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Estimation of influenza infection rates is important for determination of the extent of epidemic spread and for
calculation of severity indicators. The authors compared estimated infection rates from paired and cross-sectional
serologic surveys, rates of influenza like illness (ILI) obtained from sentinel general practitioners (GPs), and ILI
samples that tested positive for influenza using data from similar periods collected during the 2009 H1N1 epidemic
in Singapore. The authors performed sensitivity analyses to assess the robustness of estimates to input parameter
uncertainties, and they determined sample sizes required for differing levels of precision. Estimates from paired
seroconversion were 17% (95% Bayesian credible interval (BCI): 14, 20), higher than those from cross-sectional
serology (12%, 95%BCI: 9, 17). Adjusted ILI estimates were 15% (95% BCI: 10, 25), and estimates computed from
ILI and laboratory data were 12% (95% BCI: 8, 18). Serologic estimates were least sensitive to the risk of input
parameter misspecification. ILI-based estimates were more sensitive to parameter misspecification, though this
was lessened by incorporation of laboratory data. Obtaining a 5-percentage-point spread for the 95% confidence
interval in infection rates would require more than 1,000 participants per serologic study, a sentinel network of 90
GPs, or 50 GPs when combined with laboratory samples. The various types of estimates will provide comparable
findings if accurate input parameters can be obtained.

epidemics; estimation; infection; influenza, human; population surveillance; serologic tests; statistics as topic

Abbreviations: BCI, Bayesian credible interval; GP, general practitioner; HAI, hemagglutination inhibition; ILI, influenzalike illness;
RT-PCR, reverse-transcriptase polymerase chain reaction.

Assessing the spread and severity of influenza epidemics
is necessary to calibrate response and mitigation strategies
(1). The World Health Organization and many individual
countries have made substantial investments to measure ep-
idemic indicators. One important indicator is the epidemic’s
infection rate, which is crucial to quantify overall morbidity
and to obtain an accurate denominator for calculating com-
plication and mortality rates used to classify severity; the
latter, in turn, guides prioritization of interventions for miti-
gating epidemic severity.

The 2009 influenza pandemic showed the urgency of such
assessments for activation of appropriate responses, espe-
cially early in a pandemic. Because complete case counts

are not feasible (2), during the 2009 epidemic public health
officials in many countries attempted to estimate infection
rates using whatever data were available. This included
estimating clinical attack rates from influenza like illness
(ILI) surveillance, determining infection rates through se-
rologic surveys, and even using nontraditional methods
such as Internet searches (3, 4). However, existing data
collection plans are vital, since extrapolating from ILI sur-
veillance necessitates estimating rates of primary-care
consultation among influenza cases, which are influenced
by population health-care-seeking behaviors (5), while se-
rologic surveys require substantial planning and laboratory
support (6).
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With myriad estimation methods in use, it is important
to determine their comparability and stability to misspeci-
fication of input parameters, to allow better interpretation
of estimates over different countries and successive influenza
epidemics. In this study, we answered these questions by
comparing results of different methods in a single setting.

MATERIALS AND METHODS

To illustrate the different methods used worldwide to
estimate infection rates during the 2009 H1N1 influenza
pandemic, we performed a literature search with the
PubMed search engine (US National Library of Medicine),
spanning May 1, 2009, to August 1, 2010, using the search
terms ‘‘influenza attack rate’’ and ‘‘influenza infection
rate.’’ The inclusion criterion was all English-language ar-
ticles that provided infection rate estimates and explicitly
described the methods used to derive the estimates.

Different methods for estimating infection rates

From the common methods used globally (5, 7–20)
(Table 1), we selected 4 representative generic methods
(Table 2), together with generic equations and minimum
data requirements, to determine their comparability. The 4
methods were serologic cohort and cross-sectional studies,
sentinel general practitioner (GP) ILI surveillance, and lab-
oratory surveillance to supplement GP data.

Using data from the first wave of the 2009 H1N1 epi-
demic in Singapore, a tropical city-state, we compared
infection rates estimated using these methods. Singapore
was ideal for this study, because the first epidemic wave’s
temporal progression was well-defined—beginning in late
June, peaking in early August, and ending by September
(Figure 1)—and several surveillance programs and studies
were performed simultaneously in the adult population,
facilitating comparison of different methods.

Data sources

We used data sources available from June 2009, at the
first suggestion of community transmission in Singapore, to
October 2009, 1 month after numbers of respiratory illness
cases returned to baseline levels (Figure 1). ILI cases were
defined as cases involving new-onset respiratory symptoms
with body temperature greater than 38.0�C (100.4�F),
following World Health Organization definitions (21, 22).
We performed aggregated and age-stratified analyses among
5 age groups: 20–24, 25–34, 35–44, 45–54, and �55 years.
Data sources included:

1) A paired seroincidence adult cohort study (17). Multiple
blood samples were obtained from each participant,
including a baseline sample taken up to June 27, 2009
(before the local epidemic); a second sample taken
between August 20, 2009, and August 29, 2009 (4 weeks
after the epidemic’s peak); and a postepidemic sample
taken between October 6, 2009, and October 11, 2009
(4 weeks after the epidemic subsided). Fortnightly
telephone surveys were used to collect data on clinical

symptoms and health-care consultations. Data from 727
participants with paired serum samples were used.

2) A sentinel GP network of 23 GPs nationwide reporting
ILI cases, initiated in June 2009 (23). Individual patient
consultations involving ILI were recorded using a stan-
dardized template and submitted daily, together with ba-
sic demographic details.

3) Laboratory-based national surveillance by the Ministry
of Health using samples from ILI patients visiting
sentinel primary health-care clinics. Samples were tested
for 2009 influenza A virus (H1N1) by means of reverse-
transcriptase polymerase chain reaction (RT-PCR) (24),
producing weekly age-stratified data on the proportion
of ILI samples positive for H1N1-2009. When combined
with ILI surveillance data, this negates the need to esti-
mate the proportion of ILI consultations due to influenza
(ILI consultations include conditions not due to influ-
enza), leaving only the proportion of influenza cases
who seek medical consultation for ILI to be determined.

Data from the serologic and GP studies were collected under
the approval of the National University of Singapore Insti-
tutional Review Board. Laboratory data were part of the
Ministry of Health’s ongoing influenza epidemiology sur-
veillance program, and no ethics review was required.

Statistical methods and computation of infection rates

In addition to the main data, each method required supple-
mentary data ranging from simple test sensitivity for paired
serologic data to consultation rates given infection and in-
fection rates given ILI consultation. While serologic surveys
intrinsically account for asymptomatic infections, ILI-based
estimates need to be complemented with prior information to
allow for nonreporting of symptomatic cases and asymptom-
atic infections. Because the latter information was available
from the serologic surveys, we used parameters derived from
the serologic surveys for the ILI-based estimates.

To allow full propagation of parametric uncertainty, we
used an objective Bayesian approach, taking flat prior dis-
tributions in the absence of data and informative priors only
when suitable external data were available. We used as
many data as were available from these studies, including
some which would not be available in other settings using
only 1 source of data. Full details on the statistical methods
used and the distributions of key parameters can be found
in the Web Appendix (http://aje.oxfordjournals.org/).

Method 1: paired serologic surveys. To estimate infec-
tion rates from paired serologic surveys, we defined overall
seroconversion as a 4-fold or greater rise in titer on hemag-
glutination inhibition (HAI) testing between baseline titers
and subsequent samples for the same individual. Since not
all influenza infections may be detected by HAI (because of
sample timing, insufficient titer increases, or measurement
error), we adjusted the seroconversion rates by HAI sensi-
tivity using data from our study and another study (17, 25).
Because there was no clear evidence on HAI false-positive
rates, we did not adjust for this possibility.

Method 2: cross-sectional serologic surveys. To estimate
infection rates from cross-sectional sampling similarly to
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Table 1. Results From Studies That Estimated Infection Rates for H1N1 Influenza A, 2009

First
Author, Year
(Reference

No.)

Study
Location

Study Period
Estimated Infection

Rate
Method of
Estimation

Details

Lipsitch,
2009 (7)

Mexico April 2009 0.11%–0.35% during
the month of
April 2009
(population of
106,682,518)

Surveillance data
from travelers

International public health records
surveyed to estimate infection rates
among travelers to Mexico

Cases among Mexican residents ¼
cases in travelers 3 (Mexican
population 3 30 days)/(traveler
population 3 duration of travel)

D’Ortenzio,
2010 (8)

Réunion Island,
France

May 2009–
September
2009

12.85% (104,067/
810,000)

Sentinel physician
network, cross-
sectional ARI
prevalence
survey

Incidence of ARI consultations
gathered from social insurance data,
adjusted by the proportion of sentinel
physician consultations

Health-care-seeking behavior in
persons with ARI from a cross-
sectional survey

Calculated by extrapolating the
proportion of randomly selected ARI
patients testing H1N1-positive in the
total estimated no. of ARI cases

Dawood,
2010 (9)

Hunter New
England,
Australia

June 1, 2009–
August 30,
2009

6.2% (range, 4.4%–
8.2%)

Syndromic
surveillance
and laboratory
data

Incidence of ILI from an online self-
reporting ILI surveillance system

53,383 (range,
37,828–70,597)
out a population
of 866,565

Proportion of ILI samples that tested
H1N1-positive from national
laboratories

Using these data, the proportion of ILI
cases due to H1N1 was estimated
and extrapolated to the general
population.

Gordon,
2010 (10)

Nicaragua June 1, 2009–
November 15,
2009

20.1% among children
aged 2–14 years

Syndromic
surveillance,
laboratory
testing

Cohort of children selected from an
existing dengue study

Testing criteria were fever with cough,
sore throat, or rhinorrhea

Samples were tested by RT-PCR to
determine the H1N1 clinical attack
rate.

No extrapolation to the general
population was done.

Flahault,
2009 (5)

France September
2009–
December
2009

10.6% among
pregnant women

Cross-sectional
seroprevalence

Cross-sectional seroprevalence study
from serum obtained from pregnant
women in weeks 48–49 of 2009

1,712,000 cases
(95% CI: 1,
112,700,
2,311,300) in
persons aged
20–39 years

Cumulative seroprevalence was then
estimated for the population aged
20–39 years.

Moghadami,
2010 (11)

Iran December 2009 58.9% (1,504/2,553) Cross-sectional
seroprevalence

Single-sample cross-sectional
seroprevalence study

Serum samples from randomly
selected participants in the
community

Miller,
2010 (12)

England, United
Kingdom

August 2009–
September
2009

Age group, years Cross-sectional
seroprevalence

Cross-sectional seroprevalence study
involving pre- and postpandemic
samples from blood collected for
other purposes

<5: 21.3% (95%
CI: 8.8, 40.3)

5–14: 42.0% (95%
CI: 26.3, 58.2)

Infection rates were estimated by
subtracting prepandemic
seroprevalence from
postpandemic seroprevalence.15–24: 20.6% (95%

CI: 1.6, 42.4)

25–44: 6.2% (95%
CI: �2.8, 18.7)

45–64: �2.7% (95%
CI: �10.3, 7.1)

�65: 0.9% (95%
CI: �8.8, 13.3)

Table continues
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other studies, we defined the cross-sectional seroprevalence
at each sampling point as the proportion with HAI titers
of�40 (12, 14). We then subtracted baseline seroprevalence
from final seroprevalence and adjusted the results by the
sensitivity of a single postinfection sample to detect HAI
titers of �40 in patients confirmed to have infection.

Method 3: ILI data from sentinel GPs. When using ILI
data from sentinel GP sites, we computed the number of

ILI consultations per sentinel GP day and scaled this to
the population using the relative proportion of ILI seen by
the average GP, using data on primary-care consultations
from a national survey (26). In addition, we estimated the
ratio of all ILI consultations to influenza infections through
data on symptoms and health-care-seeking behavior available
from our serologic cohort study (adjusting for HAI sensitiv-
ity), assuming that the serologic study was representative of

Table 1. Continued

First
Author, Year
(Reference

No.)

Study
Location

Study Period
Estimated Infection

Rate
Method of
Estimation

Details

Chan,
2010 (13)

Taiwan,
Republic
of China

October 2009–
November
2009

30.8% among health-
care workers

Cross-sectional
seroprevalence

Single-sample cross-sectional
seroprevalence study

12.6% among controls Serum samples taken from hospital
staff and controls

Ross,
2010 (14)

Pittsburg,
Pennsylvania,
United States

Mid-November–
early
December
2009

21% (unadjusted) Cross-sectional
seroprevalence

Cross-sectional seroprevalence study
with pre- and postpandemic samples

Range from 5% for
persons aged
70–79 years to
45% for persons
aged 10–19 years

Prepandemic samples only from young
adults aged 18–24 years

Baseline 6% among
young adults aged
18–24 years

Postpandemic samples from
laboratory specimens collected for
other purposes over a wide age range

Allwinn,
2010 (15)

Germany November 2009 12% (27/225) with
titer of �1:40
(unadjusted)

Cross-sectional
seroprevalence

First sample from blood donors
previously recruited for a serum
survey of the spread of enterovirus
71 infection

Baseline 13.1%
(19/145) with titers
of 1:>32

Second sample from randomly selected
patients at a local university hospital

Grills,
2010 (16)

Australia August 2009–
October
2009

10% in adults aged
18–65 years

Cross-sectional
seroprevalence

Participants in a health monitoring
program were tested opportunistically.

Baseline prepandemic seropositive
rate from another study was
subtracted from the result.

Chen,
2010 (17)

Singapore June 22, 2009–
October 15,
2009

13.5% in community-
dwelling adults

Serologic cohort
study

Multisample seroepidemiologic cohort
study

6.5% in hospital staff Serial serum samples from individuals

29.4% in military
personnel

Seroconversion was determined by a
4-fold rise in titers.

1.2% in long-term-
care patients

Crum-
Cianflone,
2009 (18)

San Diego,
California,
United States

April 21, 2009–
May 8, 2009

0.53% (101 per
100,000) from
April 21, 2009,
to May 8, 2009

Complete testing
of ILI cases

Complete RT-PCR testing of all ILI
cases from a captive population of
local US military beneficiaries

Colizza,
2009 (19)

Mexico April 2009 0.11%–1.31%
(121,000–1,394,000
cases as of
April 30, 2009)

Mathematical
modeling

Model with a geographically structured
metapopulation approach

Use of a population-level census,
human mobility flows, and disease
dynamics to model disease evolution
and infections

Presanis,
2009 (20)

Milwaukee,
Wisconsin,
and New York,
New York,
United States

April 2009–
July 2009

Not shown; used as a
denominator to
determine
hospitalization and
case-fatality rates

Mathematical
modeling

Estimation using mathematical model
and probabilities of ILI with
consultations, consultations that
were tested, and proportion positive.

Data from physician
consultations,
laboratory, and
telephone survey

For New York, a telephone survey was
conducted to determine self-reported
ILI status.

Abbreviations: ARI, acute respiratory illness; CI, confidence interval; ILI, influenzalike illness; RT-PCR, reverse-transcriptase polymerase chain

reaction.
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the general population in terms of symptom presentation
and health-care-seeking behavior. We then estimated the
number of community influenza infections given the ILI
observed. In the absence of such data, other approaches
must be taken to scale the estimates from the sampled data
to the general population appropriately (see Discussion).

Method 4: laboratory surveillance and ILI data from
sentinel GPs. We also used laboratory data to supplement
sentinel GP ILI data, replacing the proportion of ILI con-
sultations due to influenza with the proportion of ILI sam-
ples that tested positive for H1N1-2009 by RT-PCR, while
adjusting for the imperfect sensitivity of the RT-PCR assay
in detecting influenza cases (25). Ideally, validation should
be performed in the same laboratory using the same virus
strain and correlated with epidemiologic data; because this
was not possible, we performed sensitivity analysis to ac-
count for it. We then incorporated the fraction of infections
without a primary care consultation for ILI from our cohort
study as above.

Because of the poor specificity of acute respiratory illness
in estimating influenza (27), we did not include analysis
relying on acute respiratory illness only.

Sensitivity analyses

Because not all countries have access to relevant support-
ing data, especially on ILI consultation rates, some methods
require extrapolation from other settings. Therefore, we
performed Bayesian sensitivity analyses to determine the
robustness of these methods to misspecification of key input
parameters and the resulting impact on inferred infection
rates. We set Dirac delta priors on one parameter at a time,
keeping all other priors as above and varying the single
parameter in question over a plausible range, as might
be done operationally when no accurate data are available.
The parameters examined were the sensitivity of the tests,
the ratio of all ILI consultations to influenza cases, and
the market share of sentinel GPs—factors that may vary
by strain, location, and time.

Analysis of sample-size effects

Finally, to appreciate the effect of sample size on the
spread of estimates for future surveys, we performed boot-
strap analysis on our existing data. For methods 1 and 2, we
simulated, using a binomial distribution, the proportion
of infections which might be observed to seroconvert with
different numbers of paired sera or to have antibodies at
titers �40 in different numbers of baseline and follow-up
samples, respectively, assuming that the true infection rate
corresponded to our estimate. For methods 3 and 4, we
simulated the observations for a situation in which the sen-
tinel GP ILI data had been derived from different numbers
of GPs, by resampling with replacement from the available
GPs (we restricted resampling to GPs who submitted data
for at least 50% of all days). To estimate the effect of
laboratory samples on method 4, we used the binomial dis-
tribution to simulate positive proportions which might be
observed in each week, assuming that laboratory samples
were distributed uniformly each week across the epidemic.

The corresponding formulae were applied to the estimates
derived from the bootstrap with 100,000 resamples for each
method and sample size. Since the availability of external
data in future outbreaks is unpredictable, we did not attempt
to incorporate parametric uncertainty from external data
in these analyses. We used a 5- to 10-percentage-point spread
in the 95% confidence interval of the infection rate estimate
as reasonable for classifying epidemic severity or for evalu-
ating the success of interventions.

RESULTS

Figure 2 shows the estimated infection rates calculated
from the various estimation methods based on the Singapore
studies. The overall infection rate estimated using paired
seroconversion samples was 17% (95% Bayesian credible
interval (BCI): 14, 20). Using estimates derived from paired
seroconversion data as the comparison group, the overall
estimate derived from cross-sectional serologic sampling
(obtained with baseline and final titers from the serologic
cohort study as independent samples) was lower at 12%
(95% BCI: 9, 17), also observed across all age groups. Es-
timates from ILI rates (15%, 95%BCI: 10, 25) and estimates
from the combination of ILI and laboratory data (12%, 95%
BCI: 8, 18) provided overall estimates close to the serologic
estimates, although there were variations among various age
groups.

The substantial overlap in 95% Bayesian credible inter-
vals for all 4 methods, along with fairly close point esti-
mates, suggests that accurate determination of input
variables can produce similar results regardless of the es-
timation method. The actual and effective sample sizes
available to us led to estimates from ILI alone being the
most uncertain, while seroconversion data gave the most
precise estimates, although this may have been different
if resources had allowed for different relative sample sizes.
Estimates using the combination of ILI and laboratory data
were less sensitive than ILI alone but more sensitive than
the seroconversion estimates.

From the sensitivity analyses (Web Figure 1), serologic
cohort estimates were very robust to misspecification of
the external input parameter (test sensitivity), as were
cross-sectional serologic estimates. The latter, however,
were strongly influenced by misspecification of the level of
baseline prepandemic titers. Because substantial propor-
tions of persons had baseline antibodies to H1N1-2009
(12, 17, 28), accurately determining baseline rates is impor-
tant, and cross-sectional estimates that assumed no baseline
titers (similar to the 0% baseline value in Web Figure 1C)
would bias infection rate estimates upwards.

ILI estimates were very sensitive and changed substan-
tially with key parameters of market share per GP, propor-
tion of influenza cases who seek medical consultation for
ILI, and proportion of ILI consultations due to influenza.
Estimates derived from combining ILI data with laboratory
data only required determining the proportion of influenza
cases that sought medical consultation for ILI, which we
obtained from our serologic study questionnaire. Infection
rate estimates were very sensitive to misspecification of this
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parameter; however, were it determined with greater ac-
curacy, this method would provide extremely accurate esti-
mates, as shown by the very narrow Bayesian credible
intervals in Web Figure 1H.

Figure 3 shows the sample sizes required to obtain 5- and
10-percentage-point spreads in mean infection rates for the
95% confidence intervals. For paired serologic estimates,
300 participants were required in order to achieve a 10-
percentage-point spread, and 1,150 were required for a
5-percentage-point spread. For cross-sectional serologic esti-
mates, more persons are needed per survey to achieve a similar
spread. For ILI estimates alone, the required number of GPs
that report daily had to be 20 and 90 to achieve spreads of 10-
and 5-percentage points, respectively (Singapore had an esti-
mated 2,138 GPs in 2009) (26). Adding laboratory data

reduces the number of GPs needed by almost half, while
the total number of laboratory samples required over the
entire study period was less than 200 for a 5-percentage-point
spread.

Table 1 summarizes data on the 15 papers selected from
our literature search, out of 295 identified. These studies did
not all use the same methods, and it is difficult to compare
their results because most investigators did not completely
adjust for key parameters such as test sensitivity, asymptom-
atic cases, or baseline titers. Three studies used surveillance
data—from travelers to Mexico early in the epidemic (7),
from a sentinel physician network (8), and from online sur-
veillance tools together with laboratory data (9); and all
used different methods of scaling data to the population
level. Of the serologic surveys, only 1 study used paired

Table 2. Methods Used for Estimating Rates of Influenza Infection During the 2009 H1N1 Outbreak in Singapore

Method and Data Requirements Advantages (1) and Disadvantages (2)

Method 1: paired serologic surveysa

Seroconversion data from cohort study þ Detects subclinical cases

Sensitivity of the serologic test to detect true infection � Difficulties in timely data collection during an evolving
pandemic

Total population size (to determine confidence interval
for the estimate)

� No estimate of clinical infection rate

� Availability of results is dependent on sampling intervals

Method 2: cross-sectional serologic surveysb

Proportion of persons with high pre- and postpandemic
titers

þ Relative ease of data collection in comparison with paired
serologic surveys

Sensitivity to detect change in titers (proportion of true
infections that have high postpandemic and low
prepandemic titers using the cutoff titer)

� Risk of underestimation because of persons with high
baseline titers

Total population size (to determine confidence interval
for the estimate)

� Difficult to generalize to population when using banked
samples

Method 3: syndromic surveillance for ILIc

Data on all ILI consultations from sentinel GPs þ Allows for ‘‘real-time’’ estimation of infection rate

Proportion of influenza cases involving consultation for ILI þ Data collection is possible with minimal resources

Proportion of ILI consultations due to influenza � Unable to capture subclinical infections

Market share of GPs surveyed among the total population � Dependent on clinician reporting

Total population size � Difficulties in estimating input parameters

� Large margin of error if given inaccurate data

Method 4: syndromic surveillance for ILI with virologic datad

Data on all ILI consultations from sentinel GPs þ Margin of error is reduced in comparison with method 3

Market share of GPs surveyed among the total population þ Allows for ‘‘real-time’’ estimation of infection rate

Proportion of influenza cases involving consultation for ILI � Additional resources required for laboratory testing

Laboratory proportion of ILI samples that test positive for
influenza

� Dependent on sensitivity of laboratory test

Sensitivity of the laboratory test

Total population size

Abbreviations: GP, general practitioner; ILI, influenzalike illness.
a Method 1 infection rate ¼ (no. of persons who seroconverted)/[(total no. followed up) 3 (sensitivity of the serologic test)].
b Method 2 infection rate ¼ [(proportion with high postpandemic titers) � (proportion with high prepandemic titers)]/(sensitivity to detect true

change in titers).
c Method 3 infection rate ¼ (no. of ILI cases)/[(market share of GPs surveyed) 3 population 3 (proportion of influenza cases that involved

consultation for ILI) 3 (proportion of ILI consultations due to influenza)].
d Method 4 infection rate ¼ (no. of ILI cases)/[(market share of GPs surveyed) 3 population 3 (proportion of influenza cases that involved

consultation for ILI) 3 (proportion of ILI samples that tested positive/sensitivity of the laboratory test)].
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samples (17); 7 studies were cross-sectional, with differ-
ent sample origins (5, 11–16); and only 2 adjusted for
prepandemic seroprevalence (12, 16). Two studies per-
formed laboratory testing of all ILI cases but in unique
small-scale military (18) and pediatric cohort (10) set-
tings, while 2 used mathematical modeling of primary
data (19, 20).

DISCUSSION

Estimation of epidemic infection rates is important in
order to evaluate disease morbidity and to obtain accurate
denominators for severity indicators, such as hospitaliza-

tions or case fatality. Attempts have been made to determine
infection rates through different methods during different
time periods (Table 1). However, none describe the relative
comparability and robustness of these estimation methods
in a single setting. Public health professionals and policy-
makers should understand the advantages and disadvantages
of these methods to incorporate data collection into prepared-
ness plans and to account for possible errors.

Serologic surveys provide reliable estimates of infection
rates, since they determine antibodies even for asymptomatic
cases (17, 29). Serial sampling from individuals in the con-
text of H1N1-2009 is important because baseline antibodies
were present from cross-reactivity to different strains (28).
Serial sampling requires preplanning and good timing to
establish cohorts with baseline blood samples before the
epidemic’s onset. Therefore, few countries have been able
to perform serologic cohort studies (6). Serologic surveys
are only available after each sampling interval, depending
on laboratory capacity; will usually not provide real-time
estimates; and are unable to detect temporary rises in titers
that may arise from mild infections, which may
be important for subsequent immunity. A further weakness
of serologic surveys is that they do not estimate clinical
infection rates unless clinical surveys are conducted
simultaneously.

Cross-sectional serologic surveys have disadvantages
similar to those of cohort studies but are easier to conduct
without individual follow-up, and samples can be obtained
from other collection sources (e.g., blood banks). However,
upon subtraction of baseline prepandemic levels, they may
produce lower estimates than cohort studies because of
overcompensation for baseline titers (12, 17, 28). This
may result in estimates with negative infection rates, which
are difficult to interpret (12). This may also be a problem
when producing age-stratified estimates if baseline antibody
levels differ by age (12, 14, 28). Other surveys used only
a single postpandemic sample without baseline adjustment
(5, 11, 13–15), which may have resulted in overestimation;
estimates were as high as 58.9% in one study (11) and were
21% in another study, which also had a 6% baseline preva-
lence of antibodies (14). Unless accurate baseline estimates
are available, cross-sectional surveys will be less accurate
than paired surveys. The sample source may also make it
difficult to generalize results—some studies obtained blood
collected for other purposes, including blood donations and
health monitoring programs, which may not represent the
general population (12, 14–16).

It is clear from our sensitivity analyses that serologic
survey estimates result in narrower ranges and are less sen-
sitive to misspecification of input parameters. However, how
serologic titers decrease over time is unknown, especially if
samples are taken at long intervals. This can be averted by
conducting serologic cohort studies with multiple samplings
at shorter intervals.

ILI-derived estimates are easily obtained from sentinel
GPs, and in Singapore they were similar to serologic and
laboratory estimates. However, ILI estimates are very sen-
sitive to changes in input parameters, and these must be
determined accurately. Adjustment for nonreporting and
asymptomatic infection can be achieved via a ‘‘scaling-up
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Figure 1. Sources of available data on influenza infection in Singa-
pore from June to October 2009. A) Numbers of cases of acute re-
spiratory illness (ARI) diagnosed in government clinics, in thousands
per week; B) numbers of adult cases of influenza like illness (ILI)
reported by primary-care general practitioner (GP) sentinel clinics
per GP per week; C) percentage of ILI cases that tested positive for
H1N1-2009 influenza per week. Lighter lines, 95% confidence interval.
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factor’’ or by using prior information on ILI consultations
for all influenza infections. The latter is intrinsically difficult
to obtain, since it is ideally based on data from confirmed
cases, which were available for our study (17). In other
settings, strategies might involve extrapolating from past
epidemics or other regions. For example, because different
adjustment factors were used in the studies by D’Ortenzio
et al. (8) and Dawood et al. (9), these estimates are unlikely
to be comparable. Adding accurate laboratory testing data
to ILI addresses the otherwise substantial difficulty in esti-
mating ILI consultations due to influenza, and results in
estimates that are less sensitive to parameter misspecifica-
tion. This does not obviate the need to estimate the propor-
tion of influenza cases who seek medical consultation for
ILI, which we did via our serologic cohort (17), although
this proportion can also be estimated through local surveys
carried out among ILI cases (since consultation is influenced
by local health-care-seeking behaviors) (2), adjusted by the
proportion of ILI among influenza cases, which is a biologic
variable that presumably can be extrapolated from other
regions. The need for reliable extraneous data is the main
weakness of consultation data, especially in heterogeneous
environments.

Infection rates differ across age groups, with the highest
infection rates being seen in younger adults, confirming
that young adults (and perhaps children) had higher infec-
tion rates during the 2009 H1N1 pandemic. Estimates from
different estimation methods also differ across age groups:
Greater differences exist between estimates in the younger
age groups, with ILI-derived estimates being biased upwards
relative to serology (although the 95% Bayesian credible
intervals overlap). This shows the difficulties in estimating
attack rates for different age categories through surveillance,
without having accurate scaling factors and concomitantly

larger sample sizes to accurately determine age-specific
infection rates.

Data from primary health-care surveillance and laborato-
ries are more suited than serologic studies to providing real-
time data with which to map an epidemic’s development
and develop predictive models (23). ILI-derived estimates
with laboratory data can also be continually used to monitor
seasonal influenza infection rates and are already part of
many routine surveillance systems. The Mexican studies
carried out at the epidemic’s start to determine early extent
of spread (7, 19) and the localized San Diego, California,
outbreak (18) provided real-time estimates for early plan-
ning. However, additional laboratory data may not be read-
ily available in low-resource settings and may be difficult
to obtain in a heterogeneous setting with different socio-
demographic profiles within a country.

Another potential obstacle to accurate estimation of
infection rates is the sample size required for sufficient accu-
racy. Serologic studies required to achieve a 5-percentage-
point spread (�1,000 participants per survey) may be
difficult to perform in settings with fewer resources. ILI
estimates may be easier to collect if GPs are able to rou-
tinely report ILI cases, since 4% of all GPs can achieve a
5-percentage-point spread. Including laboratory samples
further reduces the number of GPs required, while only
requiring a small number of samples over the epidemic
period because of good correlation between influenza-
positive laboratory samples and the epidemic curve. With
a consistent sentinel GP network and laboratory testing
program, method 4 can be routinely used to estimate in-
fection rates for regular influenza seasons and the relative
burden of disease from different strains.

Two limitations of our study were the lack of pediatric
data for comparison (these data were collected differently

Age Group, years

Cross-Serology
ILI Consultations
ILI and Laboratory

Figure 2. Rates of H1N1-2009 influenza infection estimated from various methods, aggregated and by age group, Singapore, 2009. For details
on methods 1–4 (M1–M4), see Table 2. ILI, influenza like illness. Whiskers, 95% Bayesian credible interval.
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from data on adults) and small sample sizes when stratifying
by age for some analyses. Researchers who aim to estimate
age-group-specific infection rates will need to increase the
sample size proportionally, which could result in very large
studies. In this paper, we have clearly displayed the differ-
ences between the methods in a single population, and these
concepts are applicable to other populations and settings.
Although this study was based on Singapore’s H1N1-2009
epidemic, the methods proposed are applicable globally to
other infectious diseases.

Estimates of infection rates from serologic data and ILI
data with or without laboratory data can provide comparable
results if input parameters are accurately determined. Each
method has advantages and disadvantages which should

be considered when comparing estimates. The epidemic
timing, objectives of data collection, and availability of
resources will also determine the method used. Countries
with sufficient resources may consider using multiple esti-
mation methods to cover the disadvantages of some while
benefiting from the advantages of others.
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