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Abstract
Membrane contact sites (MCSs) are formed by the close apposition of membranes of two
organelles. They are zones where signals and small molecules, such as lipids and calcium, are
exchanged between intracellular compartments. The past few years have seen considerable
progress in our understanding of how MCSs form and facilitate the exchange of lipids and signals.
Here we summarize what has been learned about MCSs between the endoplamic reticulum (ER)
and the plasma membrane, the ER and mitochondria, and the ER and endosomes or lysosomes.
These findings suggest that we are just beginning to understand how MCSs form and function.

Introduction
Compartmentalization in eukaryotic cells induces the need for inter-organelle trafficking of
information and metabolites such as lipids. Mechanisms of intracellular lipid exchange are
summarized in Box 1. One location where lipids, other small molecules, and signals are
exchanged between organelles is membrane contact sites (MCSs), regions where the
membranes of two organelles are closely apposed [1, 2]. At these sites the membranes of
two organelles come within 10 to 30 nm of one another. MCSs are ubiquitous in all cells
types. Many are observed between the endoplasmic reticulum (ER) and a second organelle
(Figure 1). MCSs have also been observed within organelles that contain internal
membranes such as mitochondria, chloroplasts, and multivesicular bodies. In the past few
years there has been considerable progress in our understanding of how small molecules,
such as lipids and calcium, and signals are exchanged at MCS as well as how some MCSs
are formed. Here we focus on recent advances in our knowledge of lipid trafficking and
signaling at MCSs between the ER and other organelles, and also focus on how MCSs are
formed. For reviews of calcium trafficking at these sites see [3, 4].

MCSs between the ER and the plasma membrane (PM)
Close contacts between the ER and PM have been observed in all cells and can be quite
extensive; such as in muscle cells where these contacts are needed for calcium exchange
between these organelles.

How close contacts between the ER and PM are established is not well understood. Several
proteins that regulate ER-PM contact site formation have been identified. In mammalian
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cells the ER calcium sensor STIM1 and the PM calcium channel ORAI1 interact when cells
are depleted of calcium and drive the formation of ER-PM contacts [3, 5]. In muscle cells,
junctophilins are thought to maintain close contacts and perhaps a specific spacing between
the ER and PM. These integral membrane proteins reside in the ER and probably
simultaneously bind the PM [6, 7]. Another mechanism for induction of ER-PM contacts has
recently been suggested [8]. This work showed that dimerization of a coatomer-binding
peptide anchored to ER membranes induced ER-PM contacts in a microtubule dependent
fashion [8]. Although the mechanism is not yet understood, this work suggests that vesicular
trafficking may be required to bring the ER close to the PM. It is not clear if simply bringing
the ER near the PM is enough to cause contacts to form or if other steps are necessary. In
yeast the ER proteins Ice2 and Scs2 are thought to be important for ER-PM contacts since
cells missing both proteins have a significant decrease in the amount of ER found closely
apposed to the PM [9].

There is growing evidence that sterols and signals are exchanged between the ER and PM at
close contacts between these organelles. It has been known for some time that sterols can be
transferred between the ER and PM by non-vesicular pathways [10-13]. In yeast, this sterol
exchange between the ER and PM may be mediated by oxysterol-binding protein (OSBP)-
related proteins (ORPs), lipid-binding proteins conserved from yeast to humans [14, 15].
Yeast has seven ORPs, which are called Osh proteins, and it has been found that all of them
can bind sterols and exchange them between liposomes in vitro [16••]. The structure of one
of these proteins, Osh4/Kes1, has been solved and found to form a nearly complete β-barrel
that binds a single sterol inside [17]. In a strain missing all the Osh proteins sterol exchange
between the ER and PM has been shown to slow significantly [18]. However, whether Osh
proteins mediate most of the non-vesicular sterol exchange between the ER and PM or other
compartments has been questioned [19]. In mammalian cells, recent work implicates some
mammalian ORPs in non-vesicular sterol trafficking from the PM to the ER and lipid
droplets (LDs) [20•] and other ORPs have been shown to bind and transfer cholesterol in
vitro [21].

Four of the seven Osh protein are enriched on regions of the ER that are close to the PM,
presumably at ER-PM contact sites [16••]. Two of these Osh proteins, Osh2 and Osh3, have
domains that are required for targeting them to ER-PM contact sites [22, 23]. They contain a
pleckstrin homology (PH) domain, which binds phosphoinositides (PIPs) in the PM and a
two phenylalanines in an acidic tract (FFAT) motif, which is bound by the ER membrane
proteins Scs2 and Scs22. The mammalian homologues of Scs2 and Scs22 are known as
VAMP-associated proteins (VAPs). The PH and FFAT domains of Osh proteins are required
for targeting them to ER-PM contact sites. However, two of the Osh protein that localize to
ER-PM contacts lack PH and FFAT motifs and it is not known how they are targeted to
these sites.

The core lipid-binding domain found in all Osh proteins has the ability to bind two
membranes simultaneously [16••]. Membrane binding by this domain was studied in Osh4/
Kes1 and was found to have at least two membrane-binding surfaces, one near the mouth of
the sterol-binding pocket and a second at the distal site. The distal binding surface is
required for Osh4/Kes1 to function in cells and is close to residues needed for PIP binding
on the surface of the protein [24] that is not part of the sterol-binding pocket. PIP-binding at
this site also regulates sterol binding. Thus, Osh proteins and perhaps all ORPs may be able
to bind PIPs (or other lipids) in one membrane while simultaneously extracting or delivering
sterols to a second membrane. This makes them well suited to transfer lipids or signals at
MCSs.
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A new model of how Osh proteins mediate signaling at ER-PM MCSs has been suggested
by recent work from Stephan et al [25••]. The authors propose that Osh proteins function as
PIP sensors that modulate PIP levels in cells by regulating the PIP phosphatase Sac1. Sac1 is
an integral membrane protein in the ER and its active site is in the cytosol. Osh3 interacts
with Sac1 at ER-PM contacts sites where it regulates Sac1 activity. Remarkably, this
regulation can be reconstituted in vitro and Sac1 in one membrane can dephosphorylate PIPs
in a second membrane. Osh proteins and the VAP homologues Scs2 and Scs22 regulate this
process. Thus, Sac1 in the ER can hydrolyse PIPs on the PM or at any other MCS between
the ER and a second membrane. This conclusion is consistent with a recent structural study
of Sac1 [26] and earlier studies that suggested Sac1 can regulate PIP levels in the PM even
though it is anchored in the ER [27, 28]. A role for Osh proteins in regulating PIP
metabolism has also been found in other studies [24, 29]. How Osh proteins regulate Sac1,
what role sterol-binding plays, and what signaling pathways are involved remain to be
discovered.

Another method of signaling between the ER and PM at contact sites has been suggested by
studies on the tyrosine phosphatase PTP1B. This enzyme is anchored to the cytosolic
surface of the ER. A number of studies have reported that PTP1B directly binds signaling
substrates on the PM including PKC∂, insulin receptor, EGFR and EphA3 [30-32]. Thus
PTP1B probably functions at ER-PM contact sites.

MCSs between ER and mitochondria
Close contacts between the ER and mitochondria have been noted in a number of studies.
For example, it has been found that in HeLa cells 5 to 20% of the surface of the
mitochondrial network is in contact with the ER [33]. Similarly, a study in yeast found about
100 close contacts (< 30 nm) between the ER and mitochondria per cell [34]. These contacts
are thought to be important for the exchange of calcium [4] and lipids [35] between the ER
and mitochondria.

In the last few years there has been substantial progress in our understanding of how MCSs
between the ER and mitochondria are formed. In mammalian cells the dynamin-like GTPase
Mitofusin 2 (Mfn2), which is involved in mitochondrial fusion, has been suggested by the
Scorrano group to tether the ER and mitochondria [36•]. Most Mfn2 is localized to the outer
mitochondrial membrane (OMM) but the authors found that a fraction was found in the ER.
This ER-localized fraction of Mfn2 forms dimers with Mfn2 in the OMM and with
Mitofusin 1, which is also in the OMM, tethering ER and mitochondria. Importantly, in
Mfn2-/- cells calcium trafficking between the ER and mitochondria is reduced, consistent
with a role for Mfn2 in tethering. Recent work has suggested that tethering is also regulated
by trichloplein/mitostatin, a keratin-binding protein [37].

A different complex involved in maintaining contacts between the ER and mitochondria in
yeast has been identified. Kornmann and colleagues devised a cleaver screen to isolate
mutants with a defect in ER-mitochondrial tethering. They discovered a complex that was
named ERMES (ER-mitochondria encounter structure) [38••]. This complex contains the
ER protein Mmm1, two proteins in the OMM, Mdm10 and Mdm34, and the cytosolic
protein Mdm12. Deletion of any one of these proteins causes the complex to dissociate.
Consistent with a role for the ERMES complex in tethering, lipid exchange between the ER
and mitochondria was found to decrease in ERMES mutants. Whether the ERMES complex
is only a tether or participates more directly in lipid exchange between the ER and
mitochondria remains an open question. Interestingly, three of the four ERMES complex
proteins contain a domain predicted to form a tubular structure that may allow lipid
exchange between membranes [39, 40].
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MCSs between ER and lysosomes or endosomes
In yeast, formation of the MCS between the nucleus and the vacuole, called the nucleus-
vacuole junction (NVJ), requires the interaction of the ER membrane protein Nvj1 with
Vac8, which is anchored on the vacuole [41]. NVJ formation is necessary for
microautophagy of the nucleus (PMN), which can be induced by stress conditions such as
nitrogen starvation or the presence of rapamycin [42]. Whether the NVJ is also a site where
lipids or signals are exchanged between the ER and vacuole is not known. The lipid-binding
proteins Osh1/Swh1, which is an ORP, and the fatty acid elongase Tsc13 localize to the NVJ
and both are involved in PMN formation [43, 44]. Recent findings from the Mayer group
have revealed that sterol and sphingolipid synthesis mutants have a defect in PMN formation
[45•]. They suggest that a lipid microdomain is present in the membranes of the NVJ and
that this microdomain is necessary to recruit proteins to the NVJ for the PMN formation
[45•].

The NVJ is not found in higher eukaryotes. However, a number of recent studies in
mammalian cells suggest the importance of MCSs between the ER and organelles in the
endocytic trafficking pathway such as lysosomes, endosomes, and multivesicular bodies
(MVBs). The ER tyrosine phosphatase PTP1B was shown to interact with one of its
substrates, EGFR, on the surface of MVBs and localize to close contacts between the ER
and MVBs [46]. A second example of signaling between the ER and the endomembrane
system is provided by elegant studies on ORP1L, which demonstrate how this protein
regulates MCSs between the ER and endosomes [47, 48]. ORP1L binds the small GTPase
Rab7 and Rab7-interacting lysosomal protein on endosomes [47]. This association recruits
the p150Glued subunit of the dynein-dynactin motor to endosomes [48]. Under low
cholesterol conditions, ORP1L undergoes a conformational change that allows its FFAT
domain to interact with VAP proteins on the ER, leading to the release of p150Glued and to
the formation of close contacts between the ER and endosomes [49••]. Therefore, ORP1L
acts as a cholesterol sensor that regulates contacts between the ER and endosomes. Whether
cholesterol exchange occurs at these junctions and what role, if any, ORP1L plays in this
transfer remains to be determined.

Another ORP, ORP5, has been recently implicated in cholesterol exchange between late
endosomes/lysomes (LE/LY) and the ER, perhaps at MCSs between these organelles.
Efficient trafficking of cholesterol derived from low-density lipoproteins (LDLs) out of LE/
LYs requires Neimann Pick Type C protein 1 (NPC1), an integral membrane protein in LE/
LYs [50]. Yang and colleagues found that ORP5 interacts with NPC1 and is needed for
trafficking of LDL-derived cholesterol out of LE/LYs [51•]. ORP5 is an integral membrane
protein in the ER and may be enriched at MCSs between the ER and LE/LYs. ORP5 is able
to transfer sterol between liposomes in vitro and could mediate cholesterol transfer between
the ER and LE/LYs [51•]. Alternatively, its primary function may be to regulate MCSs
formation between the ER and LE/LYs.

Conclusion
The past few years have seen a dramatic increase in our knowledge of how MCSs are
formed and how lipids and signals can be exchanged between organelles at these sites, yet
much remains to be elucidated. MCSs almost certainly play critical roles in organelle
function. For example, contacts between lipid droplets (LDs) and ER-LD MCS are thought
to be important sites of lipid exchange and signaling. How MCSs form and are regulated
remain important questions. Some MCSs, such as those between the ER and mitochondria,
may be maintained by a number of low affinity interactions rather than by a single complex.
Better techniques for isolating and characterizing proteins in MCSs will help resolve this
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issue. In many cases, the mechanisms of lipid exchange and signaling at MCSs remain
poorly understood as does the energetics and regulation of these processes. This minireview
has focused on only a few of the known MCSs in cells. Given the large number and
diversity of these contacts it is likely that what we know now is only the tip of the iceberg.
The next few years are likely to see a revolution in our understanding of how MCSs mediate
intracellular trafficking of lipids, calcium, and signals between intracellular compartments.

Box 1

Mechanisms of intracellular lipid exchange

Lipid exchange between cellular compartments occurs by both vesicular and non-
vesicular mechanisms, [52, 53]. One mechanism of non-vesicular lipid transfer between
membranes is the spontaneous transfer of lipid monomers (B). This process is too slow to
be physiologically relevant for most classes of lipid, with the notable exceptions of
sterols and some lysolipids. Some non-vesicular lipid exchange requires lipid-transfer
proteins (LTPs) (C). There are five large families of LTPs and most cell types express
many of them [54]. LTPs bind a single lipid molecule in a hydrophobic tunnel or cleft
and can shuttle the bound lipid between membranes. Rather than diffusing long distances
through the cytosol many LTPs may function at MCSs, where they could rapidly shuttle
between membranes (D-F). Some lipid exchange at MCS does not seem to require LTPs
but instead may be mediated by integral membrane transporters (G).
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Figure 1. Location of membrane contact sites
A. Endoplasmic reticulum (ER) - plasma membrane (PM) B. ER - Mitochondria (Mito) C.
ER - Late endosome (LE)/ multivesicular bodies (MVB) and ER - lysosome. In yeast there
are contacts between the nucleus and vacuole. D. ER – Golgi complex. E. ER and
chloroplast (chloro). F. ER – peroxisome (Pex) G. ER and lipid droplets (LD). H. Contact
sites between the inner and outer membranes of mitochondria and chloroplasts. Similar
contacts are also found in Gram negative bacteria (not shown).
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