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Abstract

Background: The anterior prefrontal cortex (PFC) exhibits activation during some cognitive tasks, including episodic
memory, reasoning, attention, multitasking, task sets, decision making, mentalizing, and processing of self-referenced
information. However, the medial part of anterior PFC is part of the default mode network (DMN), which shows deactivation
during various goal-directed cognitive tasks compared to a resting baseline. One possible factor for this pattern is that
activity in the anterior medial PFC (MPFC) is affected by dynamic allocation of attentional resources depending on task
demands. We investigated this possibility using an event related fMRI with a face working memory task.

Methodology/Principal Findings: Sixteen students participated in a single fMRI session. They were asked to form a task set
to remember the faces (Face memory condition) or to ignore them (No face memory condition), then they were given
6 seconds of preparation period before the onset of the face stimuli. During this 6-second period, four single digits were
presented one at a time at the center of the display, and participants were asked to add them and to remember the final
answer. When participants formed a task set to remember faces, the anterior MPFC exhibited activation during a task
preparation period but deactivation during a task execution period within a single trial.

Conclusions/Significance: The results suggest that the anterior MPFC plays a role in task set formation but is not involved in
execution of the face working memory task. Therefore, when attentional resources are allocated to other brain regions
during task execution, the anterior MPFC shows deactivation. The results suggest that activation and deactivation in the
anterior MPFC are affected by dynamic allocation of processing resources across different phases of processing.
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Introduction

The anterior PFC (BA 10, also called frontal pole, frontpolar

cortex, and rostral prefrontal cortex) exhibits activation in various

higher-level cognitive tasks, including episodic memory retrieval

[1–8], prospective memory [9–11], working memory [12],

attention [13–16], reasoning [17,18], multitasking [19–23], rule

learning [24–27], internally generated information [28,29],

monitoring of external environment [30], formation and manage-

ment of task sets and rules [31–35], decision making [36,37], and

processing of self-referenced information [38,39].

There might be some functional subdivisions within the BA10

[40–42]. For example, Gilbert et al. [42] reported that functions

such as episodic memory are more related to the lateral BA10,

whereas mentalizing is associated with the medial BA10, even

though some functions such as attention and multitasking are

related to both the lateral and medial BA10. It has also been

reported that patients with damage to the anterior PFC do not

seem to show deficits in processing of some of the functions, except

that they showed a significant impairment in multitasking [43].

Based on this observation, Burgess et al. [30] suggested that it

seems that some regions of the anterior PFC are more involved

with the intention to perform a task rather than with task

execution.

The medial part of anterior PFC is part of the default mode

network (DMN) and has been known to show task induced

deactivation (TID) during some cognitive tasks compared to a

resting baseline [44–51]. The DMN also includes the posterior

cingulate/precuneus (PCC), inferior parietal lobe (IPL), lateral

temporal cortex (LTC), and hippocampal formation (HF) [45].

There have been debates over mechanisms of the DMN. Some

researchers suggested that the DMN is related to internal

mentation and mental simulation such as internally focused

thought [46,47] and mind wandering [52,53]. Other researchers

suggested that the DMN is associated with monitoring of the

external environment [30,50]. Also, negative correlations were

found between the DMN and other brain regions including the

executive network. Specifically, the higher the activation in the

executive network, the lower the activation in the DMN [52,54–

58]. Mayer et al. [59] also reported that deactivation in the DMN
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is related to task demands. In their recent review, Buckner et al.

[45] suggested that the DMN and the external attention system are

competing with each other. The DMN tends to reduce activation

when attention is focused on a particular task, whereas the DMN

tends to increase activation when attention is rather relaxed. When

combined together, these findings suggest that the level of activity

in the anterior MPFC may depend on allocation of attentional

resources among brain regions as a function of task demands.

Previous studies in TID have also shown that allocation of

attention could modulate activation of the task relevant regions

[60–65]. For example, in the posterior visual areas, the regions

corresponding to attended stimuli showed activation, whereas the

regions corresponding to unattended stimuli showed deactivation

[66–69]. Task demand is also related to activation and

deactivation [70–72]. One potential mechanism of this type of

TID involves changes in neural activity due to dynamic allocation

of attention [49,69,73]. When attention is focused on particular

stimuli or spatial locations, the neural activities of the relevant

brain regions increase, but those of irrelevant regions decrease,

resulting in deactivation.

These studies have investigated the effects of attention on different

regions in the brain; however, it also seems possible that allocation of

attentional resources has different effects on different temporal

phases of information processing. A particular region might show

dynamic changes in activation as task demands change across

different phases. If this is the case, then it is possible that activation

and deactivation in the anterior MPFC are modulated by allocation

of attentional resources among different brain regions depending on

task demands. In order to investigate this possibility, we manipulated

two phases of processing: task preparation and task execution within

a single trial. If the anterior MPFC is related to task set formation, it

should show activation during the preparation period. However, if

the anterior MPFC is not involved in task execution, it should show

deactivation during the execution period as the demands on

attentional resources in the other brain regions increase.

Methods

Participants
Sixteen students from the Kyoto area, (age ranges from 20 to 31

years; 8 females, all right-handers) participated as paid volunteers.

All had normal or corrected to normal vision. They gave written

informed consent to participate in the study which was approved

by the institutional review board of the Advanced Telecommu-

nications Research Institute International (ATR).

Stimuli
The primary task was face recognition in which participants were

required to remember three faces arranged in a triangular or reverse

triangular fashion around the center of the screen (visual angle from

the center of the screen to the center of the face was 2.3u). The

stimulus faces were 168 images of Caucasian men and women

retrieved from the Productive Aging Laboratory [74], University of

Texas at Dallas (http://agingmind.cns.uiuc.edu/facedb/) and the

Psychological Image Collection at Stirling, Psychology Department,

University of Stirling (http://pics.psych.stir.ac.uk/). These images

were converted to grayscale with the hair and ears trimmed. The

visual angle of each face was 2.7u62.7u. A background task was

simple addition of four single-digits presented successively one at a

time at the center of the screen. The size of each digit was 0.6u.

Procedure
A trial began with an auditory instruction to form a task set to

remember faces (Face memory condition) or to ignore them (No

face memory condition). In the Face memory condition, the

participants were asked to form a task set to remember the faces

during the preparation period, and in the No face memory

condition, they were asked to ignore the faces and therefore no

task set was required.

Then participants were given 6 seconds of preparation period

before the onset of the face stimuli. The task execution period

started with a stimulus display consisting of three faces for

3 seconds, then a 3-second delay. During this 6-second period,

four single digits were presented one at a time for 1.5 seconds each

at the center of the display, and participants were asked to add

them and to remember the final answer. This calculation task was

added to prevent the use of verbal strategy. Then a test face was

presented at the center for 3 seconds, and the participants made a

match - no match judgment in the Face memory condition by

pressing a response button with the right index finger for match,

and with right middle finger for non-match. The proportions of

matches and non-matches were 50–50, and no face stimulus was

repeated. A response was not required for the No face memory

condition. Then, a two-digit number was presented for 3 seconds

in both conditions, and participants judged whether or not this

number was the correct answer to the addition by pressing a

response button with the right index finger for ‘‘Yes’’, and with

right middle finger for ‘‘No’’. The inter-trial interval (ITI) was

varied among 6, 8, or 10 seconds in order to minimize effects of

the rest period. An example of trial sequence is shown in Figure 1.

Stimuli were projected onto a viewing screen attached within

the bore of the scanner. Stimulus presentation and behavioral data

collection were controlled with the Presentation software (Neuro-

behavioral Systems Inc., Albany, CA, USA). Each participant

received a separate practice session before the MRI session. There

were 20 trials for each condition, presented in a random order.

fMRI acquisition
Event-related functional magnetic resonance imaging (fMRI)

data were acquired on a 1.5-T whole-body magnetic resonance

imaging scanner (Shimadzu-Marconi Magnex Eclipse, Kyoto,

Japan). For functional imaging, a gradient-echo echo-planer

imaging sequence was used with the following parameters:

TR = 2000 ms, TE = 48 ms, flip angle = 80u, and 20 oblique axial

slices were taken with 7 mm slice thickness, FOV = 224 mm

6224 mm, and pixel matrix = 64664, with 3.563.567 mm

voxels. Then, T1-weighted images (191 slices with no gap), using

a conventional spin-echo pulse sequence (TR = 12 ms, TE =

4.5 ms, flip angle = 20u, FOV = 256 mm6256 mm, and pixel

matrix = 2566256, with voxel size 16161 mm), were collected for

anatomical co-registration.

Functional images were analyzed using SPM2 (Wellcome

Department of Cognitive Neurology, University College London,

UK). Six initial images were discarded to eliminate nonequilib-

rium effects of magnetization. Preprocessing included slice-time

correction, motion correction, normalization to the Montreal

Neurological Institute (MNI) EPI template, resampled to

26262 mm voxels, and spatially smoothed (Gaussian kernel,

full-width at half maximum = 8 mm). In a statistical model, we

included separate covariates for the instruction of each condition

(preparation period), one for the presentation of visual stimuli

(execution period), and one for the inter-trial interval, and

convolved those covariates with a hemodynamic response function

(HRF), following the procedure employed in our previous study

[75]. Event duration of each covariate was 0. No significant

correlation was observed among regressors between the prepara-

tion period and execution period in each condition, indicating no
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collinearity among regressors. An uncorrected height threshold

(p = 0.001) and an extent threshold (10 voxels) were used.

Regions of Interests (ROI)
We also performed a timecourse analysis of ROIs that are

chosen based on the voxelwise analysis, in which activation and

deactivation are identified as differences between the Face

memory and No Face memory conditions. However, in the

timecourse analysis, activation and deactivation in each ROI are

determined in comparison with its own baseline for Face memory

and No Face memory conditions separately. We expected that

these two types of analyses would provide converging evidence.

Sixteen functional ROIs were defined based on the results of the

voxelwise analysis. We focused on the regions that were identified

in the comparison between Face Memory and No Face Memory

during the preparation and execution periods, as shown in Table 1.

A sphere was created for each cluster of activation with variable

size (Mean radius = 3.8 mm, range = 2 to 6 mm) to maximize the

coverage of activation of individual participants [76]. The

functional ROIs were all bilateral, including the frontal pole (FP,

BA10), orbitofrontal cortex (OFC, BA11), rostral anterior

cingulate cortex (ACCr, BA32), caudal anterior cingulate cortex

(ACCc, BA32), lateral PFC (LPFC, BA45), intraparietal sulcus

(IPS, BA7), inferior temporal lobe (IT, BA37), and inferior

extrastriate cortex (IES, BA19). Then the activation time course

for each ROI was extracted separately for each participant for

each condition using the MarsBaR [77]. A percent signal change

(psc) was computed for each ROI with the time point 0 sec as the

reference point in order to examine activation and deactivation

compared to its own baseline. A 99% confidence interval was

computed for each data point to examine whether or not each

data point is different from the baseline (psc = 0).

Results

Behavioral data
The mean face recognition accuracy was 78.0% (SD = 10.2),

and the accuracy rates for additions were not different between the

two conditions (91.4%, SD = 11.5 for the Face memory condition,

and 92.7%, SD = 8.7 for the No face memory condition,

t(15) = 0.712, p = 0.487).

Functional MRI data
The brain imaging data showed that during the task preparation

period, activation was greater in the left anterior MPFC, right

OFC, left premotor cortex, rostral ACC, and left IES for the Face

memory condition than for the No face memory condition. No

brain region showed higher activation for the No face memory

than for the Face memory condition during the preparation

period. This is illustrated in Table 1 and Figure 2.

During the task execution period, the bilateral anterior MPFC

and the lateral superior temporal cortex showed lower activation

for the Face memory condition than for the No face memory

condition, as shown in Table 1 and Figure 2. The brain regions

that are typically associated with face working memory showed

higher activation for the Face memory than for the No face

memory condition. These regions included the bilateral PFC, right

superior frontal gyrus, right middle frontal gyrus, left precentral

Figure 1. An example of trial sequence. At the beginning of each trial, an auditory instruction was given regarding the formation of task sets
(Memory task set or No memory task set condition), followed by a 6-sec delay (Preparation period). Then the task execution period began with
stimulus faces presented for 3-sec, followed by a 3-sec delay. During this 6-sec period, four single-digits were presented one at a time for 1.5-sec each,
and the participants were asked to add them and remember the final answer. After the delay, a probe face was presented for 1-sec and the
participants were given 3-sec to judge whether or not the probe face was among the three faces for the Memory task set condition. For the No
memory task set condition, they did not have to respond to the faces. Then a two-digit number was presented for 1-sec and they were asked to
decide whether or not the number was the answer to the addition.
doi:10.1371/journal.pone.0022909.g001
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Table 1. Areas of activation for the preparation and execution periods between the Face memory and No face memory
conditions.

Talairach Coordinates

Region L/R BA Cluster Size x y z T-score

Preparation:
Face memory . No face memory

Frontal Pole L 10 71 212 55 5 5.99

Orbitofrontal Cortex R 11 32 24 21 213 5.49

Middle Frontal Gyrus L 6 26 222 12 38 5.01

Anterior Cingulate Cortex L 32 10 28 37 7 4.27

Inferior Extrastriate Cortex L 17 11 222 287 1 4.60

Inferior Extrastriate Cortex L 18 70 230 276 28 4.85

Preparation:
No face memory . Face memory
N/A

Execution:
Face memory . No face memory

Lateral Prefrontal Cortex L 45 817 240 28 12 8.05

Insula L 47 232 25 21 4.75

Putamam L — 218 7 25 6.17

Lateral Prefrontal Cortex L 44 352 240 5 31 6.67

Lateral Prefrontal Cortex R 44 1456 42 13 20 6.46

Insula R 47 34 22 4 6.22

Supplementary Motor Area R 6 826 2 6 49 6.86

Cingulate Cortex L 32 24 17 38 5.90

Cingulate Cortex R 8 12 29 34 5.92

Precentral gyrus L 4 173 236 27 52 5.96

Intraparietal Sulcus L 7 62 224 252 45 5.40

Intraparietal Sulcus R 7 165 36 244 43 4.36

Superior Occipital Gyrus R 19 30 255 34 5.72

Middle Occipital Cortex L 18 217 230 277 13 7.06

Inferior Extrastriate Cortex L 19 82 232 268 27 4.50

Fusiform Gyrus L 37 244 263 212 3.85

Inferior Extrastriate Cortex R 18 640 36 268 0 5.85

Inferior Occipital Gyrus R 19 30 276 0 4.90

Fusiform Gyrus R 37 34 263 29 4.35

Cerebellum R — 38 254 223 5.12

Cerebellum L — 1768 230 254 228 6.75

Thalamus L — 3583 216 225 10 6.41

Thalamus R — 12 221 12 7.47

Parahippocampal Gyrus L — 216 229 27 3.96

Hippocampus L — 222 235 4 4.91

Hippocampus R — 22 233 22 3.92

Substantia Nigra L — 212 218 211 4.41

Substantia Nigra R — 12 218 211 4.52

Nucleus Ruber L — 28 218 22 6.92

Nucleus Ruber R — 8 218 22 5.89

Nucleus Subthalamicus L — 212 216 24 6.77

Nucleus Subthalamicus R — 12 216 24 5.33

Execution:
No face memory . Face memory

Frontal Pole L 10 57 212 59 14 4.65

Frontal Pole L 10 13 214 52 24 4.47
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gyrus, intraparietal sulcus (IPS), left fusiform gyrus, left middle

occipital gyrus, and right inferior occipital gyrus.

We examined the main effect of Task period. For the Face

memory condition, a contrast for Task preparation.Task

execution resulted in activation in the left and right anterior

medial PFC (BA 10, BA 32, BA 9), inferior orbitofrontal gyrus

(BA 47), middle/superior temporal gyri (BA21, 22), inferior

parietal lobe (BA 39), and posterior cingulate cortex (BA 23). This

analysis identified more regions that were more active during the

preparation period than the execution period than had the other

analyses. Activation in the anterior MPFC is consistent with the

results of the other analyses; and therefore, provided converging

evidence. Activation in the middle and superior temporal gyri is

related to the auditory instruction, as we obtained activation in

Figure 2. Brain activation for the task preparation and task execution periods. (a) Regions that showed activation during the preparation
period in the contrast of Face Memory condition.No Face memory condition, including the left frontal pole (FP), left rostral anterior cingulate (ACCr),
right orbital frontal cortex (OFC), and left inferior extrastriate (IES). No brain regions showed activation in the contrast of No Face Memory
condition.Face memory condition for the preparation period. (b) Regions that showed activation during the execution period, in the contrast of
Face Memory condition.No Face memory condition, including the lateral prefrontal cortex (LPFC), intraparietal sulcus (IPS), and IES. (c) Regions that
showed activation during the execution period in the contrast of No Face Memory condition.Face memory condition, including bilateral FP. An
uncorrected height threshold (p = 0.001) and an extent threshold (10 voxels) were used.
doi:10.1371/journal.pone.0022909.g002

Talairach Coordinates

Region L/R BA Cluster Size x y z T-score

Frontal Pole L 10 13 24 50 23 4.15

Frontal Pole R 10 23 14 55 16 4.16

Insula R 22 11 42 212 2 4.69

Superior Temporal Cortex R 21 19 67 225 5 6.46

Superior Temporal Cortex R 22 35 59 0 4 4.48

doi:10.1371/journal.pone.0022909.t001

Table 1. Cont.
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similar regions for the No face memory condition as shown

below.

For the Face memory condition, a contrast for the Task

execution.Task preparation revealed activation in the face

working memory network, which is very similar to the Face

memory.No face memory contrast for the task execution period

shown in Table 1.

For the No face memory condition, a contrast for Task

preparation.Task execution resulted in activation around the

auditory cortex, reflecting the auditory instruction. For the Task

execution.Task preparation, participants performed calculations

only, and the contrast resulted in activation in the lateral and

medial frontal gyri, supplementary motor area, inferior parietal

lobe, and inferior temporal and occipital cortex.

We also investigated different condition effects as a function of

the task period (shown in Table S1). One was an effect in which

activation was greater for the preparation than for the execution

period (Preparation effect). The other was an effect in which

activation was greater for the execution than for the preparation

period (execution effect). We performed an interaction analysis for

the preparation effect using a (Face memory for Preparation –

Face memory for Execution) – (No face memory for Preparation –

No face memory for Execution) contrast. This contrast identified

the regions that showed the preparation effect was greater for the

Face memory than for the No face memory condition, and

revealed that the anterior MPFC was the only region showing this

effect. When combined with the results of the other analyses, our

data suggest that the anterior MPFC is activated during task

preparation but deactivated during execution.

We performed the other interaction analysis with the contrast

(Face memory during Execution – Face memory during

preparation) – (No face memory during execution – No face

memory during preparation). This contrast identified the areas in

which the execution effect was greater for the Face memory than

for the No face memory condition. These were the regions

associated with face working memory. The results of this analysis

implicated exactly the regions, including lateral PFC, SMA,

Inferior parietal lobe, and inferior temporal/occipital regions.

These are very similar to the regions in the contrast for the Face

memory.No face memory during task execution shown in

Table 1. These results are shown in Table S2. Percent signal

change (psc) data across the time course are shown in Figure 3 and

4. When participants formed the memory task set during the

preparation period, the anterior MPFC showed activation during

task preparation and deactivation during task execution compared

to its own baseline. Also, the bilateral OFC, and the bilateral

rostral ACC exhibited activation during task preparation, but

showed neither activation nor deactivation during task execution.

During the task execution period, the bilateral PFC, the caudal

ACC (ACCc), and the posterior regions including the bilateral

IPS, bilateral inferior temporal (IT), and bilateral IES, showed

increased activation regardless of memory task set. Among the

regions that are typically related to face working memory, the

lateral PFC showed activation for the Face memory condition, but

not for the No face memory condition. The other posterior regions

including the IPS, IT, and IES all showed activations for both

conditions.

Discussion

The results of the analyses, including the difference between the

Face memory and No face memory conditions, between task

preparation and execution, the interactions, and the percent signal

change, all converge into the following points. During the

preparation period, the anterior MPFC and IES showed

activation. During the execution period, the regions that are

typically associated with face working memory showed activation,

including the lateral PFC, IPS, IT, and IES [78,79]. However,

during the execution period, the anterior MPFC and the superior

temporal cortex showed deactivation.

In the present study, the anterior MPFC exhibited activation

during the task preparation period but deactivation during the task

execution period within a single trial. The results based on the

comparison between the Face memory and No face memory

condition and the percent signal change data converged into the

same results. The activation during the preparation period is

consistent with previous findings that the anterior MPFC plays a

role in initiation and management of task sets [21,30,31,34,35].

Deactivation in the anterior MPFC during the execution period

would be viewed as TID in the prefrontal regions. In previous

research, it was shown that reduction of activation could be due to

allocation of attentional resources within posterior regions, such as

the occipital lobe [67–69], somatosensory cortex [80–82], and

temporoparietal junction [70–72]. Prior research has also shown

that the effect of allocation of attentional resources could be global,

including between different hemispheres [73], and TID is not due

to local blood stealing but rather to dynamic changes of global

neural activity [47,73]. Therefore, TID would reflect dynamic

shifts of attentional resources in the whole brain including the

prefrontal regions. When neural activities in some regions

increase, those in other regions might decrease as a function of

resource demands.

In the present study, deactivation in the anterior MPFC during

the execution period could be the results of two factors. One is that

the anterior MPFC is involved in task set formation, but not in

execution of face working memory. The other is that activation

and deactivation are affected by allocation of attentional resources.

In our task, the anterior MPFC was active during the task

preparation period because it plays an important role in task

preparation, whereas it was deactivated during task execution

because (1) the anterior MPFC is not involved in execution of face

working memory, (2) our task was relatively simple and did not

require maintenance of task set during the execution period, and

(3) resource demands in the other regions of the brain increased to

perform the face working memory task. The brain is a limited

capacity information processing system; and therefore, as the

processing demands in the other frontal and posterior regions

increased during the execution period, the attentional resources

were dynamically shifted to those regions, resulting in deactivation

in the anterior MPFC. If the task required maintenance of

complex task sets or continuous switching between task sets, the

anterior MPFC might have shown sustained activation during

execution [21,31,32,34].

In this study, we measured activation and deactivation in two

ways. One is based on the voxelwise analysis, in which results

showed that the level of activation in the anterior MPFC was

higher for the Face memory condition than for the No Face

memory condition during the preparation period (Table 1 and

Figure 2). However, the level of activation in the anterior MPFC

was lower for the Face memory condition than for the No face

memory condition during the task execution period. The other

analysis was based on the percent signal change (psc), in which the

level of activation for each ROI was measured in comparison with

its own baseline at the time point zero, as shown in Figures 3 & 4.

The psc for the anterior MPFC increased during preparation, and

then decreased during execution within a single trial.

One might question whether or not the time point zero is a valid

baseline. If the DMN is active during the ITI period, and

Activation and Deactivation of Anterior MPFC
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Figure 3. Signal change (%) across the time course. (a) Frontal pole (FP) showed activation for the Memory condition during the preparation
period (6 seconds after the onset of a cue at 0 second) and deactivation during the execution period. (b) Rostral Anterior Cingulate Cortex (ACCr)
exhibited activation during preparation but not during execution. (c) Lateral prefrontal cortex (LPFC) showed activation during execution. (d) Inferior
extrastriate (IES) exhibited activation during execution. Inside the parentheses after each region name are the coordinates of the centre of the ROI.
Error bars denote s.e.m. The filled data points indicate the points that the 99% confidence interval did not include zero. The blank data points indicate
those points that the 99% confidence interval included zero. The central coordinates for each ROI is shown inside the parentheses.
doi:10.1371/journal.pone.0022909.g003

Activation and Deactivation of Anterior MPFC
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Figure 4. Signal change (%) across the time course. (a) Orbitofrontal cortex (OFC) showed activation during preparation and deactivation
during execution. (b) Left Caudal Anterior Cingulate Cortex (ACCc) exhibited activation during preparation and execution. (c) Intraparietal sulcus (IPS)
showed activation during execution. (d) Inferior Temporal cortex (IT) showed activation during execution. Inside the parentheses after each region
name are the coordinates of the centre of the ROI. Error bars denote s.e.m. The filled data points indicate the points that the 99% confidence interval
did not include zero. The blank data points indicate those points that the 99% confidence interval included zero. The central coordinates for each ROI
is shown inside the parentheses.
doi:10.1371/journal.pone.0022909.g004

Activation and Deactivation of Anterior MPFC
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therefore, the anterior MPFC is already active at the point of

instruction, then the decreased level of psc during execution might

not be reflecting deactivation, but instead reflecting the fact that

the level of activation is going back to the true baseline. However,

if this is the case, then we should observe the same pattern of

decrease in psc for the No face memory condition during the task

execution period because participants did not know which

condition would be their next trial during the ITI period.

However, the psc for the No face memory condition stayed

basically flat around the zero percent for the prefrontal regions,

indicating that the level of activation at the time point zero was not

significantly influenced by activities during the ITI period; and

therefore, the time point zero provided a valid estimate of the

baseline. Therefore, the results of these two analyses converge to

support the claim that the anterior MPFC showed activation

during task preparation and deactivation during task execution.

The inferior extrastriate cortex also showed activation during

the preparation period, consistent with previous findings in the

effects of top-down attention on the posterior regions [67,83–85].

In our study, when participants were expecting face stimuli, they

formed a task set including the IES. This activation in the IES

continued into the execution period because of the role IES plays

in visual information processing.

Our results might also shed some light on the mechanism of

DMN, which shows deactivation during some cognitive tasks

compared to a resting baseline [44–51]. This deactivation has

been explained in terms of activities during the rest period,

including monitoring the external environment [30] and process-

ing of internal states or mind wandering [52,53]. One of the

interesting differences between the previous studies on the DMN

and our study is that in the previous studies, deactivation in the

DMN has been observed in the comparison between the rest and

task conditions in different blocks, whereas, in our study, the task

preparation and execution periods occurred within a single trial.

Therefore, our results suggest that deactivation could also be

related to dynamic temporal shifts of attentional resources among

the brain regions. In other words, deactivation in the anterior

MPFC could be due not only to activities during the resting

condition, but also to reduction of activity for the task condition

because of heightened activities in other brain regions. This is

consistent with the findings of previous studies that have pointed

out the negative relations between the DMN and executive

network [52,54–58], as well as the DMN and task demands [59].

Among the other brain regions that are typically included in the

DMN, such as the posterior cingulate cortex (PCC), inferior

parietal lobe (IPL), lateral temporal cortex (LTC), and hippocam-

pal formation (HF) [45], the lateral superior temporal cortex

showed deactivation during the task execution period, while the

other regions did not show deactivation in our study. The results

seem to suggest that even though the brain regions in the DMN

tend to be related to each other, they might not show the same

pattern of activity in some cases, depending on their roles and

resource demands in a given task. In our study, the bilateral rostral

ACC showed activation during preparation. However, during the

execution period, the ACC did not show deactivation, because

they play an important role in task monitoring [86,87]. Among

other regions related to DMN, the lateral superior temporal

regions showed deactivation, probably because these regions do

not have significant roles in the face working memory task. Thus,

our results were not inconsistent with the previous findings

regarding the DMN. Our results simply suggest that not all the

DMN regions have to show the same pattern of activation and

deactivation in all kinds of cognitive tasks. Rather, activation and

deactivation of those regions are influenced by a number of factors

including their involvement in a given phase of a task, overall task

demands, and the distribution of processing resources among the

brain regions.

In conclusion, our results showed that the anterior MPFC

exhibited activation during task preparation but deactivation

during task execution within a single trial, suggesting that the

temporal dynamics of activity in the anterior MPFC are affected

by a number of factors. First, the anterior MPFC has a role in task

preparation. Second, the anterior MPFC shows deactivation when

it is not involved in task execution and when activity in the other

brain regions increases. In the present study, the other regions in

the DMN did not show the same pattern of deactivation as the

anterior MPFC during task execution. Therefore, our results

suggest that the activation and deactivation in the regions of the

DMN might depend on the roles they play in a given task and

resource demands of the task. Future research will be needed to

determine the conditions under which patterns of activation or

deactivation are similar across regions of the DMN and conditions

under which the patterns differ.
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