decision maker does not favor one
response over the other, the starting point position is equidistant from both decision
thresholds, z = a/2, which holds for many experiments (Wagenmakers, van der Maas, &
Grasman, 2007). Values larger or smaller than a/2 indicate bias in favor of the upper or
lower threshold, respectively. The diffusion model assumes that observed RT can be split
into a decision phase (described above) and a nondecision component, Te;, which includes
the processes before or after the actual decision (e.g., stimulus encoding and motor response
execution), and which is added to the diffusion exit time.

The complete version of the diffusion model allows for variation of parameters across trials
of an experiment. Drift rate is assumed to vary normally around mean v with standard
deviation n to capture trial-by-trial fluctuations in stimulus features or alertness. The starting
point z and the nondecision component T, are assumed to be uniformly distributed with
width s, and s, respectively. With inter-trial variability of drift rate n, the model predicts
slower RTs for error responses than for correct responses, and variability of the starting
point (s,) predicts the reverse pattern (see Ratcliff & Rouder, 1998). All parameters of the
diffusion model are summarized in Table 1 with a description.

Speed-Accuracy Tradeoffs

In research on PM, analyses of ongoing-task performance are typically conducted to assess
the resource demands of PM (McDaniel & Einstein, 2007), and inference mainly concerns
mean RT of correct responses or mean accuracy. It is well-known, however, that both
measures are in a tradeoff relationship (e.g., Pachella, 1974; Schouten & Bekker, 1967).
That is, participants can increase their accuracy at the expense of slower responding, or vice
versa. Such speed-accuracy tradeoffs imply that RT can be slower not because a task is more
difficult or more resource-demanding, but because participants adopt a different criterion
when they weigh the importance of speed versus accuracy. Consider the example of
ongoing-task performance in the upper half of Table 2 (cf. Wagenmakers et al., 2007).
Participants are faster in Condition A than in Condition B, but they also commit more errors.
It is thus possible that both conditions are equally difficult (or resource-demanding), but
participants in Condition B sacrifice speed for higher accuracy. Of course, it is also possible
that fewer processing resources are available in Condition B than in A, or vice versa. With
observed mean RT and accuracy, we cannot disentangle these possibilities. Finally, a
comparison of Conditions B and C reveals that participants in the latter respond more
slowly, whereas accuracy is identical. Many researchers would assume that Condition C is
more difficult (or resource-demanding) than Condition B, as speed-accuracy tradeoffs alone
cannot provide an explanation. However, it is not trivial to go beyond ordinal conclusions
and quantify which of the underlying processes are responsible for a slowing in Condition C.

within-trial Gaussian noise with variance s2 is a scaling parameter in the model. This diffusion coefficient is set to 1 for all present
model fits. Different values for s2 would simply rescale the absolute values of the other parameters, but would not change their

relations.
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Together, mean RT and accuracy provide important information about task performance, but
they should not be considered in isolation; this problem is obviously relevant when PM
researchers compare ongoing-task performance in the presence versus absence of PM, or
when they compare the impact of different PM conditions (e.g., focal/nonfocal PM tasks,
number of PM target cues, etc.). In most previous studies that examined the cost of PM, the
dependent variable of interest was either RT or accuracy in the ongoing task; most of the
variance in performance typically appeared in one of these measures, but not in both (e.g., in
lexical decisions and many other ongoing tasks, differences in mean accuracy are
uncommon if aggregated over participants; see Marsh et al., 2005, Exp. 3, or Smith &
Bayen, 2006, Exp.1, for rare exceptions). In addition, analyses of RTs and accuracy were
always performed separately, lacking a combined index of performance. It is therefore not
surprising that speed-accuracy tradeoffs in the PM paradigm have not been considered thus
far although they could play a role, indeed.

The diffusion model (e.g., Ratcliff, 1978) can address this issue, because it allows us to
separate criterion shifts from other processing components involved in two-choice (ongoing)
tasks (see Brown & Heathcote, 2008, or Usher & McClelland, 2001, for alternative models).
Consider the bottom half of Table 2 with the corresponding diffusion model parameters for
the above example. The assessment at the level of latent parameters is theoretically more
informative and reveals that differences in nondecision time (T,,) and speed-accuracy
criterion (a), but not in the rate of information uptake (v), explain the differences in observed
performance. That is, participants are slower in Condition C than in Condition B, because
they have a longer nondecision time (slower stimulus encoding or response execution), but
their processing speed during the actual ongoing-task decisions is not affected. Meaningful
psychological interpretations of this type could not be derived from standard analyses; we
therefore argue that the diffusion model is a useful tool for the PM paradigm and provide an
application in the following section (cf. Horn, Smith, Bayen, & Voss, 2008).

Experiment

Method

Results

Design and Materials—We analyzed the data from an experiment by Smith (2003) with
the diffusion model. The objective of this experiment was to examine the impact of PM on
ongoing-task performance. Each participant studied six PM target words, which
subsequently occurred twice in 504 trials of an ongoing lexical decision task. In the PM
condition (n = 62), participants were told to remember to press the F1 key when they saw a
target word during the experiment. In the No-PM condition (n = 33), participants received
the same instructions, but were additionally told that they did not have to remember this
intention until after the completion of the lexical decision phase (i.e., their intention was not
linked to the context of this phase).

Stimuli presented during the lexical decision task were letter strings that included 126
medium-frequency words (Kué¢era & Francis, 1967; 6 targets, 120 filler words), and 126
nonwords, created by moving the first syllable of each word to the end. The strings appeared
in random order and were repeated in a different random order in the second half of the
experiment. See Smith (2003, Exp. 1) for further details concerning the procedure.

The results are reported in two ways. In the first section, we reanalyzed the behavioral data
of all non-PM-target trials (accuracy and trimmed RTs). Smith’s (2003) original study
focused on a selected number of control items in the ongoing task, but we used more trials
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because a diffusion model analysis requires sufficient observations for robust parameter
estimation. The subsequent sections include the corresponding modeling results.

For all analyses of ongoing-task data, we considered non-PM-target trials exclusively, and
RTs smaller than 300 ms or greater than 3000 ms were eliminated (1.27 % of all nontarget
trials),zbecause they can lead to degenerate parameter estimates (e.g., Ratcliff & Tuerlinckx,
2002).

Ongoing-task performance—Smith (2003, Exp. 1) reported a cost on ongoing-task
performance as a consequence of the embedded PM task. The present analysis replicated
this finding, indicating that participants’ RTs in the PM Condition (M = 925, SD = 163)
were significantly slower than in the No-PM Condition (M = 747, SD = 111), t(93) = 6.26, p
<.001 (unequal-variances test, € = .94). The accuracy of lexical decisions did not differ
between the PM condition (M = .972, SD = .019) and the No-PM condition (M = .977, SD
=.015), t(93) = 1.12, p = .27. Aggregated over participants, accuracy was not far from
ceiling, and most of the variance in ongoing-task performance between the conditions
appeared in RT. However, we found indications for speed-accuracy tradeoffs at the
interindividual level in the course of the present reanalysis. There was a positive relationship
between participants’ speed and their accuracy in the ongoing lexical-decision task; this was
the case for the PM condition, r(62) = .27, p = .032, and the No-PM condition, r(33) = .55, p
<.001. Thus, slower individuals tended to be more accurate within both groups, and it is
important to extract such effects with an explicit model before conclusions about actual
performance are derived.

Prospective memory—PM performance (M = .69, SD = .20) was positively correlated
with ongoing-task RT in the PM condition, r(62) = .34, p = .007. This finding has been
interpreted as competition for limited resources devoted to lexical decisions versus the PM
task (Smith, 2003). Furthermore, there was a positive relationship between ongoing-task
accuracy and PM performance, r(62) = .59, p < .001.

Model fit—The present diffusion model analysis rests on the Kolmogorov-Smirnov statistic
(KS; Kolmogorov, 1941) for parameter estimation. This approach provides a robust and
fine-grained alternative to other estimation procedures (e.g., maximum likelihood, chi
square; see Ratcliff & Tuerlinckx, 2002, for an overview), because the whole RT
distributions are used as input, and binning into RT quantiles is not required. The test
statistic T represents the maximum vertical distance between the predicted and the empirical
cumulative distribution function of RT, and the parameter values are determined in such a
way that T is minimized (cf. Voss & Voss, 2007, 2008).

Goodness of fit was evaluated on the individual and on the aggregate level. First, we
computed KS-tests for each model. None of 95 model tests detected significant deviations
from empirical data (the averaged T statistics and p-values are in Table 1). To visualize
individual model fit, empirical and predicted RT quantiles (.3, .5, and .7) of correct
responses and the proportion of errors are plotted in Figure 2 for each participant. A
diagonal line (with a slope of +1) would represent perfect correspondence between empirical
and predicted values in each panel. As can be seen, the correspondence is generally high and
the residuals do not indicate systematic biases in the model predictions. The diffusion model
adequately reproduces the effects on individual RTs and accuracy in the PM paradigm.

2ps suggested by a reviewer, we systematically examined further cutoff-criteria for the lower tail (200, 225, 250, 325, 350 ms) and the
upper tail (2000, 2250, 2750, 3250, 3500 ms) of the RT distributions and fit the diffusion models to the so-trimmed data. The pattern
of significant and nonsignificant effects was consistently the same as that reported in the present results section.
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Second, the complete empirical and the complete predicted RT distributions can be
visualized to assess model fit. In Figure 3, the RTs from all participants in a condition are
combined in a single cumulative distribution function, including correct and error responses.
For this purpose, error responses are multiplied by —1, and the corresponding distribution of
error RTs is mirrored at the zero point of the time axis (Voss, Rothermund, & Voss, 2004).
Thus, the portion of the distribution function on the negative side of the x-axis represents the
error latencies and the portion on the positive side of the x-axis represents the latencies for
correct responses. The distribution functions intercept the y-axis at the error rate.

As seen in Figure 3, the error rates in the present lexical decision task are very low, and
there is a marked difference in the whole RT distribution between the PM and the No-PM
condition. In sum, Figure 3 indicates an excellent fit at the aggregate level, as there are
almost no deviations between the predicted and empirical RT distributions.

Diffusion model analysis—We fit the diffusion model separately to the data from each
participant. The resulting mean parameter estimates for the PM and for the No-PM condition
are listed in Table 1. Because some participants made few errors in the lexical decision task
and lexical variables were not the focus of the present analysis, we aggregated responses
over stimulus types for the sake of robust parameter estimation.3 That is, responses were
coded as correct (upper threshold) versus false (lower threshold) to obtain a single measure
of drift rate, thereby aggregating over the two string types (words, nonwords). With this
coding, the mean starting point z was fixed to a/2 (e.g., Ratcliff, 2002), because biases (e.g.,
a bias to respond “nonword™) cancel out if both string types occur equally often. That is,
participants favor correct and false responses equally often and the expected value of the
starting point across trials equals a/2. Biases can contribute to starting point variability s,,
however (see Klauer, Voss, Schmitz, & Teige-Mocigemba, 2007, for this approach).

The statistical comparison of the diffusion model parameters that yielded the best model fit
for participants in the PM and the No-PM conditions revealed a significantly higher
threshold parameter a (speed-accuracy setting) when there was an additional PM task (see
Table 1). On average, individuals in this group responded more cautiously and required
relatively more information before they terminated the decision processes in the ongoing
task. However, the model-based analyses also indicated that criterion shifts alone do not
fully explain the cost effect of PM on RT. For the present ongoing task, the rate of
information accumulation v (collapsed across words and nonwords) was lower for the
condition with the embedded PM task. Holding an intention may have interfered with the
efficiency of processing the letter strings, as captured by this parameter. Finally, nondecision
time Tgr and the variability parameters s;, S, and n had comparatively little effect on the cost
of PM in this study. In general, the variability parameters have smaller impact on overall
mean RT or accuracy, and are more important for the relative speed of correct and false
responses, which was not the focus of this study.

Discussion

The diffusion model analysis demonstrates that the cost of PM on an ongoing task (as
reported by Smith, 2003) can be split into separate processing components that are
theoretically informative for PM researchers. More specifically, the addition of a PM task

3To examine whether biases in favor of a stimulus type were present, we compared the relative speed of correct versus error responses
(cf. Wagenmakers et al., 2007). An a priori bias for a particular stimulus type (e.g., nonwords) would imply faster correct than error
responses for this stimulus type, and the reverse pattern of RT for the other type (e.g., words). To obtain reliable estimates of mean
error-RT, participants with more than three errors on each stimulus type were included in these analyses. No significant disordinal
interactions emerged in the 2 (response correctness) x2 (stimulus type) ANOVAs, suggesting that biases in favor of a particular
stimulus type were neither present in the PM nor the No-PM condition (largest F < 2.91, smallest p > .10).
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induces more cautious speed-accuracy settings, thereby increasing the latencies of the
ongoing lexical decisions. It is typically assumed that such settings are stable across an
experimental block, (e.g., Ratcliff, 1978; Wagenmakers et al., 2008; the diffusion model
does not assume variability in threshold distance a), and are formed at the outset (e.g., when
participants receive instructions at the beginning of an ongoing task). Differences in
criterion settings may therefore reflect participants” metacognitive beliefs about the
upcoming task, which is perceived as more complex or more demanding with additional PM
instructions. This is in line with research on strategic allocation policies and their impact on
cost effects (Hicks, Marsh, & Cook, 2005; Marsh et al., 2005). The current results indicate
that the model’s a parameter could be a useful candidate for quantifying the effects of
metacognitive beliefs. Shifts of the boundaries are also consistent with Smith’s (2003, 2010)
proposal that embedding a PM task in an ongoing task changes the fundamental nature of
the ongoing-task context.

The demonstration of a criterion shift in the current study is an important first step in the
application of the diffusion model for understanding the processes that contribute to cost
effects. The present results also suggest that the speed of information uptake v is decreased
in the PM condition, likely because PM absorbs resources that would otherwise be devoted
to the ongoing task, thereby slowing processing efficiency (cf. Smith, 2008, 2010). This
interference effect occurs during the actual decision process in the ongoing task, when
information about the stimulus is accumulated. The current analysis provides a foundation
for future research examining whether other components can contribute to cost effects —
dependent on characteristics of the PM task — and how changes in the model parameters
relate to PM performance. For instance, our continuing work with the diffusion model
indicates that nondecision time (and not drift rates) can account for a slowing if participants
adopt a more controlled strategy in PM tasks (e.g., “monitoring” for targets in nonfocal PM
tasks or even more vigilance-like tasks; cf. Graf & Uttl, 2001). Such effects are expected
from other studies, as individuals have been shown to sequentially check for the presence of
targets before or after their actual ongoing-task decisions (Scullin, McDaniel, Shelton, &
Lee, 2010), thereby producing a slowing. Moreover, motor response coordination and task-
set switching, which would map onto nondecision time (cf. Klauer et al., 2007), may
become more prominent in such situations.

The observed parameter differences between the conditions may be due to the retrospective
component (remembering the intention content; i.e., the targets and associated actions), the
prospective component (remembering that an intention needs to be realized), or both (cf.
Einstein & McDaniel, 1990). In the present study, all participants initially learned the PM
target words to criterion and recall in a posttest-questionnaire was similar in both groups and
generally high (ca. 85%; cf. Smith, 2003). Thus, substantial RT-variance between the
conditions is likely attributable to the impact of the prospective component, and not an effect
of differences in retrospective-memory load. In light of similarities between PM- and dual-
task paradigms, note that participants did not continuously respond to a frequently occurring
secondary task and their PM performance was far from ceiling. These characteristics may
support the view that part of the slowing reflects intention-retrieval processes, and not a load
from any secondary task (see Graf & Uttl, 2001, for a conceptual framework that
distinguishes “PM proper” from “vigilance” tasks).

In conclusion, criterion shifts (parameter a) play an important role when a PM task is added
to an ongoing task, but they do not fully explain the increase in RT, as other processing
components also contribute to the cost of PM. The model-based approach is more
informative than standard cost analyses, because parameters quantify the processes that are
of theoretical interest at the latent, individual level. This approach can therefore fruitfully
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contribute to the debate about what costs can or cannot reveal about PM retrieval (Einstein
& McDaniel, 2010; Smith, 2010).
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Figure 1.

INustration of the diffusion model. The vertical axis is the decision axis, and the horizontal
axis is the time axis. Diffusion processes start at point z and move over time until the upper
threshold (positioned at a) or the lower threshold (positioned at zero) is reached. Reaction
time distributions for decisions associated with the upper and the lower thresholds are
shown. The two sample process tracks illustrate that different thresholds can be reached with
the same (positive) drift rate due to random influence. Total RT is the sum of the decision
time and a nondecision component that represents the duration of processes such as
perceptual encoding and motor response execution.
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Figure 2.

Individual fits of the diffusion model. The upper panel shows empirical (observed) and
predicted RT quantiles (.3, .5, and .7) for each participant in the PM condition (black) and in
the No-PM condition (grey). The lower panel shows the correspondence of the proportions
of error responses. Diagonal lines with a slope of +1 would indicate perfect fit.

Can J Exp Psychol. Author manuscript; available in PMC 2012 March 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Horn et al.

Page 13

0.8

o
>

PM (predicted)
eess PM (empirical)
no PM (predicted)
no PM (empirical)

04

Cumulative Probability

0.2

A AAAAAAANIRRARAASSAAINNNN AN

25 20 15 -10 -05 0.0 0.5 1.0 15 20 25

Response Time in s (Error RTs multiplied by -1)

Figure 3.

Distributions of response time. The graphs show the empirical (observed) and the model’s
predicted cumulative distribution functions of response time, aggregated over individuals in
the PM condition (black) and No-PM condition (grey), respectively. Negative values on the
horizontal axis are latencies of error responses (multiplied by 1), and positive values are
latencies of correct responses.
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Table 1

Diffusion Model Parameters
Parameter Description No-PM Condition ~ PM Condition t(93)2
z Mean starting point al2 al2 -
a Threshold separation 1.91 (0.08) 2.22 (0.06) 3.15**
v Mean drift rate 3.03 (0.20) 2.36 (0.07) —390 **
Ter Mean nondecision time 0.41 (0.01) 0.43 (0.01) 0.94
S, Range of starting point 0.73 (0.09) 0.72 (0.04) -0.12
St Range of nondecision time 0.04 (0.01) 0.04 (0.01) -0.13
n Drift rate variability 0.51(0.13) 0.50 (0.05) -0.10
KS-distance? 0.02 (0.001) 0.02 (0.001) -1.33
p-valueC .90 (0.02) .93 (0.02) 0.80

Notes. Best-fitting parameter values are averaged across participants in the No-PM condition and in the PM condition. Standard errors are in

parentheses. KS = Kolmogorov-Smirnov.

aPM Condition versus No-PM Condition (independent-samples test).

KS-distance T between predicted and empirical cumulative distribution functions of response time.

CProbability values of the KS-tests larger than .05 indicate no significant deviations of predicted from empirical distributions.

F%k

p<.01
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Table 2

Performance and Corresponding Parameter Values in Three Hypothetical Ongoing-Task Conditions

Condition
A B C
Mean Performance
RT 591 690 740
Proportion Correct .881 .953 953
Diffusion Model Parameters
Drift Rate v 20 20 20

Threshold Distance a 1.0 15 15
Nondecision Time T, 04 0.35 0.4

Notes. The conditions differ in nondecision time and threshold distance, but not in the rate of information uptake (simulated data). For this
example, z = a/2, and the variability parameters 1, sz, st were fixed to 0. RT: Reaction time in ms.
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