
Parallel Discrete Molecular Dynamics Simulation With
Speculation and In-Order Commitment*,†

Md. Ashfaquzzaman Khan and Martin C. Herbordt
Computer Architecture and Automated Design Laboratory, Department of Electrical and Computer
Engineering, Boston University; Boston, MA 02215, www.bu.edu/caadlab

Abstract
Discrete molecular dynamics simulation (DMD) uses simplified and discretized models enabling
simulations to advance by event rather than by timestep. DMD is an instance of discrete event
simulation and so is difficult to scale: even in this multi-core era, all reported DMD codes are serial.
In this paper we discuss the inherent difficulties of scaling DMD and present our method of
parallelizing DMD through event-based decomposition. Our method is microarchitecture inspired:
speculative processing of events exposes parallelism, while in-order commitment ensures
correctness. We analyze the potential of this parallelization method for shared-memory
multiprocessors. Achieving scalability required extensive experimentation with scheduling and
synchronization methods to mitigate serialization. The speed-up achieved for a variety of system
sizes and complexities is nearly 6× on an 8-core and over 9× on a 12-core processor. We present and
verify analytical models that account for the achieved performance as a function of available
concurrency and architectural limitations.

Keywords
Parallel discrete molecular dynamics; parallel discrete event simulation; parallel processing

1 Introduction
Discrete, or Discontinuous, Molecular Dynamics (DMD) uses simplified models; for example
atoms are modeled as hard spheres, covalent bonds as infinite barriers, and van der Waals
forces as a series of one or more square wells. This discretization enables simulation to be
advanced by event, rather than timestep. Events occur when two particles cross a discontinuity
in inter-particle potential. The result is simulations that are typically faster than timestep-driven
molecular dynamics [4, 18, 19, 26]. The simplicity of the models can be substantially
compensated for by the capability of researchers to refine interactively simulation models
[24, 25].

*This work was supported in part by the NIH through award #R01-RR023168-01, by IBM through a Faculty Award, and facilitated by
donations from Altera Corporation and Gidel. Web: http://www.bu.edu/caadlab.
†A preliminary version of some of this work was presented at the IEEE 20th International Conference on Application-Specific Systems,
Architectures, and Processors (ASAP 2009).
© 2011 Elsevier Inc. All rights reserved.
azkhan@bu.edu, herbordt@bu.edu.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
J Comput Phys. Author manuscript; available in PMC 2012 July 20.

Published in final edited form as:
J Comput Phys. 2011 July 20; 230(17): 6563–6582. doi:10.1016/j.jcp.2011.05.001.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.bu.edu/caadlab
http://www.bu.edu/caadlab

The problem addressed here is that for DMD, as for discrete event simulation (DES) in general,
causality concerns make it difficult to scale to a significant number of processors [5, 16]. While
the parallelization of DMD has been well-studied [16, 23], we are aware of no existing
production parallel DMD (PDMD) codes. The difficulty in parallelizing DMD (as, in general,
in parallelizing DES) is that dependencies can arise unpredictably and virtually instantaneously
In some Parallel DES application domains, e.g., in network simulation, it is possible to
circumvent this by predicting a window during which event processing is safe (conservative
approach) or by making a similar assumption to ensure that the amount of work that may need
to be undone is limited (optimistic approach) [5]. DMD, however, is chaotic: there is no safe
window [12].

Our approach is motivated by the following observations.

1. A recent algorithmic advance in DMD event queuing has reduced the complexity of
the most time-consuming operations from O(logN) to O(1) [18]. This has significantly
reduced the amount of work to maintain a central event queue.

2. Previous PDMD work has been based on spatial decomposition [5, 11, 13, 16]. While
workable in one and two dimensions, 3D simulation is far more complex. This
requires, for cubic decomposition, that each thread exchange information with a large
number of neighbors (26) for potential conflicts. Or, if decomposition is done by
slices, then it must handle a drastic increase in the ratio of surface area to volume and
so the number of interactions per thread-pair.

3. Many of the successful PDMD implementations were reported more than a decade
ago (and mostly for 2D) [11, 13]. Since then, event processing speed has increased
dramatically, through advances in both processors and algorithms, especially when
contrasted with interprocessor communication latency. This means that parallelizing
DMD through spatial decomposition is likely to be less efficient. On the other hand,
shared memory multicore processors have evolved to become the dominant
computing platform and maintaining a centralized event queue on such devices is not
so expensive.

We therefore parallelize using event-based, rather than spatial, decomposition [7]. Overall, our
method uses an approach that has proved successful both in CPU design [6] and in hardware
implementations of PDMD [8, 17]: parallelize through deeply pipelined processing, but
maintain in-order commitment. In software this translates as follows. There is a single
centralized event queue. Multiple threads dequeue events in parallel and process them
speculatively. Various types of hazards are checked by using shared data structures, and event
processing is cancelled or restarted as necessary. As with hardware implementations, in-order
commitment assures correctness.

We have implemented our method on shared memory multicore computers and have achieved
a speedup of 5.9× on an 8 core and 9.2× on a 12 core processor. We have also analyzed the
potential of parallelism in DMD and identified the obstacles that limit achieving it in full on
currently available computing platforms. Overall, our contributions are as follows.

• A scalable parallel DMD system based on a novel design that is appropriate for
production applications. We are not aware of any other such system.

• Experiments with both known and new optimizations that update long-standing issues
such as cell size and queue insertion policy [11, 20], as well as describe the interaction
of the latter with the latest queue data structure.

• Extensive exploration of synchronization and scheduling mechanisms to minimize
serialization. This is the key to scaling event-based decomposition.

Khan and Herbordt Page 2

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

• Analysis of performance that accounts for scaling limitations by modeling the
available concurrency and also the interaction between application and architecture.

The rest of this paper is organized as follows. In the next section we summarize discrete event
simulation and its application to molecular dynamics. We concentrate on the event queue and
discuss in some detail a data structure that has not previously been integrated into PDMD. In
the following sections we describe how we chose the basic parameters, including data structure
shape, cell size, and event queue insertion policy. We follow with our PDMD design, starting
with a discussion of DMD hazards in general, how we deal with them conceptually, and then
with our system. Next we present some critical implementation issues: three possible
scheduling mechanisms, and other software refinements. We then present the scalability
results, followed by various analytical models fleshed out with system-level measurements,
and a conclusion.

2 DMD: Basics and Standard Implementation Issues
2.1 DES/DMD Overview

MD is the iterative application of Newton’s laws to ensembles of particles. It is transformed
into DMD by simplifying the force models: all interactions are folded into spherically
symmetric stepwise potential models. Figure 1 shows a selection of the potentials described
in the literature (see, e.g., [1, 19, 24]). It is through this simplification of forces that the
computation mode shifts from timestep-driven to event-driven.

Overviews of DMD can be found in many standard MD references (e.g., Rapaport [21]) and
DMD surveys [1, 19, 24]. A DMD system follows the standard DES configuration (Figure 2)
and consists of the

• System State, which contains the particle characteristics: velocity, position, time of
last update, and type;

• Event Predictor, which transforms the particle characteristics into pairwise
interactions (events);

• Event Processor, which turns the events back into particle characteristics; and

• Event Priority Queue, which holds events waiting to be processed ordered by time-
stamp.

Execution proceeds as follows. After initialization, the next event (involving, say, particles a
and b) is popped off the queue and processed. Then, all other previously predicted events
involving a and b, if any, are removed from the queue, since they are no longer valid. Finally,
new events involving a and b are predicted and inserted into the queue.

To bound the complexity of event prediction, the simulated space is subdivided into cells (as
in MD) (Figure 3). Since both the number of particles per cell and the number of cells in a
neighborhood (27 in 3D) are fixed, the number of predictions per event is also bounded and
independent of the total number of particles. One complication of using cells in DMD is that,
since there is no system-wide clock advance during which cell lists can be updated,
bookkeeping must be facilitated by treating cell crossings as events and processing them
explicitly. Cell size is usually determined such that two particles have to be in the same or
adjacent cells to interact with each other (cell dimension > particle interaction cut-off distance).
Thus for any home cell, we ensure that checking only the 26 neighboring cells (in 3D) is always
sufficient. Particles in other cells must enter these neighboring cells prior to interacting with
home cell particles; such events are handled separately as cell-crossings.

Khan and Herbordt Page 3

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

One design issue that has received much attention is how many of the newly predicted events
to insert into the event queue [10]. The original algorithm by Rapaport [20] inserts all predicted
events. Lubachevsky’s method [11] keeps only a single event, the earliest one, per particle.
The reduced queue size, however, comes at a cost: whenever the sole event involving a particle
is invalidated, the events for that particle must be repredicted. This is done by converting the
invalidated event into an advancement event of that particle; when the advancement event is
processed, new predictions are made. There is thus a trade-off between the processing required
to update the larger queue and that required for reprediction. We compare the performance of
these methods in Section 3.3.

2.2 Software Priority Queues
While parallelization retains the established mechanisms for event processing and prediction,
queue operations are significantly affected. Much work has been done in optimizing the DMD
event queue (see survey in [18]) with the design converging as is described in this and the next
subsection.

The basic operations for the priority queue are as follows: dequeue the event with the highest
priority (smallest time stamp), insert newly predicted events, and delete events in the queue
that have been invalidated. A fourth operation can also be necessary: advancing, or otherwise
maintaining, the queue to enable the efficient execution of the other three operations.

The data structures typically are

• An array of particle records, indexed by particle ID;

• An array to save information on which particle belongs to which cell;

• An event pool;

• An event priority queue; and

• A series of linked lists, at least one per particle, with the elements of each (unordered)
list consisting of all the events in the queue associated with that particular particle
[21].

Implementation of priority queues for DMDis discussed by Paul [18]; they have for the most
part been based on various types of binary trees, and all share the property that determining
the event in the queue with the smallest value requires O(logN) time [14]. Using these
structures, the basic operations are performed as follows. Operations using Paul’s queueing
structure are described in the next section.

1. Dequeue: The tree is often organized so that for any node the left-hand descendants
are events scheduled to occur before the event at the current node, while the right-
hand descendants are scheduled to occur after it. The event with highest priority is
then the left-most leaf node. This dequeue operation is therefore either O(1) or O
(logN) depending on bookkeeping. Our implementation is a binary search tree,
therefore the worst case asymptotic bound is O(logN), as long as the binary tree shape
is maintained.

2. Insert: Since the tree is ordered by tag, insertion is O(logN) (again, in the worst case
and as long as the binary tree shape is maintained).

3. Delete: For Rapaport queueing, when an event involving particles a and b is
processed, all other events in the queue involving a and b must be invalidated and
their records removed. This is done by traversing the particles’ linked lists and
removing events both from those lists and the priority queue. Deleting an event from
the tree is O(logN) (again, in worst case and as long as the binary tree shape is

Khan and Herbordt Page 4

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

maintained). A particular event generally invalidates O(1) events, independent of
simulation size, since cell subdivision method limits the maximum number of
predicted events per particle.

4. Advance/Maintain: Binary trees are commonly adjusted to maintain their shape.
This is to prevent their (possible) degeneration into a list and so a degradation of
performance from O(logN) to O(N). With DMD, however, it has been shown
empirically by Rapaport [20] and verified by us elsewhere, that event insertions are
nearly randomly (and uniformly) distributed with respect to the events already in the
queue. The tree shape is therefore maintained without rebalancing, although the
average access depth is slightly higher than the minimum.

2.3 Implementation with Paul’s Event Queue (PaulQ)
In this subsection we summarize the primary DMD data structures. The event queue is based
on work by G. Paul [18], which leads to a reduction in asymptotic complexity of priority queue
operations from O(logN) to O(1), and a substantial benefit in realized performance.

The observation is that most of the O(logN) complexity of the priority queue operations is
derived from the continual accesses of events that are predicted to occur far in the future. The
idea is to partition the priority queue into two structures. This is shown in Figure 4, along with
most of the other major data structures. A small number of events at the head of the queue, say
30, are stored in a fully ordered binary tree as before, while the rest of the events are stored in
an ordered list of small unordered lists. Also retained are the particle memory and the per-
particle linked lists of events that are used for invalidates.

To facilitate further explanation, let Tlast be the time of the last event removed from the queue
and T be the time of the event to be added to the queue. Each of the unordered lists contains
exactly those events predicted to occur within its own interval of Ti…Ti + Δt where Δt is fixed
for all lists. That is, the ith list contains the events predicted to occur between (T – Tlast) = i *
Δt and (T – Tlast) = (i + 1) * Δt. The interval Δt is chosen so that the tree never contains more
than a small number of events.

Using these structures, the basic operations are performed as follows.

1. Dequeue: While the tree is not empty, operation is as before. If the tree is empty, a
new ordered binary tree is created from the list at the head of the ordered array of lists.

2. Insert: For (T – Tlast) < Δt, the event is inserted into the tree as before. Otherwise,
the event is appended to the ith list, where i = [(T – Tlast)/Δt].

3. Delete: If the event is in binary tree, it is removed as before. If it is in the unordered
list, it is simply removed from that list. It should be noted that, particle and event data
is stored such that finding an event to delete takes O(1) time.

4. Advance/Maintain: The array of lists is constructed as a circular array. Steady state
is maintained by continuously draining the next list in the ordered array of lists
whenever a tree is depleted.

For the number of lists to be finite there must exist a constant Tmax such that for all T, (T -
Tlast) < Tmax. In the rare case where this relation is violated, the event is put in a separate
overflow list, which is drained after all the lists have been drained once. Performance of this
data structure (PaulQ) depends on tuning Δt. The smaller Δt, the smaller the tree at the head
of the queue, but the more frequent the draining and the larger the number of lists.

We return to the other data structures in Figure 4. For any simulation model, all of these
structures can be implemented highly efficiently as fixed sized arrays [2]. Particle memory

Khan and Herbordt Page 5

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

depends on the number and type of particles; cell lists on the simulation size and cell size; event
pool on the number of particles, the insertion policy, and the energy landscape; and the queues
depend on the parameters just described.

2.4 Experimental Methods
The baseline code is by Rapaport and is described in [21] (Ch14). This code is highly efficient
being written in C in a “FORTRAN-like” style and including standard optimizations (such as
described in [2]). All modifications were also written in C and compiled using gcc (v4.2.4)
with O3 optimization. Execution times were measured on two platforms.

• A 64-bit, 2-processor, 8-core Dell Precision T-7400 Workstation with 4GB of RAM.
Each processor is a quad-core Intel Xeon CPU E5420 (Harpertown) @2.50GHz. This
was built with a 45nm process, has a Penryn microarchitecture, 32KB L1 I-Cache,
32KB L1 D-Cache, and two 6MB L2 caches, each shared by two cores. The operating
system was Ubuntu Linux (v8.04).

• A 64-bit, 2-processor, 12-core AMD Magny-Cours Server with 16 GB of RAM. Each
processor is a 6-core AMD Opteron CPU 6172 (Istanbul) @2.10GHz. This was build
with a 45 nm process, has a Bulldozer architecture, 64KB L1 I-Cache, 64 KB L1 D-
Cache, 512KB L2 Cache, 6 MB of L3 cache shared by the 6 cores. The operating
system was GNU/Linux (v2.6).

DMD simulations are generally evaluated in terms of events computed per unit time. For
clarity, we count only Payload events. These include all events that involve particles crossing
discontinuities in potentials (as shown in Figure 1). Overhead events are needed only to ensure
correct simulation and/or maintain data. There are two such event types.

Cell-crossing: When a particle crosses the boundary of a cell. This is present in all models.

Advancement: This is required only if we implement Lubachevsky-style event queuing
[11] where only the earliest event for each particle is queued. If that earliest event Ea,b for
a particle a is a collision, but the other participant b is involved in another collision Eb,c
before Ea,b takes place, then Ea,b event is turned into an advancement event Ea for a.
During the execution of Ea, the position of a is updated and new events are predicted.

In all experiments we simulated 10 million payload events, but in general performance is
independent of simulation time beyond a brief initialization phase. Following standard
procedures (see, e.g., [21]), the particles were initially distributed uniformly in a 3D grid. The
simulation box size was determined from the density and the number of particles. Particles
were assigned velocities in random directions, but with a fixed magnitude depending on the
temperature. Velocities were adjusted to make the center of mass stationary. Particles were
then assigned to cells and events predicted and scheduled for each particle. Runtime was
measured after all initializations were done, and when actual event processing had begun.

2.5 Simulation Models and Conventions
Various models have been created to accommodate molecular systems of differing complexity,
flexibility, and desired resolution of the system of interest. They all have in common, however,
the use of spherically symmetric step potentials, some of which are shown in Figure 1.
Somewhat surprisingly, DMD simulator throughput (in events/second) is affected only
marginally by model complexity. For example, the difference in throughput between
simulations using a simple square well, shown in Figure 1b, and complex square wells, shown
in Figure 1c and 1g, is negligible (see Section 6.1). The reason is that the added model
complexity is processed using a switch/case statement to identify the correct discontinuity,
which requires only a few instructions. A similar observation is made for per-particle
differences in step functions, including particle radius. As a result the simulation throughput

Khan and Herbordt Page 6

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

also doe s not materially change as a function of number of particle types in the simulation, or
whether some particles are covalently bonded or not. Some factors that do affect throughput
are the number of particles, the radius of the furthest discontinuity from the particle center, and
the simulation density.

As a consequence, for this study, instead of parallelizing any particular models in use, we chose,
without loss of generality, a generic simulation framework that encompasses the properties
that have an effect on event throughput. Note that adding complexity, such as processing
reactions rather than simple discontinuities in potentials, necessarily adds to the work needed
per event and so improves the scalability of most parallelizations. In that sense the performance
improvements reported here are lower bounds.

Our simulations are of identically sized hard spheres of unit diameter and unit mass. Simulated
time is presented in MD unit time. Conversion from MD units to real units is immediate and
a description with specific examples can be found in [21]. Systems have periodic boundary
with wrap-around effects considered as necessary. Unless stated otherwise, we use a square
well potential with fixed radius of 2.5 MD units. Variations in density and temperature are
tested. For density, a liquidlike density of 0.8 is used by default, but there is little effect on
performance until the density falls below 0.4 (see Section 6.1). Temperature variation has
virtually no effect on relative performance (see Section 6.1). Cell lists are used to bound the
complexity of event prediction, with cell size fixed at slightly larger than the square well radius.
The selection of cell size is described in Section 3.2. In the experiments we report results for
three different sizes: 2K, 16K and 128K particles. There is little relative change in performance
beyond 128K particles. The chosen parameters are typical for liquid simulation [21] and are
sufficiently general to represent most of the biomolecular DMD simulations reported in the
literature.

3 Establishing a DMD Serial Baseline
The primary purpose of this section is to describe the parameter selection of the serial baseline
code and then present a profile of that code. In the process we update results of long-standing
issues of cell size and queue insertion policy, as well as describe the interaction of the latter
with the latest queue data structure.

3.1 Selecting PaulQ Parameters
Two parameters, the number of linear lists n and the scaling factor s (s = 1/Δt) must be chosen
to specify the implementation of the PaulQ [18]. The method described in Paul’s paper to
determine these parameters ends up requiring large memory, due to having too many lists
(example: list size of 35×106 for 70K particles). For our simulations, we determined in a slightly
different way that is much simpler and requires less memory. It should be noted that, as also
mentioned in paul’s paper, the performance of PaulQ is only marginally sensitive to the choice
of s. For example, a choice of s which results in a doubling of the number of events in the
binary tree results in only one additional level in the tree.

Step 1. Through simulation, fix the # of lists, n

For Rapaport policy: n = SimSize × 64

For Lubachevsky policy: n = SimSize

Thus, n is always set to be the same as the size of the event pool, which is the maximum possible
number of predicted events at any given time. In parallel implementations, since events are
deleted in a lazy manner, sometimes we may need to have more events in event pool than the

Khan and Herbordt Page 7

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

maximum possible number of predicted events. However, such case was not observed in the
simulations we performed.

Step 2. Tmax (the maximum difference between the time associated with a newly predicted
event and the current time) is determined using cell-crossing events only.

Step 3. The scaling factor s is determined using the following equation: n = s × Tmax.

Step 4. A few other neighboring values are tried for scaling factor and the best value is chosen.

Values are presented in Table 1.

Figure 6 shows how implementing the PaulQ improved performance for the square well model
simulation, the target of this paper. For reference, we also present the result for a simple hard
sphere model in Figure 5. As shown in these figures, the speed-up was more significant for
Rapaport style, since it originally had a larger tree size and more frequent access to the tree.
Lubachevsky style already had smaller sized tree and less frequent updates, hence the
improvement was less too. The average tree size was about 60 for the Lubachevsky policy and
about 200 for the Rapaport policy for the square well model.

We also examined reducing the number of lists with the more aggressive use of the “overflow
list” (see Section 2.3). We found, however, that unlike our hardware implementation of this
algorithm [8], this optimization has little benefit here.

3.2 Selecting Cell Sizes
Selecting the cell size involves determining the optimal trade-off between the number of
predictions per event (more with a larger cell size) and the fraction of overhead cell-crossing
events (decreases with larger cell size). Setting the cell size to slightly larger than the cut-off
radius ensures that all relevant events can be found in the 27 cell neighborhood. For higher
density systems, such as we assume here for liquid simulations, this is the cell size we use; the
resulting proportion of cell-crossings to payload events is about 1:5.

For low density systems, especially when they are simulating only hard spheres with no square
well potential, a substantially larger cell size is naturally optimal. We found, however, that a
density somewhat lower than 1 particle per cell is preferred; rather the cell size should be
selected so as to fit 3–6 particles in the 27-cell neighborhood.

3.3 Event Queuing Policy: Rapaport vs. Lubachevsky
There has been much discussion about the relative benefits of the two best-known queueing
policies, those originated by Rapaport [20] and Lubachevsky [11], respectively, and reviewed
here in Sections 2.1 and 2.5. We find that the discussion is far from over and likely to continue
as new algorithms, simulation models, and computer architectures are explored.

The Rapaport method queues all predicted events and also maintains a linked list of events for
each particle to facilitate event invalidation. Since it saves all predicted events, cell-crossing
events can be implemented efficiently. Unlike the Lubachevsky method, it does not require
advancement events.

One advantage of the Lubachevsky method is that it has fewer events to queue, although with
a small tree accessed with logarithmic complexity the number of operations saved may not be
large. There is some advantage, however, with respect to memory hierarchy performance in
having a smaller working set size. Another advantage of the Lubachevsky method is that it
avoids the linked lists in the Rapaport method.

Khan and Herbordt Page 8

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

There also exists a hybrid approach that saves all predicted events but queues only the earliest
one [15]. This reduces the tree size, but still requires linked lists. The PaulQ data structure,
however, diminishes the advantage of this method, and the linked list operations dominates.
We therefore consider further only the Rapaport and Lubachevsky methods.

1. Use of the PaulQ data structure favors Rapaport because the tree operation is no longer
the most time consuming part. But Rapaport style queueing still requires linked lists
to track all events of each particle. Figures 5 and 6 show the improvement in both
methods when the PaulQ is used.

2. Simulation density matters. In low density simulations, particles travel farther
between collisions causing a higher proportion of cell-crossing events. This favors
Rapaport because, in the Lubachevsky method, regardless of event type, all
neighboring cells must be checked to predict new events. But in the Rapaport method,
for cell-crossing events, only one-third of the neighboring cells need to be checked.
That is, only the particles in the newly entered cell need to be checked.

3. Models requiring a large number of predictions per particle, such as square-wells,
favor Lubachevsky because it keeps only the earliest. Models requiring small numbers
of predictions favor Rapaport because it does not have Advancement events.

From our experiments, we have found that the Lubachevsky method performs better as the
system becomes denser and larger, the Rapaport method for the converse. Since we are here
more concerned with the former, we assume the Lubachevsky method for the remainder of this
paper.

3.4 Serial Reference Code
We have augmented the baseline code to support:

• The Lubachevsky insertion policy (in addition to Rapaport’s),

• Paul’s data structure, and

• Arbitrary spherically symmetric potentials.

The event insertion policy and data structure modifications were validated against the original
code and square-well potential was incorporated into the validated version. The new potential
was verified through checks of internal consistency and of conservation of physical invariants.

Table 2 shows event statistics and serial runtimes. In all cases, the force model was the square
well, density was 0.8, queueing was Lubachevsky style, and the event queue used the PaulQ
data structure. Scaling results in Section 6 are all normalized to these serial runtimes. In
profiling the serial baseline execution we found the following breakdown: event execution,
including state update, takes 1%; event commitment, including queueing operations, takes 3%;
and event prediction takes 97%.

4 Issues in Parallelizing DMD
4.1 PDMD Hazards

Parallelizing DMD presents certain difficulties. Given three events Eex, Epre, and Ecan where:

• Eex is the event at the head of the queue being processed at time t,

• Epre is an event predicted due to Eex, and

• Ecan is an event cancelled due to Eex.

Then

Khan and Herbordt Page 9

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

• Epre can be inserted at any position in the event queue, including the head,

• Ecan can be at any position in the event queue, including the head, and

• another event E caused by Eex (perhaps indirectly through a cascade of intermediate
events) can occur at time t + ε after Eex where ε is arbitrarily small and at a distance
δ from Eex in the simulation space where δ is arbitrarily large.

Examples of these occurrences are shown in Figure 7. In the lower part, events EA,B and
EC,D occur at times t0 and t0+ε. Previously predicted event EB,E gets cancelled, even though it
is currently at the head of the queue. Newly predicted event EB,C will happen almost
immediately and so gets inserted at the head of the queue. The upper part of Figure 7 shows
how causality can propagate over a long distance δ. After EF,G, a cascade of events causes
ET,U to happen almost instantly and on the other side of the simulation space. Although long
distance events such as in Figure 7 may appear to be rare, they are actually fundamental to
polymer simulations. The polymer forms a chain with rigid links. A force applied to one end
- say, by an atomic force microscope that is unraveling a protein - creates exactly such a
scenario.

These conditions introduce hazards in to the concurrent processing of events. In each of the
following cases, let E1 and E2 be the events in the processing queue with the lowest and next
lowest time-stamps, respectively.

Causality Hazards occur when the processing of events out of order causes an event to
occur incorrectly. For example, let event E1 be such that its execution causes E2 to be
cancelled, either directly, or through a cascade of new events inserted into the event queue
with time-stamps between those of E1 and E2. Then the sequence E1, E2 presents a causality
hazard and should not be processed concurrently.

Coherence Hazards occur when predictions are made with stale state information. For
example, let E1 and E2 be processed concurrently. Then even if there is no causality hazard,
there may still be a coherence hazard. For example, a particle taking part in E2 may be
predicted to collide with a particle taking part in E1, but only in the now stale system state
prior to update due to the execution of E1. Coherence hazards can exist only among events
in the neighboring cells.

Combined Causality and Coherence Hazards occur as follows. Let a new event Enew
caused by E1 be inserted into the queue ahead of E2 and not invalidate E2, but still result
in a coherence hazard. That is, Enew could change the state used in E2’s prediction phase,
or vice versa.

Efficient detection and resolution of these hazards is a key to creating scalable parallel DMD
codes.

4.2 Possible Approaches to PDMD
Parallelization of DMD can be achieved in at least three different ways.

1. Spatial decomposition. The simulation space is partitioned into some number of
sectors and one or more are assigned to each thread. Events can be processed
conservatively, letting no causality hazard occur ever; or optimistically allowing some
sort of rollback when causality hazard occurs. In any case, as we mentioned before,
this approach becomes complex for 3D simulations. For cubic decomposition, each
thread must exchange information with a large number of neighbors (26) for potential
conflicts. Or, if partitioning is by slices, then it must handle a drastic increase in the
ratio of surface area to volume and so the number of interactions per thread-pair.

Khan and Herbordt Page 10

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Spatial decomposition is likely to become ever more challenging as the latency ratio
of interprocessor communication to event processing continues to increase.

2. Functional decomposition. For any event, there is work that can be performed in
parallel. In particular, there are likely to be predictions needed with respect to a
number of nearby molecules. The advantage of functional decomposition within
events is that hazards are not an issue. The disadvantage is that the predictions can be
executed in a few hundred nanoseconds and so extremely fine-grained invocation and
synchronization is required.

3. Event based decomposition. Some number of threads process events in parallel,
dequeueing new events as the old ones are completed. This is the method we propose
in this paper. The advantage is that concurrency can be tuned to limit synchronization
overhead (as described in Section 5). The disadvantage is that some serialization
cannot be avoided.

While previous PDMD work has been based on spatial decomposition [5, 11, 13, 16] we are
not aware of any such systems currently in use for 3D simulations. We are not aware of any
system based on functional decomposition. We believe our system to be the first to use event
based decomposition.

5 Parallelizing DMD through Event-Based Decomposition
5.1 A Pipelined Event Processor

The main idea in our design is to process DMD in a single pipeline (as shown in Figure 8).
That is, while a large number of events can be processed simultaneously, at most one event at
a time is committed. Viewed another way, this design is of a microarchitecture that processes
events rather than instructions: the logic is analogous to that used in modern high-end CPUs
for speculative instruction execution. In this subsection we describe how hazards and
commitment are handled in this literal design (see [17] for details). In the next we describe
how this design translates conceptually into a multithreaded software version. We end this
section by describing some deeper software issues and how they can be addressed.

Commitment consists of the following steps: (i) updating the system state, (ii) processing all
causal event cancellations and (iii) new event insertions, and (iv) advancing the event priority
queue. As in a CPU, dependences—this time among events rather than instructions—combined
with overlapped executions cause hazards. And as in a CPU, these hazards are compounded
by speculation.

• Causality Hazards: The problem is that a new event can be inserted anywhere in the
pipeline, including the processing stages. But this cannot be allowed because then it
will have skipped some of its required computation. Insertion at the beginning of the
processing stages, however, results in out-of-order execution which allows causality
hazards. A solution is to insert the event at the beginning of the processing stages, but
to pause the rest of the pipeline until the event finds the correct slot. This results in
little performance loss for simulations of more than a few hundred particles.

• Coherence Hazards: After an event E completes its execution, it begins prediction.
The problem is that there will be several events ahead of E, however, none of which
has yet committed, but which will change the state when they do. This has the potential
to make E’s predictions incorrect because they may be made with respect to stale data
(coherence hazard). One solution begins with the observation that E is predicting
events only in its 27 cell neighborhood. It checks the positions of the events ahead of
it in the predictor stages, an operation we call a neighborhood check, or hood-check
for short. If the neighborhood is clear, i.e., it is hood-safe, then E proceeds, otherwise

Khan and Herbordt Page 11

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

it waits. This check results in substantially more performances than that due to
causality hazards, but it is still not large for simulation spaces of 323 or greater.

• Combined Causality and Coherence Hazards: The problem is that an event E can
be inserted ahead of events that have already begun prediction assuming they were
hood-safe. The solution is as follows. As before, E must be inserted at the beginning
of the processing stages. The added complication is that events in the predictor stages
with time-stamps greater than E must restart their predictions. Since the probability
of such insertions is small, however, this causes little additional overhead.

5.2 Conceptual Description of Software Implementation
The conceptual implementation of our method on software is shown in Figure 9.

• A FIFO is appended to the head of the event queue and contains the events that are
currently being processed. This is analogous to the following processing components
in Figure 8: the Event Executor, the Event Predictor, and Commit. While this FIFO
is not necessary algorithmically, it is useful in visualizing how hazards and
synchronization are handled.

• Each event in the FIFO is processed by an individual thread.

• The FIFO is ordered by time-stamp to facilitate handling of hazards, but processing
is not otherwise constrained.

• Events are committed serially and in order. This allows the handling of all causality
hazards.

• Events can be added to FIFO in two ways. They can be dequeued from the event queue
and appended to the back of the FIFO. Or they can be inserted directly from the
predictor.

• All coherence hazards are handled by checking whether any of the preceding events
in the FIFO are in the same neighborhood. Since such hazards occur rarely (see section
6.2), the hood-check is not done before a thread takes an event for processing, rather
it is done right before committing. A small committed-event history is maintained for
this purpose.

Event handling now contains the following tasks where processing and commitment are
separated explicitly.

• Event Execution and Prediction: Calculate state updates, predict new events, and save
these as temporary data.

• Synchronization: Wait until the event’s turn to commit.

• Handling potential coherence hazards: Perform hood-checks; restart the event or
update processing results as necessary.

• Committing and, potentially, discarding, the processing result.

5.3 Implementing PDMD through Event-Based Decomposition
After translating these ideas into the standard DES framework (e.g., Figure 2), we obtain the
design in Figure 10. There are several implementation issues which must be handled carefully
if any speed-up is to be obtained: serial commitment, including updates of all of the data
structures; locks on shared data structures, including the potential waiting time for threads to
obtain new data; and contention in accessing a shared computing resource, i.e., shared memory.

Khan and Herbordt Page 12

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

PDMD through event-based decomposition can be implemented in various ways, depending
on the synchronization scheme. Here we present three implementations where two
implementations (the first and the third) proved to be more efficient than the other.

Implementation of Code 1—In Code 1 synchronization is done using a variable,
EventToCommit, which holds the ID of the highest priority event, i.e., of the event at the head
of the queue. Initially, Thread 0 is assigned the highest priority event and EventToCommit is
set to the ID of that event. Since all threads will poll EventToCommit to check their turn, no
other synchronization is necessary. A thread updates the shared data structures and particle
states only when it has processed the highest priority event. Thus only one thread commits at
a time (and updates shared data structures and particle states). A committing thread also
dequeues the next highest priority event available from the event queue, before it updates the
value of EventToCommit. This guarantees that the highest priority event is always assigned to
a thread.

Once an event is assigned to a thread, the event will not be deleted and its turn to commit will
eventually arrive. In the case where it has to be deleted, it is only marked as canceled; at commit
time it is discarded. This ensures that no thread ends up in an infinite loop. Hazards (and
conversion to advancement events for the Lubachevsky method) are checked before
committing the result of an event. If hazards (or conversions to advancement events) exist,
then the event is reprocessed as necessary.

As a thread commits an event it notifies all the other threads. This information is used by each
thread to handle hazards and conversions. Every thread maintains a fixed size data structure
for this information. If too many threads commit ahead of a particular thread and cause an
overflow, then that thread simply reprocesses its event at commit time.

Main Thread{
 Initialize all data structures, including the event queue;
 EndCondition = False;
 EventToCommit = The very first event to be processed and committed;
 Invoke Compute Threads and assign them each the highest priority event
that is available.
(Note: Only one thread will be assigned the ’EventToCommit’ event; Main Thread
will also continue as a Computing Thread.)
 Wait until all threads are done. }
Compute Thread{
 While (Not EndCondition){
 Process assigned event;
 Wait until ((EventToCommit = assigned event) or (EndCondition));
 (Note: Only one thread will reach beyond this point at a time, except when
EndCondition is true;)
 If (EndCondition) return;
 If (Event has been cancelled){
 Discard event;
 Assign itself the next highest priority event that is
available;
 EventToCommit = Next event to be processed and committed; }
 Else if (No ConversionToAdvancement and No hazard) {
 Commit result;
 Assign itself the next highest priority event available;

Khan and Herbordt Page 13

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

 Update EndCondition;
 EventToCommit = Next event to be processed and committed; }
 Else{
 Update result or re-process the event as necessary;
 Commit result;
 Assign itself the next highest priority event available;
 Update EndCondition;
 EventToCommit = Next event to be processed and
committed; } } }

Implementation of Code 2—Code 1 has a simple synchronization method but requires
threads to wait for their turn to commit. Due to load-imbalances (different types of events
require different amount of processing time), unpredictable cachebehavior, and time to update
the common data structures, threads spend much time waiting. In Code 2, threads do not wait;
rather, after processing their assigned events, they only mark the event as processed. They then
acquire a centralized global lock and try to commit all available events that are already
processed. Then, as before, they assign themselves the highest priority unprocessed event,
release the lock, and start processing the new event.

A centralized fixed size list of committed events is maintained. When an event is assigned to
a thread, the current number of committed events is recorded. This number is used during
commitment to determine hazards and conversions. As before, if too many events have been
committed before a processed event can be committed, making it impossible to determine the
hazards and conversions, then that event is simply restarted.

Main Thread{
 Initialize all data structures, including the event queue;
 EndCondition = False;
 Invoke Compute Threads and assign them each the highest priority event
that is available.
 (Note: Main Thread will also continue as a Computing Thread.)
 Wait until all threads are done. }
Compute Thread{
 While (Not EndCondition){
 Process the assigned event and mark it as processed;
 Acquire Lock;
 (Note: Only one thread will reach beyond this point at a time)
 If (EndCondition) Release Lock and return;
 While (The highest priority event is marked as processed){
 If (Event has been cancelled){
 Discard event; }
 Else if (No ConversionToAdvancement and No hazard) {
 Commit result;
 Update EndCondition; }
 Else{
 Mark the event as not-processed;
 It will be assigned to some thread again; } }
 Assign itself the next highest priority event that is available;
 Release Lock; } }

Khan and Herbordt Page 14

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Implementation of Code 3—Code 2 allows threads to continue immediately after they have
finished processing their assigned event, but it requires continually acquiring a centralized
lock. Since the processing time of an event is short (typically 3 – 60 us), this requirement results
in a substantial loss of performance. We have found that instead of allowing all threads to
commit and get new work, better performance can be achieved by assigning a Master Thread
for this purpose. This mechanism, however, requires synchronization between each master-
slave thread pair. But now, instead of using one centralized lock, we use separate locks for
each master-slave thread pair.

The implementation of the locks is done using flags and by allowing threads to spin on the
values of their respective flags (somewhat similar to a ticket-lock). Two flags, threadGotWork
and threadFinishedWork, are used for each master-slave pair. The Master Thread raises the
flag threadGotWork for each thread once it has assigned an event to that thread. Meanwhile,
each Slave Thread spins on its threadGotWork flag until it is raised. Once it is raised, the Slave
Thread reads the event data and resets the flag. When the Slave Thread finishes processing the
event, it raises its threadFinishedWork flag and again waits for its threadGotWork flag to be
raised.

The Master Thread checks the threadFinishedWork flags of all the threads. Once it is raised
by any Slave Thread, the Master Thread resets that flag, tries to commit the event, and assigns
a new event to that thread. At this point, the Master Thread raises that threads threadGotWork
flag and processing continues.

We declare these flags such that they reside in different cache blocks so that each thread can
spin on their values independently without any false sharing. A centralized fixed-size data
structure of committed events is maintained; its processing is analogous to that in the previous
Codes.

Main Thread{
 Initialize all data structures, including the event queue;
 EndCondition = False;
 For (i = 0; i < threadCount; i++){
 threadGotWork[i] = 0;
 threadFinishedWork[i] = 1;
 threadEventID[i] = −1; }
 Invoke Compute Threads and assign them each the highest priority event
available.
 (Note: Main Thread will continue as the Master Thread, threadNum =
0.)
 Wait until all threads are done. }
Compute Thread (threadNum){
 While (True){
 While (threadGotWork[threadNum] = 0){} // wait for flag;
 if (threadGotWork[threadNum] = −1) return;
 eventID = threadEventID [threadNum]; // get event
 threadGotWork[threadNum] = 0; // reset flag
 if (eventID != −1) Process Event;
 threadFinishedWork[threadNum] = 1; // raise flag } }
Master Thread (threadNum) {
 SlaveCount = Number of slave threads;
 While (SlaveCount != 0){

Khan and Herbordt Page 15

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

 For (i = 1; i < threadCount; i++){ // exclude master thread
 if (threadFinishedWork[i] = 1){ // check flag
 threadFinishedWork[i] = 0; // reset flag
 if (threadEventID[i] != −1) // mark thisevent as
processed.
 if (EndCondition){
 threadGotWork[i] = −1; // signal end
 SlaveCount = SlaveCount −1; }
 else{
 threadEventID [i] = next highest priority event
available; // −1 if none available;
 threadGotWork[i] = 1; } } }
 Commit highest priority events that are processed;
 Handle hazards, conversions, and restarts;
 Update EndCondition; } }

5.4 Efficient Restart
Restarting an event every time there is a coherence hazard (alone or combined with a causality
hazard) is inefficient. We optimize this by updating only the necessary portion of the prediction.

• In case a payload event has taken place in the neighborhood before the current event,
it suffices to update the prediction for only those particles (one or both) that took part
in that event and are in the same neighborhood.

• In case a cell-crossing event has taken place in the neighborhood before the current
event, if that new particle entered the neighborhood, then updating the prediction only
for that particle suffices. If that new particle left the neighborhood, then (for our
implementation) the event must be restarted. This is because, depending on the time
of commitment of that cell-crossing event, it is possible that the current event may
have used the incorrect cell-list (linked list of particles in the same cell) values.

• In case an advancement event has taken place in the neighborhood before the current
event, theoretically, updating prediction result for that particle is not needed. This is
because nothing about that particle has changed. But, to ensure compatibility with the
serial output, we update the prediction for that particle. If hardware had infinite
precision, this would not be necessary.

6 Results
This section is organized as follows. We begin by presenting the basic scalability results of the
three Codes presented in Section 5.3, together with a qualitative analysis. In the following
subsections we present more detailed analyses: determining the parallelism inherent in PDMD
with event-based decomposition; basic modeling of the inherent architectural limitations; and
a quantitative analysis of the most promising Code, together with an experimentally validated
analytical model that accounts for the details of the target architecture.

6.1 Scalability
The experimental setup and the baseline code are described in Section 2.4 and Section 3.4,
respectively. The parallel versions have been created as described in Section 5. As described
in Section 2.5, the energy model is of uniform hard spheres of radius 1 with simple square
wells of radius 2.5. As discussed there this model generalizes with respect to relative
performance to most models described in the literature.

Khan and Herbordt Page 16

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

All parallel versions were verified to have complete agreement with their respective serial
versions. This consistency includes complete matches of all particle histories. The method used
was as follows. All events were saved in order with participant information and time of
occurrence. This was done for both serial and parallel versions which were checked to be
exactly the same, including overhead events. Other physical parameters, e.g., energy, were also
checked to have the same values. The codes are running and have been so tested in both
Windows and Linux environments (except some versions that were used to test system-specific
lock implementations).

The primary scaling results are shown in Figures 11 and 12. As shown in Figure 11 (left panel),
the best speedup is achieved by Code 3 with 5.9× for a 128K particle simulation using one
master and seven slave threads. Figure 12 shows that for the 12-core AMD processor the best
speedup is 9.1 with one master and 11 slave threads. Code 2 is clearly not viable, while Code
1 performs better for a smaller number of threads, and Code 3 performs better as the number
of threads increased. This is because Code 3 uses a helper thread: initially the overhead is
apparent, but it rapidly overtakes the other methods.

The right panel of Figure 11 shows the scaling of Code 3 with respect to simulation size: not
surprisingly, better scaling is achieved for larger simulations and with the benefit of
parallelization diminishing somewhat with small size (2K). This is mostly because of an
increase in coherence hazards (see Section 6.2). Since Code 3 appears to be the preferred
method, we discuss its performance in detail in the next subsections.

Code 1 has two inefficiencies that result in threads waiting additional time to commit. One is
uneven load balance. Payload events spend more time in event-prediction than do cell-crossing
events or advancement events. This is because a payload event predicts events for two particles,
whereas the other types predict for only one particle. The other is increased cache misses and
the random occurrence of those misses. This is because the order of start-of-processing does
not guarantee the order of end-of-processing.

For Code 2, we note that the performance collapses suddenly with four or more threads. This
is because of the bottleneck at the centralized lock and the small processing time per event.
We performed extensive tuning of the lock, starting initially with the standard Linux function
Mutex. We found that this Mutex has an undesirable system call and so replaced the function
with various hand-tuned alternatives: Test&Set, Test&Test&Set, and
Test&Test&SetWithFixedDelay (see, e.g., Culler et al., [3]). As shown in Figure 11, none of
these did significantly better than the original.

Figure 12 shows how relative performance varies with particle density. There is apparently
little variation for densities higher than 0.4. The effect of density on scaling is that it changes
the amount of work per event: As density increases, more particles must be checked for
potential events.

A number of other parameters were tested but found not to affect relative performance:

• Various combinations of temperatures and particle densities with a temperature range
from 0.4 to 1.6 and particle density from 0.1 to 0.8.

• Model complexity with number of steps in the square well ranging from 1 to 15.

6.2 Available Concurrency
In this subsection we measure the available concurrency in PDMD (with event-based
decomposition) for the simulation models described. Event-based decomposition enables all
events to be executed concurrently as long as they are independent. Since this independence

Khan and Herbordt Page 17

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

is hard to determine a priori—as the system state is changing continuously and unpredictably
—all events but that at the head of the queue are necessarily processed speculatively and so
may result in work being wasted. There are two possible reasons for this: (i) The event may
need to be invalidated due to a causality hazard (and converted into an advancement event),
and (ii) the event prediction may need to be recomputed due to a coherence hazard.

Effect of Causality Hazards—Recall that causality hazards occur through the cancellation
of a speculatively processed event E when a particle P involved in E has been involved with
a preceding event. In the Lubachevsky method this only happens if an event Enew involving
P is inserted ahead of E after E has begun processing. We have examined the queue positions
into which new events are inserted and have found that the positions are nearly uniformly
randomly distributed. Moreover, the number of events in the queue is roughly equal to the
number of particles being simulated. We find, therefore, that for likely numbers of threads T
and particles N, the probability that an event will be part of a causality hazard Pcausality ≃ T/
N. This makes the loss of concurrency due to causality hazards negligible.

A consequence is that few events are inserted into or deleted from the binary tree part of the
event queue. Therefore, no additional FIFO-like data structure is needed. Instead, the binary
tree is used directly to retrieve the highest priority events.

Effect of Coherence Hazards—Recall that coherence hazards occur when the predictions
made during the processing of an event E may have been made using stale data. This occurs
when an event preceding E is committed after E has begun processing and has occurred within
the cell neighborhood of E. We have examined the spatial distribution of committed events
and found that their locations are nearly uniformly randomly distributed. The probability that
there will be a coherence hazard is therefore related to the number of threads T, the particle
density ρ, and the ratio of the volume of the cell neighborhood to the overall simulation space.
The cell neighborhood here is 42 cells rather than 27 because events typically span two
neighboring cells. Given a square-well size dsq and a number of particles N, then the probability
of a coherence hazard is approximately Pcoherence ≃ 1 – (1 – ρ * 42 * dsq3/N)T. Plugging in
typical values of ρ = 0.8, T = 8, dsq = 2.5, and N = 128K, we obtain Pcoherence = .032. This
value of Pcoherence, however, serves only as an upper bound on the number of restarts due to
coherence hazard: Most can be avoided by using the methods for efficient restart described in
Section 5.4.

We now relate the theory to the actual implementation and effect on execution time. Figure 13
shows the measured fraction of the events that are processed but not committed and the events
that need to restart. The latter events are a subset of the former because every restarted event
has been processed before it is restarted. Restarts are mostly due to coherence hazards, but a
small fraction are also caused by causality hazard (see immediately above). The fraction that
is processed but not committed includes both the events that were restarted and the events that
were processed but canceled later due to a causality hazard.

Note that updating the prediction results and detecting the need to restart is handled by master
thread during commitment. If an event needs to be restarted, it is immediately processed and
committed by the master thread. This means that the restart latency is often hidden and slave
threads can continue processing new events in parallel. These complex effects account for the
non-linear behavior in Figure 13.

The most important conclusion from this subsection is that lack of available concurrency is
likely to affect performance by only a fraction of a percent, and is not likely to affect scalability
as much as architectural limitations (see Section 6.3).

Khan and Herbordt Page 18

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

6.3 Limitations on Scalability - Simple Model
In this Subsection we propose a simple analytical model for the limit on scalability. The two
constraints are (i) serial commitment, and the associated synchronization overhead, and (ii)
serialized memory access due to the shared bus. Each event-processing task has four
components:

Icpu = CPU portion of independent code (independent: can be done in parallel),

Imem = Memory portion of independent code,

Scpu = CPU portion of synchronization code (synchronization: cannot be done in parallel), and

Smem = Memory portion of synchronization code.

Assuming that the application is not memory bound and that computation and memory access
can be overlapped, processing time of an event by a single processor = Icpu + Scpu.

Constraint 1 - synchronization. For multiple processors P handling separate events, the Icpu
can be processed in parallel while the Scpu must processed serially. Synchronization can be
hidden as long as

P * Scpu ≤ Icpu + Scpu;

that is, PSyncLimit = (Icpu + Scpu)/Scpu.

Constraint 2 – shared memory. Similarly, the memory components can be hidden until the
memory system approaches saturation:

P * (Imem + Smem) ≤ Icpu + Scpu;

that is, PShMemLimit = (Icpu + Scpu)/(Imem + Smem).

If neither of the constraints is in effect, then the application scales linearly. Otherwise maximum
scaling is PSyncLimit or PShMemLimit, depending on which is stronger.

From measurement, we find that Scpu takes roughly 5% and Imem + Smem takes roughly 10%
of the total time of event processing with a single processor. We estimate the memory access
cycle count to be L2_LINE_MISS_COUNT × 100, where L2_LINE_MISS_COUNT was
measured with VTune [22] and each miss is counted as 100 cycles (from [9] pp. 2–19 – 2–20).
Therefore, for our target platform, when Constraint 1 dominates, the maximum linear scaling
PSyncLimit = 20; when Constraint 2 dominates, the maximum linear scaling PshMemLimit = 10.

6.4 Architectural Limitations on Scalability
To account for the increased processing time per event we analyze in more detail the interaction
between application and architecture. Figure 14 shows that the processing time per payload
event increases by about 25% as the number of threads is increased to 8. Of this increase, 40%
is due to synchronization overhead, including synchronization timing mismatch, while the
other 60% is due to the increase in cache misses and bus utilitization.

Figure 15 shows total cache misses and rate of bus utilization for the entire simulation period
for the different numbers of threads. The data were collected with VTune (vtune_linux_9.1)
[22] using separate runs of size 128K. We observe that the count of total cache misses increases
slightly with the number of threads. This indicates that there is neither significant data reuse
by a single thread nor data sharing among threads; these would cause substantial increases and

Khan and Herbordt Page 19

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

decreases in cache misses, respectively. More likely is that the modest increase is related to
synchronization: more threads means more misses on explicitly shared data.

We observe also that bus utilization increases roughly linearly with the number of threads with
exceptions between 1 and 2 and between 7 and 8. The first exception is because of the ‘shift
between serial and parallel code with the latter having master and slave threads. The second
exception is most likely due to system effects as no cores remain free. We note that the increase
in bus utilization increases memory latency through queueing and other delays. We have tested
the memory hierarchy and found that, for random accesses (non-DMA), the bus saturates at
60%.

These results match the those of Section 6.2: that threads are almost always working on events
in different neighborhoods and thus different data sets. And since every prediction requires
accessing data of a new particle, there is little reuse or sharing of cached data.

To confirm our analysis on architectural limitation we use the following procedure. First, we
project PDMD performance based on the fact that the addition of each thread increases
individual event processing time. Second, we validate the projection against the observed
scaling result. Third, we present a hypothesis that the majority of the increase is due to
architectural limitation. And finally, we validate the hypothesis by using a microbenchmark
that has data access pattern similar to those of the application.

The addition of each thread increases individual event processing time. Therefore, speed-up is
limited by that increase rate. For example, if using 7 processors causes 30% increase in
processing time, then speed-up = (Original Processing Time)/(New Processing Time/7) = 100/
(130/7) = 7/(1 + 0.3) = 5.38. For PDMD, the addition of each thread causes roughly a 5%
increase in event processing time. Of this 2% is due to synchronization timing mismatch,
confirmed from measurement in Figure 14, and the rest is due to increased time in memory
access. The latter portion is a hypothesis based on the increase in cache misses and bus
utilization.

Based on the above discussion, the equation of projected speed up for implementation 3 is,
Speed-up = # of slave threads / (1 + increase rate x # of slave threads).

For example, for 8 processors (7 slave threads), the projected speed-up = 7/(1 + 0.05 * 7) = 7 /
1.35 = 5.18; the observed speed-up is 5.36. For 7 processors (6 slave threads), projected speed-
up = 6/(1 + 0.05 * 6) = 6 / 1.30 = 4.61 and observed speed-up is 4.82. Thus the projection
conforms well with the observed results, as shown in Figure 16.

To confirm our analysis on architectural limitation, we designed a microbenchmark that has a
data access pattern similar to our DMD application: Data of similar size is accessed in nearly
random fashion. Figure 16 shows how the scalability result of that program overlaps with our
DMD application, confirming the fact that the increase in data access time is a major obstacle
to good scaling of PDMD. Therefore with a 5% increase in event processing time per thread,
the projected runtime, with more than two threads T = (serial runtime * (1 + 0.05 * (# of threads
−1))) / (# of threads - 1).

We validate our hypothesis that a 3% increase in event processing time per additional thread
is caused by architectural limitation, i.e., the increase in cache miss count and bus utilization.
We created a program that has a single loop and accesses different portions of a large data set
randomly in each iteration. We kept the data size the same as our DMD application. If our
hypothesis was correct, the scaling pattern of this program would resemble the scaling pattern
of DMD. In fact, as shown in Figure 16, the scaling result of the random access program almost
perfectly overlaps with the DMD result. DMD scales slightly better, since its data access is not

Khan and Herbordt Page 20

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

entirely random. We conclude that we have accounted for the architectural limitations that limit
the scalability of PDMD with event-based decomposition.

7 Conclusion
In this paper, we examine the issues of parallelizing DMD, and present a PDMD simulator
implemented with event based decomposition. Our method is microarchitecture inspired,
where speculative processing of events enables multi-threading, and in-order commitment
ensures correctness of simulation. We have achieved speedups of 5.9× on an 8-core and 9.1×
on a 12-core processor. The relative speedups vary little across a wide range of simulation
models: with respect to model complexity, with the exception of simple hard spheres as in
Figure 1a; number of particles, beyond a few thousand; temperature; and density, beyond
around 0.4.

We have also studied various other issues in DMD simulator construction, e.g., comparison of
event queuing methods, selecting cell size, Paul’s data structure, and synchronization and
scheduling issues. We also analyzed the performance of our method and concluded that the
increase in cache misses and bus utilization rate, due to the increase in participating threads,
seems to be the major obstacle towards achieving higher performance on shared-memory multi-
processors. The need for frequent synchronization also remains a significant obstacle. An
efficient hardware implementation of our method (pipelining instead of using multiple
computational cores) seems highly promising as future work.

Acknowledgments
Josh Model, George Bishop, Francois Kosie, and Tony Dean contributed to previous versions of this work. We thank
the anonymous reviewers for their many excellent suggestions.

References
1. Buldyrev S. Application of discrete molecular dynamics to protein folding and aggregation. Lecture

Notes in Physics. 2008; 752:97–131.
2. Chellappa S, Franchetti F, Pueschel M. How to write fast numerical code: A small introduction.

Generative and Transformational Techniques in Software Engineering II, Lecture Notes in Computer
Science. 2008; v5235:196–259.

3. Culler, D.; Singh, J.; Gupta, A. Parallel Computer Architecture: A Hardware/Software Approach. San
Francisco, CA: Morgan-Kaufmann; 1999.

4. Dokholyan N. Studies of folding and misfolding using simplified models. Current Opinion in Structural
Biology. 2006; 16:79–85. [PubMed: 16413773]

5. Fujimoto R. Parallel discrete event simulation. Communications of the ACM. 1990; 33(10):30–53.
6. Hennessy, J.; Patterson, D. Computer Architecture: A Quantitative Approach. San Mateo, CA: Morgan

Kaufman Publishers, Inc; 2007.
7. Herbordt, M.; Khan, M.; Dean, T. Parallel discrete event simulation of molecular dynamics through

event-based decomposition; Proc. International Conference on Application Specific Systems,
Architectures, and Processors; 2009. p. 129-136.

8. Herbordt M, Kosie F, Model J. An efficient O(1) priority queue for large FPGA-based discrete event
simulations of molecular dynamics. Proc. IEEE Symp. on Field Programmable Custom Computing
Machines. 2008:248–257.

9. Intel Corporation. Intel 64 and IA-32 Architectures Optimization Reference Manual. 2009
10. Krantz A. Analysis of an efficient algorithm for the hard-sphere problem. ACM Transactions on

Modeling and Computer Simulation. 1996; 6(3):185–209.
11. Lubachevsky B. How to simulate billiards and similar systems. J. of Computational Physics. 1991;

94:255–283.

Khan and Herbordt Page 21

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

12. Lubachevsky B. Simulating billiards: Serially and in parallel. International Journal in Computer
Simulation. 1992; 2:373–411.

13. Marin M. Billiards and related systems on the bulk-synchronous parallel model. Proc. Parallel and
Distributed Simulation. 1997

14. Marin M, Cordero P. An empirical assessment of priority queues in event-driven molecular dynamics
simulation. Computer Physics Communications. 1995; 92:214–224.

15. Marin M, Risso D, Corcero P. Effcient algorithms for many-body hard particle molecular dynamics.
J. of Computational Physics. 1993; 109:306–317.

16. Miller S, Luding S. Event-driven molecular dynamics in parallel. J. of Computational Physics. 2003;
193(1):306–316.

17. Model J, Herbordt M. Discrete event simulation of molecular dynamics with configurable logic. Proc.
IEEE Conference on Field Programmable Logic and Applications. 2007:151–158.

18. Paul G. A complexity O(1) priority queue for event driven molecular dynamics simulations. J.
Computational Physics. 2007; 221:615–625.

19. Proctor E, Ding F, Dokholyan N. Discrete molecular dynamics. Wiley Interdisciplinary Reviews:
Computational Molecular Science. 2011; 1(1):80–92.

20. Rapaport D. The event scheduling problem in molecular dynamics simulation. J. of Computational
Physics. 1980; 34:184–201.

21. Rapaport, D. The Art of Molecular Dynamics Simulation. Cambridge University Press; 2004.
22. Reinders, J. Vtune Performance Analyzer Essentials. Intel Press; 2005.
23. Sigurgeirsson H, Stuart A, Wan W-L. Algorithms for particle-field simulations with collisions. J. of

Computational Physics. 2001; 172:766–807.
24. Urbanc B, Borreguero J, Cruz L, Stanley H. Ab initio discrete molecular dynamics approach to protein

folding and aggregation. Methods in Enzymology. 2006; 412:314–338. [PubMed: 17046666]
25. Urbanc B, Cruz L, Teoplow D, Stanley H. Computer simulations of alzheimer’s amyloid β-protein

folding and assembly. Current Alzheimer’s Research. 2006; 3:493–504.
26. Yun S, Guy H. Stability tests onknown and misfolded structures with discrete and all atom molecular

dynamics simulations. Journal of Molecular Graphics and Modelling. 2011; 29(5):663–675.
[PubMed: 21215670]

Khan and Herbordt Page 22

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 1.
A collection of DMD potential models used in different studies (from [1, 19, 24]). (a) Simple
hard sphere characterized by infinite repulsion at the sphere diameter. (b) Hard spheres with
an attractive potential square well, zero interaction after a given cut-off radius. (c) A square
well potential with multiple levels. (d) Single-infinite square well used for covalent bonds,
angular constraints, and base-stacking interactions. (e) Dihedral constraint potential. (f)
Hydrogen-bonding auxiliary distance potential function. g) Discretized van der Waals and
solvation non-bonded interactions potential. h) Lysine-arginine-phosphate interaction
potential in DNA-histone nucleosome complex. (i) Two-state bond used to create auxiliary
bonds between backbone beads if they are also linked by a covalent bond. (j) Repulsive ramp
with two steps for auxiliary interactions in hydrogen bond and with multiple steps to model
liquids with negative thermal expansion coefficient.

Khan and Herbordt Page 23

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 2.
DES/DMD block diagram.

Khan and Herbordt Page 24

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 3.
Cell subdivision in DMD. Neighboring cells should cover the particle cut-off radius.

Khan and Herbordt Page 25

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 4.
DMD data structures including Paul’s two-level event queue

Khan and Herbordt Page 26

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 5.
Performance of Rap Vs. Lub (Simple hard sphere model of density 0.8)

Khan and Herbordt Page 27

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 6.
Performance of Rap Vs. Lub (Square-well model of density 0.8)

Khan and Herbordt Page 28

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 7.
Events AB and CD cause BC and cancel BE. Event FG causes TU almost instantly and at long
distance.

Khan and Herbordt Page 29

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 8.
DMD with a dedicated pipelined event processor. The event queue is several orders of
magnitude larger than the processing stages even for modest simulations.

Khan and Herbordt Page 30

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 9.
Parallel DMD implemented on software with an event FIFO.

Khan and Herbordt Page 31

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 10.
PDMD in the standard DES framework.

Khan and Herbordt Page 32

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 11.
Left panel shows performance scaling of the various Codes. Simulation size = 128K. For Code
2 performance with different locks is shown. Right panel shows performance scaling of Code
3 for different simulation sizes. For both Density = 0.8.

Khan and Herbordt Page 33

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 12.
Performance scaling of Code 3 for different densities and two different processors. Simulation
size = 128K.

Khan and Herbordt Page 34

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 13.
Events that are processed but not committed represent wasted effort only. Restarted events
represent, in addition to wasted effort, the need for the payload effort to be serialized. Graphs
are for Code 3 and 128K particles.

Khan and Herbordt Page 35

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 14.
Event processing time as a function of number of threads; Code 3, size 128K.

Khan and Herbordt Page 36

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 15.
Rate of memory bus utilization and total number of L2 cache misses as a function of number
of threads; Code 3, size 128K.

Khan and Herbordt Page 37

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 16.
Overlap of scaling result for an analytical model with PDMD scaling result

Khan and Herbordt Page 38

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Khan and Herbordt Page 39

Ta
bl

e
1

C
om

pu
te

d
pa

ra
m

et
er

s f
or

 v
ar

io
us

 si
m

ul
at

io
n

si
ze

s a
nd

 q
ue

ue
in

g
po

lic
ie

s.

Si
m

Si
ze

2K
16

K
12

8K

of

 li
st

s
s.

fa
ct

or

of
 li

st
s

s.
fa

ct
or

of

 li
st

s
s.

fa
ct

or

R
ap

pa
po

rt
13

10
72

11
95

10
48

57
6

63
83

88
60

8
72

Lu
ba

ch
ev

sk
y

20
48

23
04

16
38

4
13

69
6

13
10

72
41

98
4

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Khan and Herbordt Page 40

Table 2

Breakdown of event types for runs of 10M payload events.

of particles Runtime (sec) % cell crossings % advancements % payload events

2K 411s 1.3% 36.0%
Repulsive collision: 13.9%
Well entry: 17.6%
Well exit: 15.6%
Well bounce: 15.6%

16K 414s 1.3% 36.2%
Repulsive collision: 12.0%
Well entry: 20.0%
Well exit: 15.0%
Well bounce: 15.5%

128K 623s 1.8% 36.9%
Repulsive-collision: 6.1%
Well entry: 28.3%
Well exit: 13.9%
Well bounce: 13.1%

J Comput Phys. Author manuscript; available in PMC 2012 July 20.

