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Abstract

Sphingosine-1-phosphate (S1P) regulates a broad spectrum of fundamental cellular processes like proliferation, death,
migration and cytokine production. Therefore, elevated levels of S1P may be causal to various pathologic conditions
including cancer, fibrosis, inflammation, autoimmune diseases and aberrant angiogenesis. Here we report that S1P lyase
from the prokaryote Symbiobacterium thermophilum (StSPL) degrades extracellular S1P in vitro and in blood. Moreover, we
investigated its effect on cellular responses typical of fibrosis, cancer and aberrant angiogenesis using renal mesangial cells,
endothelial cells, breast (MCF-7) and colon (HCT 116) carcinoma cells as disease models. In all cell types, wild-type StSPL, but
not an inactive mutant, disrupted MAPK phosphorylation stimulated by exogenous S1P. Functionally, disruption of S1P
receptor signaling by S1P depletion inhibited proliferation and expression of connective tissue growth factor in mesangial
cells, proliferation, migration and VEGF expression in carcinoma cells, and proliferation and migration of endothelial cells.
Upon intravenous injection of StSPL in mice, plasma S1P levels rapidly declined by 70% within 1 h and then recovered to
normal 6 h after injection. Using the chicken chorioallantoic membrane model we further demonstrate that also under in
vivo conditions StSPL, but not the inactive mutant, inhibited tumor cell-induced angiogenesis as an S1P-dependent process.
Our data demonstrate that recombinant StSPL is active under extracellular conditions and holds promise as a new enzyme
therapeutic for diseases associated with increased levels of S1P and S1P receptor signaling.
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Introduction

Sphingolipids are essential constituents of cellular membranes

and serve as signalling molecules involved in various physiological

and pathophysiological processes. Sphingosine-1-phosphate (S1P)

plays a key role in regulating cell proliferation and survival, cell

migration, angiogenesis, as well as inflammatory processes and

immune functions [1,2,3,4,5]. S1P is present in blood at high

nanomolar concentrations due to the S1P-producing activity of

sphingosine kinases (SK1) in various cell types including mast cells,

erythrocytes and vascular endothelial cells [6,7,8,9]. In blood S1P

is bound to serum albumin and high density lipoproteins, which

serve as buffers to decrease the pool of free S1P known to promote

cardiovascular inflammation [10,11,12]. Interestingly, high levels

of S1P are also generated by sphingosine kinases overexpressed in

cancer cells, where it contributes to malignant progression and

drug resistance as part of the sphingolipid rheostat counteracting

pro-apoptotic sphingosine and ceramide [3,13]. In addition to its

intracellular function, secreted S1P may exacerbate disease

progression by auto- and paracrine stimulation of S1P cell surface

receptors [14,15,16]. So far, five receptor subtypes have been

identified and denoted as S1P1–5 [17,18,19]. Their activation

triggers downstream signaling via mitogen-activated protein

kinases (MAPK), phosphoinositide 3-kinase, cyclic AMP and

other mediators of cellular responses. Subsequent biological effects

include cytoskeletal rearrangements, cell proliferation and migra-

tion, invasion, vascular development, platelet aggregation and

lymphocyte trafficking [14,20].

Although elevated S1P is causal or at least contributory to major

human diseases, its cytoprotective effect is also important to

maintain the function of normal vital tissues such as the immune

and the cardiovascular system. To sustain controlled amounts of

this highly bioactive lipid in tissues, S1P is irreversibly degraded by

intracellular S1P lyase into hexadecenal and phosphoethanola-

mine. Decreasing the concentration of extracellular S1P or

antagonizing S1P receptors may have therapeutic potential for

various pathologic conditions including cancer, fibrosis, inflam-

mation, autoimmune diseases, diabetic retinopathy and macular

degeneration [3,21,22,23,24]. The sphingosine analogue FTY720

(fingolimod) is an immunosuppressive agent used for the treatment

of multiple sclerosis and other autoimmune diseases [5,25,26]. Its

in vivo phosphorylated form acts as an agonist on all S1P receptors,

except S1P2. In addition, FTY720-phosphate may also indirectly

antagonize S1P receptor signaling by receptor downregulation,
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thereby rendering cells unresponsive to S1P [5,26,27]. This

ambivalent behaviour may result in unpredictable effects in vivo,

therefore limiting the therapeutic use of this compound. As a more

predictable approach, an anti-S1P antibody has recently been

described, which acts as a molecular ‘‘sponge’’ to reduce the pool

of endogenous circulating S1P [28]. However, it is questionable

whether the reversible absorption of S1P with a neutralizing

antibody can compete with the continuous release of S1P from

blood and various other cell types.

A similar but likely more effective approach may be the use of

S1P degrading enzymes like S1P lyase to irreversibly remove S1P

from the circulation. S1P lyase has been cloned from various

species including yeast [29], mouse [30], and human [31]. In

mammalian cells, the enzyme is normally located intracellularly in

the ER membrane with its active site facing the cytosol, and its

main function may therefore be the degradation of intracellular

S1P.

Recently, we have cloned and characterized the structure and

function of S1P lyase from Symbiobacterium thermophilum (StSPL)

[32]. In contrast to the enzymes from yeast, mouse and human,

StSPL lacks a typical predicted transmembrane helix [32], and its

structure solved at 2.0 Å resolution revealed that the active protein

is a typical type I-fold dimeric pyridoxal-59-phosphate (PLP)-

dependent enzyme in which residues from both subunits

contribute to the active site. The purified protein was able to

cleave S1P in vitro [32].

Here, we demonstrate for the first time that recombinantly

produced StSPL effectively degrades S1P in cell culture medium

and in blood in vitro and in vivo. Using distinct cell types as in vitro

models of cancer, fibrosis and aberrant angiogenesis, evidence is

provided that StSPL disrupts S1P receptor signaling and thus

mitigates pathophysiologic processes associated with increased

levels of extracellular S1P. Furthermore, we used the chicken

chorioallantoic membrane (CAM) as a neovascularization model

to show the effect of StSPL on in vivo angiogenesis.

Results

Biochemical characterization of recombinant StSPL
The previously cloned full-length STH1274 gene was expressed

in E. coli and the StSPL was purified to homogeneity as described

[32]. The purity of the monomeric StSPL, which is a 507 amino

acid protein with a calculated molecular weight of 55 kDa, was

verified by SDS-PAGE followed by Coomassie staining of the gel

(Fig. 1 A, lane 2) and Western blotting using an antibody

recognizing the C-terminal His-tag (Fig. 1 A, lane 3). Based on our

previous work which resolved the structure of WT StSPL at 2.0 Å

resolution [32], we conclude that StSPL is a typical type I-fold

dimeric pyridoxal 59-phosphate (PLP)-dependent enzyme (Fig. 1

B) where residues from both subunits contribute to the active site.

A phosphate ion coming from the buffer (red dot in Fig. 1 B) sits

near the cofactor PLP (blue hexagon in Fig. 1 B) in the active site,

mimicking the binding of the phosphate head of the substrate. The

stretch of the StSPL chain spanning residues 1 to 57 (named Nt-

FLEX) was not visible in the electron density map due to disorder.

WT StSPL was shown to be active in vitro using two

complementary activity assays (Figs. 1C and 1D). The first assay

indirectly monitored the cleavage of the S1P substrate by

recording spectrophotometric changes of the cofactor upon

catalysis [32]. After addition of S1P to WT StSPL, the initial

broad peak at 420–460 nm transiently disappeared and was

replaced by a double peak at 420 & 403 nm (Fig. 1 C). The visible

spectrum of the inactive mutant K311A or of an inhibited StSPL

did not undergo any changes upon addition of substrate [32]. The

second activity assay relies on mass spectrometry and monitors the

disappearance of the S1P peak at m/z = 380.26 after incubation

with StSPL (Fig. 1 D).

StSPL is active under extracellular conditions
To investigate, whether StSPL is active also in the extracellular

environment, the WT enzyme was added to cell culture medium

supplemented with S1P and incubated at 37uC. As shown in

Fig. 2A, S1P was degraded by 70% within 30 min, suggesting that

even under extracellular conditions S1P is enzymatically degraded.

In contrast, the K311A mutant of StSPL, which lacks the

catalytically essential Schiff base bond with PLP, did not reduce

medium S1P levels (Fig. 2A).

To see whether StSPL is also active in blood and capable of

degrading blood-derived S1P, human plasma was prepared from

healthy donors and incubated in vitro with WT StSPL or the

K311A mutant. As shown in Fig. 2B, incubation of plasma at

37uC with buffer only did not alter the S1P level over a time

period of 20 h. Moreover, there was no increase of sphingosine

over 24 h of incubation (data not shown). These data demonstrate

that S1P is rather stable in plasma depleted of blood cells, and

excludes the spontaneous hydrolysis of S1P or an active

degradation by other plasma factors such as plasma phosphatases.

Incubation of plasma samples with WT StSPL rapidly degraded

blood-derived S1P within 1 h of incubation, whereas control

incubation with K311A did not affect S1P levels (Fig. 2B).

StSPL disrupts S1P-stimulated proliferation and fibrotic
response in renal mesangial cells

To analyse the biological effects of StSPL on renal mesangial

cells as an in vitro model mimicking glomerular fibrosis, we tested

the activity of purified StSPL on intact cells and assessed its ability

to interfere with S1P signalling. To this end, we first tested renal

mesangial cells, since S1P-triggered responses are well defined in

these cells. The stimulation of mesangial cells with S1P for 10 min

resulted in an increased phosphorylation and thus activation of the

classical p42- and p44-MAPK/ERKs (Fig. 3A, upper panel),

which corroborates our previous finding (Xin et al., 2004). In the

presence of WT StSPL, the S1P-triggered phosphorylation of p42-

and p44-MAPKs was prevented, whereas the K311A mutant had

no effect on the S1P-stimulated MAPKs (Fig. 3A).

S1P acts as a mitogen in renal mesangial cells [33,34] and

induces fibrosis as shown by upregulation of CTGF [35,36], which

represents a marker of fibrotic responses in vivo [37,38]. Mesangial

cell proliferation was measured by [3H]thymidine incorporation

into de novo synthesized DNA. Treatment of quiescent mesangial

cells with S1P for 28 h induced a moderate but significant increase

in cell proliferation (Fig. 3B), which was prevented by WT StSPL

but not the K311A mutant (Fig. 3B). Furthermore, we previously

demonstrated that S1P activates gene transcription and de-novo

protein synthesis of pro-fibrotic CTGF in mesangial cells [35]. As

shown in Fig. 3C, this effect of S1P was also prevented by WT

StSPL, but not K311A.

These data suggest that extracellular StSPL not only abolishes

S1P-mediated effects on acute cellular signalling cascades, but also

reduces S1P-triggered cell responses such as proliferation and

fibrotic reactions in cell culture models.

StSPL disrupts S1P-stimulated proliferation and
migration of endothelial cells

As an in vitro model of diseases associated with aberrant

angiogenesis, the effect of StSPL on the human endothelial cell

line EA.hy 926 was investigated. Again, S1P stimulated classical
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p42/p44-MAPKs phosphorylation, which was blocked by WT

StSPL but not the K311A mutant (Fig. 4A).

In endothelial cells, S1P stimulates molecular events underlying

angiogenesis, which includes cell proliferation and migration [39].

Indeed, we found that S1P stimulated EA.hy 926 cell proliferation

(Fig. 4B), which was impeded by WT StSPL but not K311A

(Fig. 4B). Moreover, undirected endothelial cell migration was also

stimulated by S1P as measured in an adapted Boyden chamber

assay (Fig. 4C), and this effect was similarly prevented by WT

StSPL but not K311A (Fig. 4C). To exclude that the endothelial

cells were stimulated by the degradation products of S1P, they

were treated with 2E-hexadecenal at a concentration of up to

10 mM. However, we could not measure an effect on MAPK

activation (data not shown). Our data demonstrate the potential of

StSPL to combat aberrant angiogenesis commonly associated with

diseases like cancer, diabetic retinopathy and macular degenera-

tion.

StSPL disrupts S1P-stimulated malignant responses in
breast and colon carcinoma cells

There is convincing evidence that S1P contributes to tumori-

genesis and malignant progression by promoting cell growth and

metastasis [3]. Therefore, we investigated whether StSPL can also

attenuate S1P-stimulated cell responses in tumor cells like the

breast carcinoma cell line MCF-7 and the colon carcinoma cell

line HCT 116. As shown in Fig. 5A and 6A, in both cell lines S1P

stimulated classical p42/p44-MAPKs phosphorylation, which was

prevented by WT StSPL but not the K311A mutant. Moreover,

both cell lines responded to S1P stimulated by [3H]thymidine

incorporation into DNA and this effect was again specifically

Figure 1. Biochemical characterization of StSPL. (A) Purity of purified WT StSPL. The molecular weight marker is shown in lane 1, the pooled
fractions after size-exclusion chromatography were detected by Coomassie staining of the gel (lane 2) and by Western blotting with an antibody
recognizing the C-terminal His-tag (lane 3). (B) Schematic representation of the StSPL dimer. Subunit A is depicted in grey, whereas subunit B is in
black. A phosphate ion found in the active site of both subunits is depicted as a red dot, while the cofactor (PLP) is denoted by a blue hexagon. (C)
Spectrophotometric activity assay of WT StSPL. The red curve represents the visible spectrum of the native protein before addition of substrate,
corrected by the dilution factor. The black curves depict the visible spectra at regular intervals (1 min, 2, 4, 6, 8, 10, 12, 15, and 30 min) after addition
of S1P. The transient peaks at 420 and 403 nm appearing upon addition of substrate correlate with protein activity. (D) Mass spectrometric activity
assay of WT StSPL. The left panel depicts the reaction mixture measured just after mixing protein and substrate. The m/z 163.07 and 380.26 peaks
correspond to the end product phosphoethanolamine and the substrate S1P, respectively. The right panel shows the reaction mixture after 75 min
incubation at 20uC. No peak corresponding to S1P was detectable above background level.
doi:10.1371/journal.pone.0022436.g001
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Figure 2. WT StSPL degrades S1P in vitro. (A) Medium (DMEM) was incubated for 30 min at 37uC with either vehicle (Co) or S1P in the absence
(0, open bar ) or presence of the indicated concentrations of WT StSPL (StSPL; closed bars) or the K311A mutant (hatched bars). Thereafter, 100 ml of
the medium was taken for lipid extraction and S1P was quantified by LC-MS/MS. Data are expressed as ng/ml of S1P and are means 6 SD (n = 3). (B)
Human plasma was incubated at 37uC for the indicated time periods (in hours) with either buffer (vehicle, circles), 20 mg/ml of WT StSPL (StSPL;
squares), or 20 mg/ml of the K311A mutant (triangles). 100 ml plasma was taken for lipid extraction and S1P was quantified by LC-MS/MS. Data are
expressed as ng/100 ml of S1P and are means 6 SD (n = 3).
doi:10.1371/journal.pone.0022436.g002

Figure 3. Effect of StSPL on S1P-stimulated MAPK phosphorylation, cell proliferation and CTGF expression in renal mesangial cells.
(A) Quiescent rat mesangial cells were treated for 10 min with either vehicle (DMEM, -) or S1P (1 mM) in the absence or presence of WT StSPL (StSPL;
10 mg/ml) or the K311A mutant (10 mg/ml). Thereafter, cell lysates were separated by SDS-PAGE, transferred to nitrocellulose and subjected to
Western blotting using antibodies against phospho-p42/p44 (dilution of 1:1000, upper panel) and total p42/p44-MAPK (dilution each 1:6000, lower
panel). Blots were stained by the ECL method according to the manufacturer’s recommendation. Data are representative of five independent
experiments. (B) Quiescent cells were treated for 28 h with either vehicle (Co) or S1P (1 mM) which had been pretreated for 30 min at 37uC with either
vehicle (-), WT StSPL (StSPL; 20 mg/ml) or the K311A mutant (20 mg/ml) in the presence of [3H]thymidine. Incorporated radioactivity was measured as
described in the Materials and Methods section. Results are expressed as cpm/well of incorporated [3H]thymidine and are means 6S.D. (n = 4). (C)
Quiescent cells were treated for 2 h as indicated above, and proteins were precipitated from the supernatants and taken for SDS-PAGE, transfer to
nitrocellulose membranes and Western blotting using a CTGF-specific antibody (dilution 1:1000). *p,0.05 considered statistically significant when
compared to the vehicle-treated control values; #p,0.05 when compared to the S1P-treated values (one-tailed p value).
doi:10.1371/journal.pone.0022436.g003
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impeded by WT StSPL (Fig. 5B and 6B). Similarly, S1P stimulated

migration of HCT 116 (Fig. 5C) and MCF-7 (Fig. 6C) cells, and

this effect was also impeded by WT StSPL. In addition to

migration, WT StSPL drastically reduced S1P-stimulated VEGF

secretion in HCT 116 (Fig. 5D) and MCF-7 (Fig. 6D) cells.

These findings demonstrate the ability of StSPL to effectively

impede also the pro-malignant effect of S1P on carcinoma cells.

StSPL is active in vivo and decreases plasma S1P levels in
mice

To investigate whether StSPL is also active under extracellular

conditions in vivo, the WT enzyme was injected in mice and the

degradation of S1P in mouse plasma was measured. As shown in

Fig. 7, 1 h after injection of StSPL plasma S1P levels (determined

as 40 ng in 15 ul) decreased to about 70%. After 3 h, S1P levels

were partly recovered and normal control levels were reached 6 h

after injection (Fig. 7). Although this indicates that there is scope

for further pharmacological improvements to enhance efficacy, it

clearly demonstrates that recombinant StSPL retains its enzymatic

acitivity also in vivo upon intravenous injection. On the other hand,

it indicates that the S1P blood pool was effectively replenished by

continuous production in blood cells and that StSPL was

eliminated from the circulation.

StSPL inhibits tumor cell-induced angiogenesis in the
chicken chorioallantoic membrane

To demonstrate that StSPL can alter an S1P-dependent

phenotype also under in vivo conditions, we investigated its effect

on neovascularisation in the developing chorioallantoic membrane

(CAM) of the chicken embryo. As a trigger for angiogenesis,

spheroids of MCF-7 cells, which showed increased VEGF

secretion upon StSPL treatment (Fig. 6D) were placed on the

CAM of E8 chicken embryos. The ability of tumor cells including

MCF-7 to induce vessel formation under these conditions [40] was

described. As shown in Fig. 8, when MCF-7 cell spheroids were

further incubated on the CAM for 4 d in the presence of StSPL,

vessel formation was significantly decreased by 16% compared to

PBS-treated CAMs. In contrast, vessel formation in the CAM was

not affected by treatment with the inactive K311A mutant (Fig. 8).

Figure 4. Effect of StSPL on S1P-stimulated MAPK phosphorylation, cell proliferation and migration of endothelial cells. (A)
Quiescent EA.hy 926 human endothelial cells were treated for 10 min with either vehicle (Co) or S1P (1 mM) in the absence or presence of WT StSPL (StSPL;
10 mg/ml) or the K311A mutant (10 mg/ml). Cell lysates were prepared and separated by SDS-PAGE, transferred to nitrocellulose and subjected to Western
blotting using antibodies against phospho-p42/p44 (dilution of 1:1000, upper panel) and total p42/p44-MAPK (dilution each 1:6000, lower panel). Data are
representative of four independent experiments. (B) Quiescent cells were treated for 28 h with either vehicle (-) or S1P (1 mM), which had been pretreated
for 30 min at 37uC with either vehicle (-), WT StSPL (StSPL) or the K311A mutant, in the presence of [3H]thymidine. Incorporated radioactivity was measured
as described in the Materials and Methods section. Results are expressed as cpm/well of incorporated [3H]thymidine and are means 6S.D. (n = 4).
***p,0.001 considered statistically significant when compared to the vehicle treated control values; ##p,0.01, ###p,0.001 when compared to the S1P-
treated values by one-way ANOVA analysis and Bonferroni post test. (C) Quiescent cells were treated for 14 h with DMEM (Co) or S1P (1 mM) which had
been pretreated for 30 min at 37uC with either vehicle (-), WT StSPL (StSPL) or the K311A mutant. Thereafter, migrated cells were analysed as described in
the Materials and Methods section. Results are expressed as migrated cells per counted field and are means 6S.D. (n = 3). ***p,0.001 considered
statistically significant when compared to the vehicle treated control values; ###p,0.001 when compared to the S1P-treated values.
doi:10.1371/journal.pone.0022436.g004

Prokaryotic S1P Lyase Degrades Extracellular S1P

PLoS ONE | www.plosone.org 5 August 2011 | Volume 6 | Issue 8 | e22436



Discussion

In this study we describe for the first time the ability of

recombinantly produced Symbiobacterium thermophilum S1P lyase

(StSPL) to degrade S1P in vitro and in vivo, thereby disrupting S1P

receptor signaling in various disease models.

We have recently solved the structure of WT StSPL at 2.0 Å

resolution [32]. The natural function of StSPL in the bacteria is

still unknown but is most likely to catabolise various sphingolipids

present in the environment. The first residues of StSPL align with

the end of the predicted transmembrane helix of yeast and

mammalian S1P lyases. StSPL lacks therefore an N-terminal

transmembrane helix. In our previous study, we showed that in

spite of this difference, N-terminal flexibility is a conserved feature

of SPLs from both Symbiobacterium thermophilum and yeast [32]. The

‘‘invisible’’ Nt-FLEX domain of StSPL (residues 1–57) is a proline-

rich and basic sequence able to adopt various conformations, and

its positive charge at neutral pH may promote interaction with the

negatively charged heads of phospholipids in membranes, and

even penetrate bilayers, a known feature of proline-rich regions in

proteins, and accommodate its hydrophobic substrate into the

active site [41,42]. Here we found that recombinantly expressed

and purified StSPL is soluble in hydrophilic conditions and retains

its enzymatic activity in cell culture medium and in blood. This

was not necessarily expected, since the eukaryotic S1P lyase

orthologues are integral membrane proteins.

Upon intravenous injection of StSPL in mice, levels of the S1P

substrate initially declined but then recovered within 6 h. The

transient nature of the degradation effect may have two reasons: 1)

continuous production of endogenous S1P, e.g. by blood and

vascular endothelial cells [6,7,8,9], and 2) elimination of active

enzyme by metabolic processes and excretion. Whether the lack of

Figure 5. Effect of StSPL on S1P-stimulated MAPK phosphorylation, proliferation and migration and VEGF synthesis in MCF-7
breast carcinoma cells. (A) Quiescent MCF-7 cells were treated for 10 min with either vehicle (DMEM, -) or S1P (1 mM) in the absence or presence of
WT StSPL (StSPL; 10 mg/ml) or the K311A mutant (10 mg/ml). Cell lysates were prepared and separated by SDS-PAGE, transferred to nitrocellulose and
subjected to Western blotting using antibodies against phospho-p42/p44 (dilution of 1:1000, upper panel) and total p42/p44-MAPK (dilution each
1:6000, lower panel). (B) Quiescent MCF-7 cells were treated for 24 h with either vehicle (Co) or S1P (1 mM), which had been pretreated for 30 min at
37uC with either vehicle (-), WT StSPL (StSPL; 10 mg/ml) or the K311A mutant (10 mg/ml), in the presence of [3H]thymidine. Incorporated radioactivity
was measured as described in the Materials and Methods section. Results are expressed as cpm/well of incorporated [3H]thymidine and are means
6S.D. (n = 4). (C) Quiescent MCF-7 cells were treated for 24 h with DMEM (Co) or S1P (1 mM), which had been pretreated for 30 min at 37uC with
either vehicle (-), WT StSPL (StSPL) or the K311A mutant. Thereafter, migrated cells were analysed as described in the Materials and Methods section.
Results are expressed as migrated cells per counted field and are means 6S.D. (n = 3). (D) Quiescent MCF-7 cells were treated for 24 h with DMEM
(Co) or S1P (1 mM) which had been pretreated for 30 min at 37uC with either vehicle (-), WT StSPL (StSPL; 10 mg/ml), or the K311A mutant (10 mg/ml).
Thereafter, supernatants were taken for a VEGF ELISA. Results are expressed as pg/ml of VEGF and are means 6S.D. (n = 4). *p,0.05, ***p,0.001
considered statistically significant when compared to the vehicle treated control values; #p,0.05, ###p,0.001 when compared to the S1P-treated
values.
doi:10.1371/journal.pone.0022436.g005
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pyridoxal-59-phosphate in the extracellular environment can

destabilize the active conformation of the enzyme remains to be

determined too. Altogether, it is obvious that further functional

improvements of the enzyme are warranted to extend its half-life

in the circulation, e.g. by surface polyethyleneglycol (PEG)ylation

or coupling to other compounds designed to increase the size of

this 110 kDa dimeric protein. Moreover, since S1P is a survival

factor indispensable for the function of several vital tissues such as

the immune and the cardiovascular system, targeted delivery and

accumulation of StSPL specifically in diseased tissues might avoid

side effects. This opens intriguing perspectives for S1P-targeted

therapy using ligand-guided carrier systems [43,44].

Recently, a molecular sponge approach has been described

which is based on the use of a monoclonal antibody to absorb

circulating S1P [28]. Although conceptually similar to our

approach, we believe that the use of antibodies for simple

reversible absorption of S1P in extracellular tissues may less

efficiently compete with the continuous release of S1P from

various sources than irreversibly depleting the circulating S1P pool

as StSPL does. Nevertheless, the reported results from in vitro and

in vivo use of the antibody in tumor models are impressive and

confirm the strategic advantage of specific S1P targeting compared

to the use of available small molecules as S1P receptor antagonists.

For example, the sphingosine analogue FTY720 has been

commonly used as an immunosuppressive agent to treat

autoimmune diseases based on the role of the S1P1 receptor in

lymphocyte trafficking. The in vivo phosphorylated form of

FTY720 initially acts as an S1P receptor agonist, but subsequently

adopts an indirect antagonistic function by promoting receptor

downmodulation and thus resistance to signaling [21,26,27]. This

ambivalent mode of action makes the effect of FTY720 in vivo

rather unpredictable. Functionally improved receptor binding

molecules including antagonistic antibodies are in preparation, but

the low availability of properly folded purified G protein-coupled

Figure 6. Effect of StSPL on S1P-stimulated MAPK phosphorylation, proliferation and migration and VEGF synthesis in HCT 116
colon carcinoma cells. (A) Quiescent HCT 116 cells were treated for 10 min with either vehicle (DMEM, -) or S1P (1 mM) in the absence or presence
of WT StSPL (StSPL; 10 mg/ml) or the K311A mutant (10 mg/ml). Cell lysates were prepared and separated by SDS-PAGE, transferred to nitrocellulose
and subjected to Western blotting using antibodies against phospho-p42/p44 (dilution of 1:1000, upper panel) and total p42/p44-MAPK (dilution
each 1:6000, lower panel). (B) Quiescent HCT 116 cells were treated for 28 h with either vehicle (Co) or S1P (1 mM), which had been pretreated for
30 min at 37uC with either vehicle (-), WT StSPL (StSPL; 10 mg/ml) or the K311A mutant (10 mg/ml), in the presence of [3H]thymidine. Incorporated
radioactivity was measured as described in the Materials and Methods section. Results are expressed as cpm/well of incorporated [3H]thymidine and
are means 6S.D. (n = 4). (C) Quiescent HCT 116 cells were treated for 14 h with DMEM (Co) or S1P (1 mM), which had been pretreated for 30 min at
37uC with either vehicle (-), WT StSPL (StSPL) or the K311A mutant. Thereafter, migrated cells were analysed as described in the Materials and
Methods section. Results are expressed as migrated cells per counted field and are means 6S.D. (n = 3). (D) Quiescent HCT-116 cells were treated for
14 h with DMEM (Co) or S1P (1 mM) which had been pretreated for 30 min at 37uC with either vehicle (-), WT StSPL (StSPL; 10 mg/ml), or the K311A
mutant (10 mg/ml). Thereafter, supernatants were taken for a VEGF ELISA. Results are expressed as pg/ml of VEGF and are means 6S.D. (n = 4).
*p,0.05, ***p,0.001 considered statistically significant when compared to the vehicle treated control values; #p,0.05, ###p,0.001 when
compared to the S1P-treated values.
doi:10.1371/journal.pone.0022436.g006
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receptors required for the specific selection of binders has limited

premature enthusiasm in the field.

Both the antibody and the StSPL approaches target S1P

function on the level of cell surface receptor activation. S1P is

produced by sphingosine kinases and acts as an intracellular

modulator of the sphingosine rheostat to promote cell survival,

proliferation and various other biological effects. Intracellular S1P

lyase usually keeps the pool of free S1P in check, thereby

controlling its pro survival function against the pro-apoptotic

effects of sphingosine and ceramide in the rheostat [45,46].

Accordingly, knockdown of intracellular S1P lyase in cancer cells

was shown to disrupt apoptosis and results in chemoresistance by

Bcl-2/Bcl-xL upregulation [47]. Elevated S1P is causative or at

least contributory to various pathophysiologic disorders. Besides

the disease models addressed in this study, increased levels of S1P

were found in the blood of diabetic patients [48] and upregulated

sphingosine kinase 1 (SK1) has been detected in phagocytes of

patients with sepsis where it promotes excessive production of pro-

inflammatory cytokines [49]. Consequently, targeted inhibition of

SK1 to reduce intracellular S1P production was demonstrated to

have therapeutic potential in various preclinical studies. However,

as with almost all kinase inhibitors, the problem of insufficient

specificity and off-target effects of SK1 inhibitors remains to be

solved.

In addition, S1P can be secreted from cells to establish an

extracellular pool in various tissues including blood, from where it

binds to distinct S1P surface receptors in an auto- and paracrine

fashion [2,14,16]. Although the two major S1P pools cannot be

functionally dissected in terms of pathologic significance, there is

ample evidence that disruption of S1P receptor signaling alone

without tackling the intracellular S1P pool has significant

therapeutic potential [16,21,22].

Using distinct cell types as defined in vitro models of cancer,

fibrosis and aberrant angiogenesis, which are commonly associated

with increased S1P receptor signaling, we report the ability of

Figure 7. In vivo activity of intravenously injected StSPL in
mice. WT StSPL (200 mg in 100 ml PBS per mouse) was injected
intravenously into nude mice (n = 4). Blood aliquots were taken from a
lateral tail vein either before injection (0) or after 1 h, 3 h, and 6 h.
Plasma was prepared and taken for lipid extraction as described in the
Materials and Methods section. S1P was quantified by LC/MS/MS as
described. Data are expressed as ng/15 ml S1P and are means 6S.D.
(n = 4). **p,0.01 considered statistically significant when compared to
the control values by one-way ANOVA analysis and Bonferroni post test.
doi:10.1371/journal.pone.0022436.g007

Figure 8. In vivo effect of StSPL on angiogenesis in the chicken chorioallantoic membrane (CAM). MCF-7 cell spheroids containing 56105

cells in 50 ml were placed on E8 CAMs, and either treated with PBS (control), WT StSPL (StSPL, 20 mg/ml), or K311A (20 mg/ml) for 4 d. CAMs were
analysed for vessel formation as described in the Materials and Methods section, and the density of vessels per mm2 of area around the tumor was
determined. Representative CAMs that were PBS-treated (A), WT StSPL-treated (B), and K311A mutant-treated (C) were photographed under a
stereomicroscope and vessel density was determined using the Vessel_tracer software [58] (D). Results are expressed as vessel density per mm2 and
are means +/2 S.D. (n = 5). *p,0.05 considered statistically significant when compared to the control treated samples.
doi:10.1371/journal.pone.0022436.g008

Prokaryotic S1P Lyase Degrades Extracellular S1P

PLoS ONE | www.plosone.org 8 August 2011 | Volume 6 | Issue 8 | e22436



StSPL to disrupt the biological effects stimulated by extracellular

S1P. In breast and colon carcinoma cells, targeted degradation of

S1P prevented MAPK activation, proliferation, migration and

VEGF production. The inhibitory effect of StSPL on angiogenesis

observed in the chicken chorioallantoic membrane clearly

demonstrates its ability to alter an important S1P-dependent

phenotype also under in vivo conditions. Thus, similar to the S1P

antibody approach [28] this demonstrates the enormous potential

of S1P targeting for cancer therapy. Furthermore, we found that in

renal mesangial cells StSPL disrupted S1P-induced MAPK

activation, cell proliferation, and expression of CTGF, suggesting

its use also for the treatment of fibrotic diseases [38,50].

Nevertheless, it remains to be examined whether the degrada-

tion products of S1P, which inevitably appear in the plasma upon

StSPL treatment, have an effect on vessel physiology. We found

that 2E-hexadecenal, at up to 10 mM, did not alter MAPK

signalling in the human endothelial cell line EA.hy 926 (data not

shown). However, a previous study showed that in mouse

embryonic carcinoma cell lines, various degradation products of

S1P, including hexadecanal, palmitate, phosphoethanolamine,

and ethanolamine, could trigger cell proliferation already at a

concentration of 5 nM [51]. In contrast, Kumar et al. [52] showed

that 2E-hexadecenal at higher concentrations of 25 mM and

50 mM triggered cytoskeletal reorganization and apoptosis of

HEK293, NIH3T3, and HeLa cells likely due to increased

oxidative stress.

In summary, we demonstrate that recombinant StSPL can be

used to effectively degrade extracellular S1P in vitro and in vivo, and

that it has therapeutic potential for pathologic conditions

associated with elevated S1P. Further preclinical investigations

and protein engineering to optimize the pharmacologic profile and

in vivo efficacy of this enzyme therapeutic for clinical application

are warranted.

Materials and Methods

Chemicals and materials
Secondary horseradish peroxidase-coupled IgGs, Hyperfilm MP

and enhanced chemiluminescence reagents were from GE Health

Care Systems (Glattbrugg, Switzerland). S1P, C17-S1P, C17-

sphingosine, C17-ceramide and 2E-hexadecenal were from Avanti

Polar (Alabaster, AL, US). The antibody against phospho-p42/

p44-mitogen-activated protein kinase (MAPK) was from Cell

Signaling (Frankfurt am Main, Germany), antibodies against

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (V-18) and

connective tissue growth factor (CTGF) (L-20) were from Santa

Cruz Biotechnology (Heidelberg, Germany), the total p42- and

p44-MAPK antibodies were generated as previously described

[53]. The vascular endothelial growth factor (VEGF) enzyme-

linked immunosorbent assay (ELISA) was from R&D Systems

Europe Ltd. (Abingdon, U.K.). All cell culture additives were from

Invitrogen AG (Basel, Switzerland).

Expression of recombinant WT StSPL and the K311A
mutant in E.coli

The recombinant WT StSPL and the K311A mutant lacking

the PLP binding residue were expressed in E. coli, purified in PBS

containing 10 mM of PLP, and thoroughly structurally and

functionally characterized as described [32]. The in vitro activity

of StSPL was monitored using a spectrophotometric and a mass

spectrometric activity assay. The first one indirectly monitors the

cleavage of S1P while the second one directly records the cleavage

of S1P [32].

Cell culture
Rat renal mesangial cells were isolated and characterized as

previously described [53]. The human endothelial cell line EA.hy

926 was obtained from Dr. Edgell (Chapel Hill, NC, USA) and

cultured as previously described [54]. MCF-7 breast carcinoma

and HCT 116 colon carcinoma cells were obtained from ATCC

(American Type Culture Collection). MCF-7 cells were cultured in

Dulbecco’s modified Eagle medium (DMEM) containing 10% (v/

v) fetal bovine serum, 6 mg/ml insulin, 100 units/ml penicillin and

100 mg/ml streptomycin, HCT 116 cells were cultured in McCoy

medium containing 10% (v/v) fetal bovine serum, 100 units/ml

penicillin and 100 mg/ml streptomycin. Prior to S1P stimulation,

cells were rendered quiescent for 24 h in DMEM (for carcinoma

cells phenolred-free medium was used) including 0.1 mg/ml of

fatty acid-free bovine serum albumin (BSA).

Western blotting
Stimulated cells were homogenised in lysis buffer and

centrifuged for 10 min at 140006 g. The supernatant was taken

for protein determination. 30 mg of protein were separated by

sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-

PAGE), transferred to nitrocellulose membrane and subjected to

Western blotting as previously described [55] using antibodies as

indicated in the figure legends. For the detection of secreted

CTGF, equal volumes of supernatants of stimulated cells were

taken and proteins were precipitated with 7% trichloroacetic acid.

Quantification of S1P by liquid chromatography/tandem
mass spectrometry (LC/MS/MS)

15 ml of plasma samples or 100 ml of medium were taken for

lipid extraction according to Bligh and Dyer [56], and lipids were

quantified by liquid chromatography-coupled tandem mass

spectrometry (LC/MS/MS) as described [57].

[3H]Thymidine incorporation into DNA
Confluent cells were starved for 24 h in serum-free DMEM

containing 0.1 mg/ml of BSA. Thereafter, cells were stimulated in

the presence of [3H]methyl-thymidine (1 mCi/ml) in the absence

or presence of S1P, and StSPL was added for further 24–28 h.

Cells were processed as described [55].

Cell migration assay
To measure undirected cell migration, an adapted Boyden

chamber assay was performed as described [54].

Quantification of VEGF
Secretion of vascular endothelial growth factor (VEGF) into cell

culture medium was quantified by ELISA (R&D Systems Europe

Ltd., Abingdon, U.K.) as recommended by the manufacturer.

Confluent cells in 24-well-plates were stimulated in a volume of

0.5 ml.

In vivo activity of StSPL
Experiments were approved by the commission for animal

experimentations of the Veterinäramt of the Kanton Bern

(approval No. 43/09). 10 week old female CD1 mice (Charles

River, Sulzfeld, Germany) were injected intravenously with

200 mg WT StSPL in 100 ml phosphate-buffered saline (PBS).

Blood was taken either before treatment (control) or 1 h, 3 h and

6 h after injection by collecting 100 ml blood from the lateral tail

vein using a heparinised capillary. Samples were centrifuged for

10 min at 20006 g and the supernatant (plasma) was taken for

further quantification of S1P by LC/MS/MS.
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Chicken chorioallantoic membrane (CAM) model of
angiogenesis

A shell-free culture method was used to obtain chorioallantoic

membranes (CAM) of chicken embryos. Fertilized chicken eggs

(Brüterei E. Wüthrich AG, Belp, Switzerland) at embryonic day 4

(E4) were opened and placed into plastic dishes (Thermoflex AG,

Switzerland) and further incubated at 37uC and 55% relative

humidity. At E8, 56105 MCF-7 cell spheroids, which were

prepared in growth medium containing 0.2% methylcellulose,

were placed on the CAM and treated with either PBS, StSPL, or

the K311A mutant as indicated in the figure legend. At E12,

CAMs were examined for vessel formation under a stereomicro-

scope (Carl Zeiss AG, Feldbach, Switzerland). The density of

vessels per area around the tumor was determined using the free

downloadable software Vessel_tracer developed by Sofka and

Stewart [58] (http://www.cs.rpi.edu/,sofka/vessels_exec.html).

Statistical analysis
Statistical analysis was performed by using unpaired t-tests and

one-tailed or two-tailed p values when comparing two groups, or

by using one-way ANOVA analysis and Bonferroni post test when

comparing more than two groups.
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