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Abstract
Erwin Schrödinger pointed out in his 1944 book “What is Life” that one defining attribute of
biological systems seems to be their tendency to generate order from disorder defying the second
law of thermodynamics. Almost parallel to his findings, the science of complex systems was
founded based on observations on physical and chemical systems showing that inanimate matter
can exhibit complex structures although their interacting parts follow simple rules. This is
explained by a process known as self-organization and it is now widely accepted that multi-
cellular biological organisms are themselves self-organizing complex systems in which the
relations among their parts are dynamic, contextual and interdependent. In order to fully
understand such systems, we are required to computationally and mathematically model their
interactions as promulgated in systems biology. The preponderance of network models in the
practice of systems biology inspired by a reductionist, bottom-up view, seems to neglect, however,
the importance of bidirectional interactions across spatial scales and domains. This approach
introduces a shortcoming that may hinder research on emergent phenomena such as those of tissue
morphogenesis and related diseases, such as cancer. Another hindrance of current modeling
attempts is that those systems operate in a parameter space that seems far removed from biological
reality. This misperception calls for more tightly coupled mathematical and computational models
to biological experiments by creating and designing biological model systems that are accessible
to a wide range of experimental manipulations. In this way, a comprehensive understanding of
fundamental processes in normal development or of aberrations, like cancer, will be generated.

Keywords
reductionism; emergentism; systems biology; self-organization; agent-based modeling; tissue
morphogenesis; early carcinogenesis

Introduction
Fifty years ago at the dawn of the molecular biology revolution, unprecedented enthusiasm
was generated by the idea that biology was finally reduced to chemistry and consequently,
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the proposed way to understand organisms was to study them from the bottom up. Central to
this view was genetic determinism, i.e. the perception that the organism was determined by a
genetic program. The origin of systems biology, in contrast, attributed to Ludwig von
Bertalanffy, a biologist and philosopher, and Paul Alfred Weiss, a biologist, emphasized an
organicist view where both bottom-up and top-down causation are considered. These two
opposed views are represented by two discrete approaches in a new version of the systems
biology discipline. O’Malley and Dupre call the genetic approach ‘pragmatic systems
biology,’ which is centered around large-scale molecular interactions, such as gene
networks, while the organicist approach, called ‘systems-theoretic biology’, is centered on
system principles [OS05]. The differences between both approaches are not technical but
rather philosophical, given that both are committed to mathematical modeling.

Philosophy is central to all scientific endeavors, including experimental and systems
biology. Although many biologists ignore it, their research is guided by unstated ontological
and epistemological stances. The inescapable fact is that, whether biologists like it or not,
there are no theory-free data. As put by the philosopher D.C. Dennett: “There is no such
thing as philosophy-free science; there is only science whose philosophical baggage is taken
on board without examination” [D95, p. 21]. Hence, in this review we will address the
philosophical underpinnings of systems biology and of the science of complex systems. The
incorporation of network models in the practice of systems biology over the theoretical
framework of an interacting bottom-up and top-down system suggest a reductionist slant
that hinders research on emergent phenomena. In addition, we are proposing a systems
biology approach beyond networks.

Philosophical underpinnings
Reductionism

There are three types of reductionisms, namely, ontological, methodological, and epistemic
[S92]. Ontological reductionism, also called physicalism, claims that organisms are made up
by molecules and their interactions. This form of reductionism represents the worldview of
the practitioners of the other two kinds of reductionism. Epistemic reduction claims that
higher order phenomena can be reduced to another more basic level. This line of thought
entails a ‘hard-core’ view, whereby biology could be reduced to chemistry and physics and,
hence, biology would not be an independent science. According to the Stanford
Encyclopedia of Philosophy [SEP], “methodological reduction is the idea that biological
systems are most fruitfully investigated at the lowest possible level, and that experimental
studies should be aimed at uncovering molecular and biochemical causes.” This is another
way of saying that molecular biology can, in principle, fully explain all biological facts. This
type of reductionism is also pervasive in other fields of biology where causality is sought
using a bottom-up approach. A great number of biologists insist that explanations should
always be sought for at the gene and/or gene product level, regardless of the level of
organization at which the phenomenon of interest is observed. Thus, genetic reductionism
together with its twin, genetic determinism, predicates that everything in biology may be
reduced to genes because the genome is the exclusive repository of transmissible
information. It then follows that genes are the only units of selection [D76] and development
is just the unfolding of a genetic program. In sum, genes would be the building units of the
organism and have a privileged metaphysical status (for an extended analysis of this subject,
see [GG04]).

A main obstacle to the success of reductionism is the historicity of the organism, i.e.,
evolution and ontogeny. As Francois Jacob noted, nature is not an engineer, but a tinker — a
given molecule is put to different uses [J77]. Evolutionary history confronts us with the fact
that these transformations were lost with the extinction of over 95% of the species that once
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existed. We are then forced to reconstruct this history from the organisms that exist today.
This reconstruction is further hampered by evidence pointing to the fact that even in the
same organism a protein may have different functions in different cells. For example, lactate
dehydrogenase and crystalline are the same molecule; the former is an enzyme in muscle
while the latter plays a structural role in the eye’s lens. Beta-catenin is both a transcription
factor and a cell-adhesion protein [GS00]. Also, a signal pathway effector may lead to the
induction of different gene products and therefore distinct differentiation programs in
different cell lineages [BS02]. This lack of a unique correlation between a given protein and
its function was addressed by Hull as the problem of “the many and the many” [H74]. In
other words, one phenotype may result from several different molecular mechanisms, while
a single molecule may be involved in different phenotypes. A clear example of this
divergence is polyphenism, where a single genotype produces different phenotypes. These
examples of diversity make reduction difficult, if not impossible.

Organicism and emergentism
Organicism is a philosophical stance that, contrary to reductionism, considers both bottom-
up and top-down causation. It claims that “…Wholes are so related to their parts that not
only does the existence of the whole depend on the orderly cooperation and interdependence
of their parts, but the whole exercises a measure of determinative control over its parts”
[RB28]. Implicit in this description is the concept of emergence, meaning that at each level
of biological organization new properties manifest, which could not have been predicted
from the analysis of the lower levels.

The existence of emergent properties is dismissed by physicalists because in their
metaphysical stance, the belief on the causal closure of the physical word precludes the
existence of emergents. However, as organisms are open systems, external constraints are
always operating on them. The internal constraints defining a system are always disturbed
by external ones; thus, in order to understand what is going on in a system, we must jump
simultaneously to multiple levels on which this system is integrated [S97]. For instance, a
cell is integrated in a more complex system, the tissue. Organisms and their cells are
ontogenetically linked. For example, a zygote is a cell as well as an organism. It divides,
producing more cells, which are organized in a three-dimensional pattern. When gastrulation
takes place, cells dramatically change their positions relative to one another followed by the
formation of germ layers and a new series of rearrangements, local cell proliferation, cell
movement, cell migration and cell specialization resulting in the emergence of tissues and
organs. Even in a simpler system, like a muscle cell in the heart, its components are proteins
that channel calcium and potassium ions, and they carry currents that change the cell
voltage, which in turn changes the ion channels [N06]. Thus, the components alter the
behavior of the heart and the heart alters the behavior of the components, yet both
components and the heart are integrated in a higher multi-cellular structure, the organism.
This means that the working of such systems is never defined by initial internal constraints.
When dealing with open systems, new systemic properties emerge as time elapses which can
modify the initial properties. Thus what is described at an early time point (T1) is not the
essence of the system. In other words, when one states that the biological facts at T1 cause
physical facts at a later time point T2, and that they compete with the explanation of these
facts as purely physical ones, we are making a mere idealization. At T2, the system is not
the same as the one at T1, because it has acquired new properties that were absent at T1.
Therefore, a system’s description of natural events is not a complete description of what this
system does. Diachronic emergence then means that in specific natural or formal systems
the initial relations and properties of elements cannot teach us how they would be applied as
the system evolves. Thus, the historical way by which a system of natural events operates is
not a consequence of its description. It acts and it produces novelty in the real world (novel
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qualities and novel structures). In conclusion, emergence has an ontological meaning [B04]
and is not a simple epistemic property [SS08].

Complex systems
The last half of the 20th century and the first decade of the current one were characterized
by the dominance of reductionist approaches to biology which were mainly driven by
molecular biology. This type of reductionism was inspired by the influential 1944 book
“What is life” by Erwin Schrödinger [S44] who postulated that the chromosome formed an
“aperiodic crystal” that is durable, an important prerequisite for hereditary matter.
Schrödinger called it the “material carrier of life”. Parts of the chromosomes are formed by
genes, which themselves are large, durable and responsible for the observed inheritance
mechanism, thus making animate matter unique. Schrödinger’s ideas were driven by
quantum mechanical reasoning applied to biology and were seminal in triggering the
molecular biology revolution and lead to an increasingly gene-centric view of nature, a view
further extended by another influential book, “The selfish gene” by Richard Dawkins [D76].
However, now that the human genome has been decoded (see e.g. [HGS04]), one may ask
whether (a) knowing all parts of the system, can we fix or repair it if something goes wrong,
and (b) can we put the parts back together?

The first question has been addressed by Yuri Lazebnik in several entertaining public
lectures at systems biology conferences (e.g. ICSB Conference in Heidelberg 2004) and is
summarized in his paper “Can a biologist fix a radio?” [L04]. Lazebnik, an engineer,
concludes that a more systematic and quantitative approach has to be adopted in modern
biology while referring to general systems theory (GST) developed by Ludwig von
Bertalanffy and others contemporaneous of Erwin Schrödinger [B68]. The latter already
pointed out that living organisms must have developed ways that let them defy the second
law of thermodynamics constructing ‘order from disorder’ and allowing them to decrease
their entropy by adding ‘negative entropy’ to the environment [S44, p. 79ff]. von
Bertalanffy took this idea further and argued that living systems are “open systems having a
steady state” [B68, pp. 39–40] and opened the door to an organicist view of biology. But
only in recent years, accrued evidence is telling us that by understanding the parts of a
system we do not necessarily understand the overall systems behavior (see diverse examples
on complexity in [G08]).

This realization brings us back to the second question about reassembling the system even
when knowing all its parts. Staying with the radio metaphor of Lazebnik, one would
conclude that if we identified and carefully disassembled all parts of the system and
recorded all their connections and positions we should obtain a blueprint of the radio. Next,
we should be able to reassemble the system. This, however, does not imply that from the
knowledge gained we would be able to repair or even modify the radio such that we would
e.g. improve its reception. To accomplish this, the engineer would have to find, first,
functional units that could be subsequently analyzed in isolation and in concert with other
components to which it is connected. He might then find out that by enlarging the antenna,
the reception of the radio might be substantially improved. Biological systems, however, are
much more intricate than a man-made and designed apparatus like a radio, where all of its
component can be studied in isolation under equilibrium conditions. Biological systems
operate in non-equilibrium conditions and “comprise many interacting parts with the ability
to generate a new quality of macroscopic collective behavior the manifestations of which are
the spontaneous formation of distinctive temporal, spatial or functional structures…” thus
matching the most commonly found definitions of complex systems (as defined by the
editors of the Springer series “Understanding Complex Systems”, see also [G08] for similar
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definitions). This has remarkable consequences and implications for the question “Can we
put the parts back together?” which we will attempt to elucidate next.

Interpretations of ideas about complex systems have been discussed since the 1940s. Several
new fields and theories carrying different names emerged from these discussions (e.g.
Synergetics, Dynamic Systems Theory, Chaos Theory, Cybernetics, Tensegrity). A common
denominator in all these areas is that even a system that consists of very simple parts that
interact with each other in a non-linear fashion can exhibit complex systems-level or
emergent properties, such as structure and organization. These properties are quite surprising
and unexpected when one examines the properties of the individual parts alone. In other
words, the system itself is more than just the sum of its parts [G08]. Denis Noble, who
followed up on the second question “Can we put the parts back together?” in his book “The
Music of Life,” relates a telling anecdote about his attempts to mathematically model the
oscillatory behavior of the heart. He was asked: “Mr Noble, where is the oscillator in your
equations? What is that you expect to drive the rhythm?” Only decades later, he found the
answer to this question: “Indeed, it is an eminently necessary question, if we are talking
about some man-made, mechanical systems. But we are not. Instead, we can have a system
that operates rhythmically and yet contains no specific ‘oscillator’ component. There is no
need for one. The reason is that the rhythm is an integrative activity that emerges as a result
of the interactions of a number of protein (channel) mechanisms.” (see p. 60, [N06]).

This explanation implies that the key to emergent phenomena and system-level properties of
complex systems must lie in the interaction between the elements comprising the system. It
is therefore intrinsically difficult to predict the future behavior of such systems as the
interactions between the system parts are shielding their specific individual features from the
system-level properties. Due to the lack of derivable laws, computational and mathematical
tools are indispensable for complex system scientists, in general, or the systems biologist, in
particular.

Networks and graphs
The above definition of complex systems consisting of interacting parts leads naturally to
the use of mathematical tools based on networks or graphs where the individual parts
translate to nodes and the interactions translate to edges or links. In his book “Linked”
Albert L. Barabási summarizes the most common properties found among numerous
naturally formed networks ranging from the Internet to social and gene regulatory networks
[B02]. When analyzing the network topology of these diverse complex systems, some
important overarching rules emerge. It is not completely surprising that these networks
deviate substantially from randomly built networks as studied by Paul Erdős and Alfréd
Rényi [ER60]. We therefore do not observe a bell-shaped frequency distribution of the
number of links per node as expected from randomly formed networks; instead, we observe
a power-law distribution, which is characteristic of small world or scale-free networks
[AS00]. This implies that a large majority of nodes have only a few links, whereas very few
nodes have a large number of links. Those nodes are called hubs or connectors [B02] and
play a vital role in our understanding of, for instance, how diseases spread and epidemics
can be stopped by targeting hubs identified in the network (e.g. [LE01]).

A scale-free network topology can be reproduced when dynamically constructing a network
by adding nodes iteratively and linking them preferentially to already well connected (or fit)
nodes in the existing network. This concept was termed “Rich get richer” by Barabási [B02]
and works analogous to increasing returns in economy, an idea hatched in the early 1980s by
Belfast-born economist W. Brian Arthur to describe high technology. In such networks, two
randomly picked nodes are usually connected by a quite short path (sequence of links to
neighbors) which is another characteristic of small world networks (“Six degrees of
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separation”, [B02]). Although the underlying topology makes the network vulnerable to
direct attacks to hubs, the resulting network is very robust against random perturbations
[CN00]. Many naturally growing networks also exhibit various level of modularity where
sub-clusters are more strongly connected with each other (e.g. cortical networks, see e.g.
[KG07]) describing a hierarchy of scale-free networks where hubs connect the different
modular layers thus conserving the overall scale-free network topology [RS02].

The above-referred observations contributed to the fast rise of systems biology. However,
we are skeptic of the view voiced by Barabasi in [B02] that by establishing the “map of life”
that describes the complete metabolic (biochemical), regulatory (gene or protein interaction)
and cellular networks of an organism, we will hold the keys to an understanding of how an
organism works despite the fact that scale-free networks are an emerging feature of various
complex systems or networks. We share the concern of Yaneer Ban-Yam who says that
“[t]he biggest current danger to the field [of complexity] is that it will be hijacked by people
who don’t understand the essence of the field. Many are adopting the terminology without
understanding what complex systems are really about. Systems biology, systems
engineering and other systems related fields are often (but not always) just using the words
but continuing a reductionist approach.” [B02, p. 15ff] It is reductionist to believe that by
understanding the interactions between the molecules contained in a cell we will be able to
understand how the cell works, a tissue is formed or cancer arises; these assumptions are
only driven by upward causation in the “map of life”. The upward causation assumption
completely neglects the contribution of the environment and of the emergent structure itself
(by downward causation).

Although scale-freeness emerges in complex networks like the Internet, the World Wide
Web, social and biological networks as well as larger parts of the modern, globalized
economy, it is not a universal feature of complex systems [K05]. Other network topologies
emerge also naturally not showing small world properties. One prominent example is a road
network connecting cities. In this case, each node is not only a point but has a certain size,
cannot freely move and roads themselves (or edges) are restricted by the topographic and
geological settings. This implies that having spatial constraints limiting the dynamic
construction process can yield different network topologies. Therefore, it seems important to
include spatial localization information when building gene regulatory networks or protein-
protein interaction maps given that a substance can only react with another substance when
both reside in the same spatial compartment [D03].

So how do domain boundaries emerge in complex systems? Could these boundaries relate to
the individual modules found in hierarchical networks? Is there a correlation between
functional units and compartmentalization? Is there a form-function relationship to be found
in living systems? Although we are yet unable to answer these questions, it is worth making
a simple thought-experiment by revisiting Lazebnik’s radio example described above. We
can ask ourselves whether it makes sense to decompose the whole radio down to its
molecular constituents so to understand its workings. Going back to Schrödinger’s ‘order
from disorder’ principle, we would certainly suspect that there might be a correlation
between spatial domains and functional units. Next, one might consider looking at the
apparent, spatial patterns visible in the radio and hope that these units can be studied in
isolation. In the case of an individual cell, this would mean that the cell’s anatomy should be
taken into account, looking at sub-cellular compartments [H05] and the protein interactions
therein giving rise to protein clusters potentially describing functional regions (the
toponome, see [SB06]). In the case of tissues or organs, we could first try to focus, for
instance, on understanding how typically found patterns in glandular tissues are formed (e.g.
acini and ducts, see [KM08]).
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Self-organization
So, how are complex spatial patterns formed? Suppose that we can find an explanation for at
least one complex system that is exclusively composed of simple, inanimate compounds
such as atoms or molecules where, obviously, no overall blueprint exists nor can be
executed. In this case, one will have to accept that the ‘order from disorder’ principle is also
applicable to systems consisting of much more complex parts, like those found in biological
systems ranging from bacteria to multicellular organisms, where interactions are not only
governed by physical laws, but by more complex physiological and behavioral responses
[CD01]. The simple answer to the above question is… through self-organization.

Although rather unknown and not well studied when Schrödinger wrote his book, several
very simple self-organizing systems have been since discovered not only in physics and
chemistry showing stunning emerging spatial patterns (see e.g. the rock formation of the
Giant’s Causeway in Figure 1, soap bubbles that build when a flask of dish-washing
detergent is shaken, the well-known Benard convection [CD01] or some more recent finding
on the physics of Type-I superconductors [P07]) underpinning the fact that self-organization
might also be present in more complex systems (as is shown in [CD01]). As physical laws
rule the interactions between the parts in physical systems, we can exclude alternative
explanations of pattern formation that require intervention from outside the system, such as
(i) the presence of a leader, (ii) the existence of a blueprint, (iii) the execution of a recipe, or
(iv) the use of a template [CD01]. Although (i)-(iv) are relevant to biological systems, self-
organization is certainly an option when it comes to explaining biological pattern formation
where “the rules in self-organizing systems can be quite economical in the physiological and
behavioral machinery needed to implement them” [CD01, p. 63]. This simplicity might give
self-organization an evolutionary advantage over the alternative solutions (i)-(iv), making it
more prevalent in biological systems. Having said this, it is certainly possible that a mixture
of these mechanisms is present in the same system.

Let us consider the alternative explanations (i)–(iv) first and then, see if they are applicable
when it comes to tissue (or organ) morphogenesis: The presence of a leader (i) can almost
certainly be excluded as we are not aware of any molecular mechanisms that would enable a
single entity to receive all the information signaled from all other cells and instructing them
to perform certain actions as a result of processing the incoming information. The first
mathematical model proving that an aggregation of single-celled units into larger
cooperative entities can be explained without requiring a leader, such as a founder or
pacemaker cell, was published by Evelyn Keller and Lee Segel in 1970 [KS70] for the slime
mould (Dictyostelium discoideium). Furthermore, it seems unlikely that a template (iv) is
used when cells aggregate to form tissues since tissues can be grown in vitro without the
presence of any template structure. This brings us to the alternative explanation requiring the
existence of a blueprint (ii) that describes the parts and the spatial layout of the tissue to be
built. Such blueprint does not, however, describe how tissue is to be built and consequently
requires each cell to have a global picture of the tissue being formed at any point in time.
This seems very unlikely as there is no known molecular mechanism conveying such
information to each individual cell. This then leaves the remaining option that each cell is
following a strict recipe (iii) describing a set of instructions to be carried out. Although such
set of instructions might explain how an individual like a spider builds a cocoon for its eggs
[E70], it is unlikely that each cell can follow and execute each of the encoded rules
independently of the crowded environment present in a tissue or organ. Since cells can only
sense their local environment, the emergence of tissues can only be driven by rules governed
by coordinated interactions with the local environment of each cell. This leads to the
conclusion that the dynamic process of tissue formation must mainly be governed by self-
organization.

Saetzler et al. Page 7

Semin Cancer Biol. Author manuscript; available in PMC 2012 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



How does self-organization work? First, the components need to be able to interact with or
get feedback from other neighboring components, but also from the local environment or
from the emerging structure itself (stigmergy, [CD01, p. 56]). In the case of tissues, this
would correspond to interactions with other cells, nutrients and the extracellular matrix. This
feedback can be either negative or positive. It turns out that positive feedback is prevalent in
self-organizing systems as it leads to aggregation, but bears the risk of overamplification. In
order to control and stabilize positive feedback mechanisms, negative feedback is needed.
This feedback can either be built into the system (e.g. cells get quiescent) or be offered
through physical constraints (e.g. cell-migration depends on forces exerted by the
extracellular matrix). Components of such system can interact with each other using either
cues that specifically convey information (e.g. like ants when leaving a trail of pheromones
leading to their food source) or cues that convey information incidentally (e.g. like a deer
leaving a trail when walking through the wood, see also [CD01]). In cellular systems, we
observe biochemical (e.g. morphogen gradients generate diverse cell types in distinct spatial
regions) as well as biomechanical cues (e.g. fibroblasts degrading collagen fibers giving way
to epithelial cell-migration).

Self-organizing systems are usually very stable over a large range of parameters, but can
exhibit sudden and abrupt changes in the emergent pattern due to minimal changes of one or
more parameters thus moving from one stable state to another or showing criticality at the
edge of chaos (see [NP08] for a biological example). If we now classify phenotypes for one
species according to the emergent patterns observed, we can observe a change in phenotype
close to the bifurcation by altering only the parameters governed by the environment (e.g.
the raid patterns of army ants [DG89]). This implies that the same genotype can exhibit
different phenotypes depending on the environment.

Environmental determination of the phenotype was first documented at the end of the 19th

century in Lepidoptera. The European map butterfly exhibits strikingly different wing
phenotypes depending on the season of eclosion of the butterflies: while the spring morph
shows orange wings with black spots, the summer morph is black with a white band. This
dimorphism misled Carl Linnaeus, the father of taxonomy, to classify the morphs as distinct
species. In 1875, by incubating the caterpillars in different conditions, August Weissman
found that the seasonal pattern of the wings of certain butterflies is temperature-induced.
Indeed, the discipline of Ecological Developmental Biology deals with this phenomenon,
called polyphenism, and other aspects of environmental determination of the phenotype
[GE09]. These phenomena were mostly ignored by mainstream biologists under the spell of
genetic determinism. However, the discoveries of hormonally-active man-made chemicals
and that human adult diseases often have their origins during fetal life has greatly
contributed to the revival of the eco-devo tradition [SS10]

Modeling tissue morphogenesis
The findings published in 1952 in Alan Turing’s seminal paper about the chemical basis of
morphogenesis [T52] offered a possible mathematical explanation of patterns forming in
developing biological systems which can be seen as yet another manifestation of self-
organization. This theory of temporarily emerging stationary waves starting from
homogeneously distributed reactants (or morphogens) was influential in developmental
biology as explained by Claude Wilson Wardlaw [W53], who remarked “That diffusion-
reaction systems are present in all growing regions, indeed in all living matter, is basic to
studies of metabolism. What is novel in Turing’s theory is his demonstration that, under
suitable conditions, many different diffusion-reaction systems will eventually give rise to
stationary waves; in fact, to a patternized distribution of metabolites. Thus, in the present
writer’s view, the theory would appear to afford an explanation of the inception of the
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symmetrical, radiate histological pattern that appears adjacent to the embryonic region of the
root apex. Not all kinds of pattern, however, are referable to the development of stationary
waves—the major feature of Turing’s theory as thus far developed—but all may eventually
be related to some kind of diffusion-reaction system. The inception of polarity in an embryo,
i.e. of axiate development, is probably due to a particular distribution of metabolites in an
initially homogeneous system; this could be regarded as a very simple case of a stationary
wave.”

This success might also explain the prevalence of partial differential equations being used as
mathematical tools for the analysis of spatially distributed dynamic systems and for the
exploration of self-organization mechanisms under the influence of positive and negative
feedbacks that give rise to patterns in plant and animal morphology or to electrostatic waves
in the heart [WQ03]. There are, however, several tools available to the modeler of biological
systems, which have been summarized by Bassingthwaighte et al. under the following
application areas [BHN09]:

1. Evolutionary biology and genetics: quantitative, model based mathematical or
statistical analysis studying mutation, selection, genotype-phenotype mapping as
well as morphogenesis using agent-based or individual based modeling,

2. Biophysics and electrophysiology: signal transduction across membranes through
channels using combinations of ordinary differential (ODE), partial differential
(PDE), algebraic and differential algebraic equations (DAE) as well as Markov
state models for channel gating,

3. Mathematical biology: DAEs, ODEs and PDEs based on reaction-diffusion systems
applied to cancer modeling, cell cycle and pattern formation in embryogenesis,

4. Computational physiology: biophysical models based on solid and fluid mechanics
applied at the levels of cells, tissues, organs using conservation laws, continuum
mechanics and finite element methods,

5. Computational chemistry: applying quantum mechanics and molecular dynamics to
investigate protein-protein and protein-ligand interactions as well as protein-
(un)folding at the atomic level,

6. Network systems biology: DAEs or ODEs are applied to gene regulatory, signal
transduction and metabolic networks using mainly the biophysics encapsulated in
mass balance equations of chemical species. Analytical tools include bifurcation
theory, non-linear control theory, Bayesian statistics and linear algebra, and

7. Systems physiology: DAEs applied to study physiological function at the organ
system level such as blood pressure control or exocrine signaling at the cell level.

Furthermore, Bassingthwaighte et al. state that “[o]ne of the central principles is that
complex systems like the heart are inevitably multiscalar, composed of elements of diverse
nature, constructed spatially in a hierarchical fashion” which “requires linking together
different types of modeling at the various levels”, but noting that “[i]n multiscalar systems
with feedback and feedforward loops between the scale levels, there may be no privileged
level of causation” [BHN09]. This implies that it is important that a successful model of a
complex system has to include relevant scales and only subsequent system analysis might
reveal at which level biological function might be integrated [BHN09].

Emerging structures in glandular tissues
Before starting to model tissue morphogenesis it is therefore important to take a closer look
at emergent structures and the potential scales involved. For this review, we would like to
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focus on prominent structures found in glandular tissues and on the question how these
might be formed through self-organization. It is widely acknowledged that cells cultured in
2D have different patterns of gene expression from their 3D counterparts [PR07]. This is
increasingly stimulating interest in 3D tissue models such as the one we have developed
[KM08]. We summarize below some results concerning factors that may influence epithelial
structure formation that concern the main structures found in glandular tissues, which are
round, hollow acini and tubular branching structures called ducts (see Figure 2). These
fundamental structures only comprise a few hundred cells and depend on the composition of
the extracellular matrix (ECM).

ECM compliance and mechanical force—Human breast MCF10A cells formed
branching ducts or rounded structures (acini) depending on the rigidity and isotropy of the
extracellular matrix [PZ05].

Stromal cells—When cultured alone, the epithelial cells formed acini in an isotropic
matrix; however, when co-cultured with normal breast fibroblasts (RMF, see Figure 2) or
with pre-adipocytes [KM08], epithelial structures elongated forming branching ducts.

ECM fiber organization—In a cellular gels, collagen formed thin fibers without any
defined organizational pattern. Both epithelial and stromal cells organized the collagen
fibers, a phenomenon evident during the first 24 h of culture. As epithelial structures formed
later on, small and short collagen fibers organized radially were found in the vicinity of the
acini, while long fibers were found parallel to the long axis of the ducts. Branching appeared
to occur through the formation of a projecting sprout from an existing duct and was usually
associated with the development of a collagen bundle along the branch axis extending to a
nearby epithelial structure (see Figure 3).

Culture dish topology and epithelial organization—In addition to the matrix
composition the shape and rigidity of the culture dish also influence the organization of
epithelial structures. In floating 1mg/ml Col-I gels, ducts appeared mainly in the upper
layers, while the lower layers contained almost exclusively acini, suggesting that factors that
promote tubulogenesis are heterogeneously localized along the Z axis (see Figure 4). Thus,
an asymmetrical spatio-temporal distribution of biomechanical and/or biochemical factors
appears to regulate tubulogenesis within the floating gel during matrix reorganization.

In summary, perhaps the most remarkable finding of our studies has been the plasticity of
the 3D tissue model as revealed by the local and temporal changes observed both in the
distribution of epithelial structures, their phenotype, and in collagen fiber organization.
These dynamic changes became apparent by the systematic observation of the whole-
mounted gels. This plasticity suggests a dynamic process initiated by the cell-mediated
collagen organization that resulted in reciprocal interaction between the newly organized
and biomechanically enabled fibers and the emerging epithelial structures. Once fibers start
to form elongated bundles they, in turn, exert forces upon the epithelial structures. Hence,
the heterogeneity resulting from the local interplay of fibers and cells generate forces that
shape and remodel the epithelial structures [DM10].

Agent-based modeling of tissue morphogenesis
Discrete computational simulation methods are often used when complex spatial
arrangements are less amenable to abstraction and a more mechanistic model is required.
The agent-based model is currently being eagerly adopted in the life sciences, because it is
well-suited for modeling tissue morphogenesis as they allow for intra-cellular decision
processes [GHA09]. Agent-based or individual-based modeling is a computational method
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in which a complex system is decomposed into a number of discrete entities called agents.
The agents’ movement in virtual space, their behavior and interactions with other agents and
the temporal evolution of their internal state are determined by a single rule set, that is,
repeatedly applied independently for each agent. Agents are either restricted to sites on a
regular lattice (cellular automaton) or are lattice-free allowing more realistic, quantitative
models [GHA09].

This rule-set can be seen as a formal description of the processes that underlie the emergent
phenomena observed in simulation or, by analogy, in an experiment. Thus, derivation of the
rule-set is the central task in modeling, and the rule-set itself typically represents a major
piece of knowledge gained in the modeling process. This explains the fact that the empirical
process used to identify the rule-set requires tight coupling with experimental observations
[TB07]. Early models of tissue morphogenesis only considered cell proliferation rates and
apoptosis to model cell population kinetics, but ignored the fact that cells are volumetric
objects that interact with their environment, which in turn impacts on model parameters such
as migration, proliferation, “differentiation” and apoptosis [HI99, I03]. Later individual
modeling attempts included these feedback components as biomechanical properties.

In simple agent-based models, isolated cells are described as elastic spheres of variable
volume [GHA09]. When cells get in contact with the substrate or other cells, they exhibit an
adhesive energy that is proportional to the contact area formed, but they also get deformed
and compressed all adding to a total internal energy. If no external stimulus is applied, cells
migrate randomly in a friction dominated environment. The cell cycle is simplified into an
interphase where cells stochastically increase in size up to twice their original volume and a
mitotic phase where the cell divides into two daughter cells of equal size. Different
proliferation, apoptotic and migratory behavior can be simulated depending on the cell type,
and on cell-cell, cell-substrate and cell-matrix contact areas. Such models are mostly used to
reproduce growth colony dynamics and morphology in 2D, but also 3D in vitro assays.

For reliably modeling the emergence of stable acinar structures from epithelial cells, a more
realist model of the cellular shape had been introduced, as encapsulated in the immersed
boundary framework used by Kasia A. Rejniak [R07]. This model “captures interactions
between immersed elastic tumor cells and a viscous incompressible fluid, representing the
cytoplasm inside the cells and the extracellular matrix outside the tumor tissue. The fluid
flow is influenced by sources of fluid located inside the growing cells, as well as by forces
generated by the immersed, elastic boundaries, while at the same time the elastic structures
move at the local fluid velocity. The cell cycle and cell processes are related to the
concentration of external factors, such as oxygen, sensed by the cell from its local
environment” [R05]. The underlying temporal distributions of nutrients and other molecular
constituents are usually modeled using PDEs and are combined with the agent-based system
into a hybrid model (or hybrid discrete-continuum model (HDC), [AW06, CL10]). HDC
systems make it possible to model collagen fiber orientation as a continuous vector field
while other cell types such as fibroblast remain discrete entities that interact with the
collagen matrix and alter the underlying PDEs [MD06].

The work by Rejniak [RA08] assumes that acinar structures originate from a single mother
cell which self-organizes through subsequent proliferation, migration, polarization and
apoptosis through nutrient starvation into a hollow structure, the acini, where the hollow
core is formed. The ECM is assumed to be homogeneous which allows for a less
computational intensive 2D model. If we envisage the cells being embedded in a
heterogeneous 3D ECM that exhibits different mechanical properties along and
perpendicular to local collagen fiber orientation, the Rejniak model [RA08] could possibly
explain how hollow, tubular ductal structures emerge in such tissues. It remains to be shown
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experimentally, which properties of the microenvironment finally decide on the
developmental faith of branching ducts or acini in the same medium and whether these
structures always originate from one mother cell.

Understanding early carcinogenesis using mathematical modeling
Cancer is diagnosed by pathologists while examining the tissue level of biological
organization. We have proposed that carcinogenesis is due to altered tissue organization akin
to development gone awry [SS05]. Therefore, one would have hoped that by understanding
normal tissue development we would have been able to define in our model those
parameters in normal tissue development that reach a critical threshold beyond which
regular structures found in healthy glandular tissues such as acini and ducts suddenly
disappear (see also above notion of criticality and the edge of chaos). It seems therefore
logical, that the modeling machinery used for tissue morphogenesis can also be used to
model cancer development. Helen Byrne recently summarized the mathematical modeling
approaches to carcinogenesis, avascular and vascular tumor growth and angiogenesis [B10]
that span the complete range of multi-scale, hybrid and three-dimensional models. She states
that it can therefore be difficult to choose the correct model for a particular question, in
particular since different approaches can yield the same results. In such situation, she thinks
it might be appropriate to appeal to Occam’s razor or the Law of Parsimony using “the
philosophical principle that one should not look for multiple causes of any effect if a single
cause can provide a suitable explanation” [RB02]. Although this approach may be useful as
a first approximation, it negates the fact that in a complex system there is no privileged level
of causality. More importantly, more organic models that facilitate the collaboration
between modelers and experimentalists should be adopted [B10]. This might also explain
the increasing popularity of agent or individual-based modeling approaches towards tumor
growth in recent years [IC04, R05, AW06, ZA07, ZW09, DZ09]. All models produce
comparable results to those presented by the immersed boundary framework presented by
Rejniak [R05]. This model uses a similar parameter setup as for the computation of the
emergence of acinar structures in healthy tissue [RA08], but with the main difference that
tumor cells do not polarize and form stable structures at the growth boundary. Dependent on
model parameters such as proliferation rates and structure of the ECM, more rounded or
more perforated, finger-like structures, are being generated [AR09].

Limitations of current models
Although current models allow us to hypothesize on the effects of certain model conditions
on cancer growth [AW06, AR09], they face very severe limitations. Besides the effect that
an increased complexity of the computational model leads to a significant restriction on the
tissue volume and time-frame that can be computationally modeled [DZ09], the most
limiting factor is the lack of direct coupling of the mathematical or computational model to
experimental data [B10]. This problem manifests itself in the fact that although numerous
models on tumor progression and growth implicitly assume that “[m]ost tumors in vivo arise
from a single cell that has escaped the growth-controlling mechanism” [R05], nobody has
ever observed a tumor in statu nascendi. The experimental difficulty to do so was already
identified by Theodor Boveri in 1914 as being the main hindrance to study the early events
leading of carcinogenesis. Despite this fact and its incompatibility with nonmutagenic
carcinogenesis, the prevailing paradigm for carcinogenesis underlying almost all
mathematical models remains the somatic mutation theory [W07, BS09] and alternative
explanations such as the tissue organization field theory only slowly are being introduced
[BS09, BCP10]. Furthermore, without direct coupling between experiment and
mathematical model, most parameters estimated throughout simulation and validation
processes are difficult to be related to real, biologically relevant entities and quantities.
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An example of a prominent parameter that causes quite controversial debates amongst
biologists relates to cell proliferation. For a modeler, the default modus operandi of a cell
can be both, proliferation or quiescence. To increase cell proliferation rates, a modeler either
reduces the concentration of an inhibiting substance where proliferation is seen as the cell’s
default or increases the concentration of a stimulating substance where quiescence is seen as
default. Both models will yield the same qualitative behavior in their respective simulation,
whereas the biological ‘truth’ is very likely to be reflected by only one of both scenarios.
Unless such substance is directly found in the experiment itself, both modeling assumptions
have to be seen as equivalent and undistinguishable as both models validate the same
experimental observations (please note that indirect and intermediate processes might make
it experimentally difficult to unequivocally discriminate between inhibitory and stimulating
substances).

To overcome this problem, we not only should have to adopt an organicist or systems view
of biology that makes us aware of the connectedness of living systems where interactions
between molecules, genes, cells, species and the environment are regulating biological
function, but more importantly, we should have to tightly couple biological experiments
with an organic mathematical model of an inherently complex and adaptive system. Such
model would allow us to derive quantitative measures and eventually make predictions
about the biological system through simulation or execution of a computational
implementation of the mathematical model. By relating predicted quantities back to the real
biological system and conducting experiments to validate the predictions, we close the
systems biology cycle for knowledge discovery (see Figure 5). If the predictions get
validated it means that our mathematical model encapsulated our current knowledge of that
particular system correctly. If not, we should have to go back to the drawing board and
modify our model and rerun the cycle (see also the introductory section in [P03]).

Therefore, as long as mathematical models are not tightly coupled to biological experiments,
most modeling attempts will remain descriptive in nature giving us only phenomenological
insights into ongoing processes not allowing us to directly predict experimental outcomes.
However, since predictions derived from a mathematical model that are subsequently
validated through novel biological experiments are the ultimate Holy Grail [CD01] that
would lead to an understanding of the biological system itself, we might fall short in our
attempts to gain more profound insights into complex biological processes, such as tissue
morphogenesis or early carcinogenesis, in the absence of a highly controllable, observable
and flexible biological model system that can be directly coupled to a mathematical model.

In vivo vs. in vitro models
A long standing controversy relates to the choice of the correct biological model system,
where, for obvious reasons, common sense prefers the in vivo situation. For ethical reasons,
this choice becomes problematic when dealing with human subjects. This then makes it
necessary to use alternative biological model systems. Are animal models in general more
reflective of human physiology than in vitro assays? A low percentage of drugs (ranging
from 5–20%) found to be effective in the animal model itself (Phase I) actually proved to be
successful in the human trial phase and make it through registration [KL04]. This low
success rate suggests that this thought process should be guided by the desire to make a
biological model system tractable and accessible to mathematical modeling so that both can
be tightly coupled through the systems biology cycle for knowledge discovery. This means
that although simplified models such as the 3D tissue model of the mammary gland shown
above might not be reflective in all details of the human physiology, they might allow us to
generate deeper insights into microenvironment-dependent cell-cell interactions.
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Conclusions and future directions
This review intended to highlight the mechanisms underlying self-organization and their
importance for the life sciences in general and for tissue morphogenesis and cancer
modeling in particular. Our journey following the more recent history of science and
philosophy has revealed that although it is important to identify the constituents of a system
and to study the working of its individual parts, this approach we may not necessarily
provide understanding of the system-level properties. This view is certainly embraced by
systems biology as promoted by Hiroaki Kitano [K02]. The success of network modeling
tools applied to gene regulatory or metabolic networks of individual organisms seems to
convey the message that instead of the reductionist view where one single gene regulates
function, it is now a concert of genes responsible for the same task. This, however, is still a
reductionist viewpoint as it does not consider the interplay between upward and downward
causation and the role of biomechanics and topology as determinants of biological structure
and function. The dominance of network related modeling in the young field of systems
biology and its inherent focus on the ‘map of life’ as proposed by Barabasi [B02], further
deviates our attention from the fact that there are other mechanisms prevalent in complex
systems that can create order from disorder through self-organization, a process fundamental
for living matter [S44]. The fact that spatial aggregation and compartmentalization are
prevalent not only in biological systems does imply that there are form-function
relationships waiting to be uncovered and that spatial organization is indeed an important
parameter that needs to be considered in mathematical models.

As pointed out by Scott Camazine et al [CD01], mathematical modeling is central to
understand complex systems. In particular, computational models need to be tightly coupled
with in-vivo or in-vitro models not only to validate the mathematical model, but also to
predict system properties yet unknown. In the modeling field, this activity currently mostly
revolves around agent-based models [TB07], which can be computationally expensive, but
best reflect the nature of tissues as self-organizing systems. Experimentally, highly
controllable in vitro model systems are needed for systematic investigation of the
association rules, parameters and processes that yield biological tissue formation. To this
purpose, we have developed a novel 3D tissue organogenesis model of the mammary gland
that contains both epithelium and stroma (cellular and ECM) [KM08]. This model is aimed
at identifying the key physical processes that regulate epithelial organization into cylindrical
structures (ducts and branching ducts) and spherical structures (acini), prevalent structures
also found in other glandular tissues. By using time-lapse microscopy [PH07], we expect to
uncover the local rules that govern cell proliferation, migration and aggregation depending
on the microenvironment, such as collagen density and collagen fiber orientation [PE06,
PI08], as well as the potential cues of which they are targets. We anticipate that this new
methodology that operates in glandular tissue model systems will bring us closer to the goal
of “putting the parts back together”.
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Key points

• Because the physical world is causally open, emergent phenomena are to be
expected, where both bottom-up and top-down causation must be taken into
consideration.

• Spatial patterns can emerge through self-organization, which creates order from
disorder.

• Hybrid discrete-continuum based modeling approaches provide a natural way to
computationally describe self-organizing phenomena at the cellular/tissue level.

• Adaptive complex systems are inherently multiscalar and hierarchical with
upward and downward causation across multiple scales.

• The systems biology knowledge discovery cycle is not limited to ‘network
systems biology’ and should embrace the wider framework adopted by the
Physiome and the Virtual Human Project.

• When studying tissue morphogenesis and early carcinogenesis, biological
models that can be tightly linked to mechanistic models which in turn allow us
to generate testable predictions and new insights are hard to come by.

• Because animal models for testing cancer drugs have not proven to be very
efficient in predicting outcomes in humans, the need for alternative models is
urgently desirable.
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Figure 1.
Example of self-organization of inanimate matter: left panel shows an overview of the rock
formation found at the Giant’s Causeway in County Antrim, Northern Ireland. The right
panel shows a close-up photographed downwards onto the rock formation showing a
regular, polygonal structure that emerged from volcanic activity.
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Figure 2.
Whole mounts of MCF10A cells (left panel) and MCF10A cells and RMF grown for three
weeks within a matrix made of 1 mg col-I-50% Matrigel. Note that ducts only formed in the
presence of fibroblasts. Scale bar 200 m (taken form [KM08]).
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Figure 3.
MCF10A + RMF co-culture in floating gel at the 10th day in culture. Whole mount
picrosirius red staining; images were taken under polarized (left) and non-polarized light
(right). (A) Acini in the lower layer of the gel (arrow). (B) Acini loosing the spherical
symmetry (gray arrow) and interacting with neighboring structures through modified
collagen fibers (white arrows). (C) Elongating structures interacting via modified collagen
fibers (white arrow) and fusing with each other into tubular structures (black arrow). Notice
the absence of modified collagen fibers nearby the non-elongating acini in lower left corner
(gray arrow). (D) Bundle of thick collagen fibers formed between two structures along their
elongation axis. (E) Collagen bundle (white arrow) formed along the elongation axis of a
duct. (F) Tubular structure interacting with neighboring structure though collagen fibers
(white arrow) and forming branching sprout. Scale bars 20 m (taken form [DM10]).
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Figure 4.
Schematic representation of contracted floating gel; i: periphery zone, ii: intermediate area,
iii: central area. Circular and rectangular shapes denote the distribution of acinar and ductal
structures respectively (taken from [DM10]).
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Figure 5.
The systems biology cycle for knowledge discovery shows how biological experiments are
being tightly coupled with mathematical models through data analysis, modeling, simulation
and validation. Only by completing a full cycle, actual knowledge is generated and our
understanding of a biological system is furthered.
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