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Abstract
Pancreatic adenocarcinoma is the fourth leading cause of cancer death with an overall 5-year
survival of less than 5%. As there is ample evidence that pancreatic adenocarcinomas elicit
antitumor immune responses, identification of pancreatic cancer-associated antigens has spurred
the development of vaccination-based strategies for treatment. While promising results have been
observed in animal tumor models, most clinical studies have found only limited success. As most
trials were performed in patients with advanced pancreatic cancer, the contribution of immune
suppressor mechanisms should be taken into account. In this article, we detail recent work in
tumor antigen vaccination and the recently identified mechanisms of immune suppression in
pancreatic cancer. We offer our perspective on how to increase the clinical efficacy of vaccines for
pancreatic cancer.
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Epidemiology of pancreatic cancer & clinical management
Pancreatic adenocarcinoma, henceforth indicated as pancreatic cancer, accounts for the
majority of all pancreatic cancers and has the poorest outcome. Pancreatic cancer is highly
aggressive and is the fourth leading cause of cancer death in the USA with over 43,000
estimated new cases in 2010 [1]. The prognosis of these patients is dismal with overall
survival less than 5% and a median survival of 4–6 months. At the time of diagnosis, 15–
20% of patients present with operable disease whereas approximately 40% are found to have
locally advanced, unresectable disease and approximately 45% have metastatic disease.
Surgical resection is the only known curative treatment for pancreatic cancer [2]. However,
even with complete surgical resection, recurrence is common and a majority of patients
recur with distant metastasis. Patients who develop recurrence usually present between 9 and
12 months after resection [3]. Median survival after surgery is 15–20 months with a 5-year
survival rate of approximately 20% [3,4]. The median survival of patients with locally
advanced, unresectable disease is 10–12 months [2,5]. The significance of this malignancy is
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further illustrated by comparing the estimated 36,800 deaths from pancreatic cancer with the
32,050 and 40,230 deaths from prostate and breast cancer, respectively [1].

The poor prognosis of pancreatic cancer is related to a combination of late detection, as most
patients present with locally advanced or metastatic disease, and standards of care that
consist of relatively ineffective chemotherapeutic regimens. Gemcitabine is currently
approved, and the chemotherapeutic agent of choice, for the treatment of patients with
pancreatic cancer, with adjuvant chemoradiation now considered the standard of care in
many postoperative pancreatic cancer patients treated in North America. Multiple promising
drugs, targeting hallmarks of cancer such as angiogenesis, proliferation and metastasis, have
failed to provide any clinically relevant benefit [6].

A role for the immune response in pancreatic cancer
Immune-based treatments for cancer represent a rapidly evolving therapy with great
potential. Based on the supposition that the immune system can discriminate tumor from
normal self, investigators have pursued immune-based treatments for cancer for over 100
years [7]. Over the past 30 years, a large body of data has been accumulated showing that
cancer patients generate B and T cells that recognize antigens expressed on autologous
pancreatic tumor cells [8–14]. In addition, evidence has been obtained in animal models
showing that mice deficient in genes associated with immunity (e.g., IFN [15] and perforin
[16]) are prone to develop cancer. Furthermore, extensive analysis of immune infiltrates in
human tumors has demonstrated a positive correlation between prognosis and the presence
of a humoral response to pancreatic tumor antigens, such as MUC-1 and mesothelin, and of
tumor-infiltrating cytotoxic T cells and Th1 cells [10,11,17,18]. By contrast, in a mouse
model in which an activating K-Ras mutation is expressed in the pancreas, preinvasive
pancreatic lesions are characterized by the infiltration of immune suppressor cells rather
than immune effector cells, suggesting tumor immunity may be blocked from the inception
of pancreatic cancer development [19]. All mice with the K-Ras mutation develop
pancreatic adenocarcinoma and eventually die of disease. Finally, the finding that
antagonism of negative T-cell regulators, such as cytotoxic T-lymphocyte-associated
(CTLA) protein-4 and B- and T-lymphocyte attenuator (BTLA), can augment the antitumor
immune response confirms that patients mount an immune response to their tumor [20,21].
Despite mounting evidence that an antitumor immune response is elicited in cancer patients,
this response is ineffective and does not result in the elimination of tumor. Given that most
tumor antigens are self- or mutated self-antigens and that the pancreatic tumor
microenvironment is immunosuppressive (discussed at length below), this is not surprising
[22]. Of particular note are the findings that both the prevalence of Treg in peripheral blood
and tumor, and expression level of programmed death-1 ligand (PD-L1) in tumor are
independent predictors of poor survival in pancreatic cancer [23–25]. Tregs that constitute
5–10% of CD4 T cells induce immune tolerance by suppressing host immune responses
against self- and nonself-antigens [26–30], thus playing a critical role in tolerance and the
immune response to malignancies. These findings strengthen the notion that pancreatic
cancers induce antitumor immune responses. Thus, efforts towards improving the clinical
efficacy of immune therapy should involve strategies to neutralize or overcome immune
suppression.

We discuss in this article preclinical and clinical efforts towards immune therapy of
pancreatic cancer.

Vaccination against tumor antigens as a treatment for pancreatic cancer
With the molecular identification of human tumor antigens in the early 1990s [31], the
opportunity to specifically sensitize immune cells against tumor antigens became a reality,
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leading to a multitude of experimental strategies for immune-based therapy of cancer. While
multiple clinical studies have documented evidence of treatment-induced, antigen-specific
immune responses, few, if any, protective immune responses have been observed in patients
with metastatic disease. Despite this setback, there is renewed optimism for immune
therapy, as vaccination postsurgery in patients with no or minimal disease was shown to
have an impact in breast and pancreatic cancer [32,33]. In addition, vaccination against
tumor antigens is an attractive approach to adjuvant treatment postsurgery, when tumor-
induced immune suppression is minimal [34–36].

To be considered an ideal tumor vaccine candidate, expression of the antigen – be it mutated
or unaltered self – must be restricted to the tumor or only minimally expressed elsewhere in
the body. In the following sections, we have restricted ourselves to discussion of a short list
of tumor antigens that fit this criterion for pancreatic cancer (Table 1). As such, the use of
immunological adjuvants will not be discussed. We have focused on the most recent
examples in pancreatic cancer studies, either murine or human, whenever possible. In this
article, some tumor antigen targets are discussed to a greater extent than others, reflecting
the quantity of reports in the literature. Table 2 lists a number of clinical trials involving
pancreatic cancer patients, representing multiple different vaccine platforms (Figure 1) that
will be discussed in the following sections.

Whole-cell vaccines
The simplest vaccine approach that has been applied to cancer is the inoculation of
individuals with irradiated tumor cells. This approach has many advantages:

• Specific tumor antigens do not need to be identified or characterized prior to
vaccination;

• Immune responses to multiple tumor antigens can be generated, which may protect
against tumor escape variants [37];

• Such vaccines are not limited by patient HLA background owing to cross-
presentation of tumor antigens after uptake by dendritic cells (DCs) [37,38] – this is
particularly advantageous as tumor cell lines are readily available, while the
availability of autologous tumor cells may be restricted;

• The tumor cell vaccine platform can be easily modified.

For example, tumor cells can be transduced to express immunomodulatory cytokines such as
granulocyte macrophage colony-stimulating factor (GM-CSF), as was performed by Jaffee
et al. in a Phase I clinical trial [39]. In their studies, a pancreatic tumor cell vaccine induced
a CD8+ T-cell response, specific to mesothelin, regardless of HLA match between the tumor
vaccine and recipient – demonstrating that cross-priming had occurred [38,39]. Mesothelin
is a particularly promising cancer vaccine target owing to its low level of expression on
nontumor tissues and high levels of expression on pancreatic as well as other cancers (i.e.,
ovarian) [40]. A Phase II trial for this vaccine is ongoing in patients with resectable
pancreatic cancer (NCT00389610).

Tumor cell vaccines have also be modified to express epitopes, which increase
antibodymediated uptake by DCs. Normally, MUC-1 expressed on tumors is immunogenic
owing to overexpression and tumor-restricted hypoglycosylation [41]. The NewLink
Genetics Corporation (IA, USA) has developed a whole-cell vaccine expressing MUC-1
modified to express α-gal epitopes, which is the focus of multiple clinical trials
(NCT00255827, NCT00614601, NCT00569387 and NCT01072981) [42]. This vaccine
takes advantage of anti-α-gal antibodies that are found in most people due to exposure to
gastrointestinal flora, resulting in increased uptake of the vaccine in an antibody-dependent
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manner [43]. In murine studies, the addition of such α-gal epitopes to a Muc-1+ pancreatic
cancer whole-cell vaccine resulted in increased production of anti-Muc-1 antibodies;
enhanced tumor-specific T-cell responses and increased survival after challenge with
Muc-1+ B16 cells in α-gal knockout mice, previously sensitized to α-gal [44]. A study using
similarly treated melanoma cells as vaccine resulted in the complete protection against
melanoma in mice [45,46].

Autologous DCs have also been used in tumor vaccination when pulsed with tumor lysates
or peptides, transfected with whole-tumor mRNA, or transfected with mRNA or cDNA of a
specific antigen [47]. Mature DCs have the benefit of expressing high levels of
costimulatory molecules in addition to both HLA class I and class II molecules, allowing for
direct presentation of tumor antigens to, and enhanced activation of, both CD8+ and CD4+ T
cells. For example, Schmidt et al. intratumorally vaccinated with whole tumor mRNA
transfected DCs and found an antitumor specific immune response and significantly
decreased tumor volume in a murine pancreatic cancer model [48]. In melanoma patients,
the whole-tumor mRNA approach has been used to generate antitumor CD4+ and CD8+ T-
cell responses [49,50]. Apoptotic pancreatic tumor lysates have also been evaluated as a
source of antigen and have been demonstrated to elicit stronger antitumor lytic activity when
used to stimulate autologous human CD8+ T cells in vitro compared with those stimulated
with tumor lysate-pulsed DCs [51]. Recently, a peptidepulsed autologous DC vaccine has
been US FDA approved for the treatment of asymptomatic metastatic castration-resistant
prostate cancer. This vaccine, known as Provenge® (Dendreon Corp., WA, USA) or
Sipuleucel-T, consists of autologous, patient-derived DCs pulsed with a fusion protein
consisting of the prostate tumor antigen prostatic acid phosphatase and GM-CSF [52]. In a
Phase III clinical trial, vaccination resulted in a 3-year survival advantage in vaccinated
castration- resistant prostate cancer patients (31.7% survival) compared with placebo (23%).
Such a result is encouraging and gives hope that pancreatic cancer-targeted DC vaccines
could produce similar effects.

In addition, autologous DCs, virally transduced to express IL-12, have also been used in
cancer treatment. One pancreatic cancer patient receiving this treatment had a partial
response in studies by Mazzolini et al. [53]. As the treatment DCs were not loaded with
tumor antigen, cross-presentation of tumor antigens must have occurred.

A variation on the whole-cell approach involves the fusions of cancer cells and DCs, with
the resulting cell used as the vaccine. Such vaccines can be made with autologous DCs and
autologous tumor, with allogenic DCs and autologous tumor, or with autologous DCs and
allogenic tumor [54]. This technique has been used to treat mice in a pancreatic tumor
model, resulting in the generation of CD8+ T cells with tumor-specific cytolytic activity and
tumor rejection [55].

In cases in which an immunogenic tumor antigen is known, autologous DCs have been
transfected with, or virally transduced to express, the mRNA or cDNA of a specific tumor
antigen. This technique does not require that the exact immunogenic epitopes of the antigen
be identified, as full-length protein is transfected. Such a vaccine consisting of autologous
DCs transfected with MUC-1 cDNA was administered to ten patients with advanced breast,
pancreatic or papillary cancer in a Phase I/II clinical trial. A MUC-1-specific CD8+ T-cell
response was generated in four patients, with a delayed-type hypersensitivity (DTH)
response found in three patients [56]. However, all of the pancreatic cancer patients in this
study developed progressive disease. Currently, a similar vaccine is in a Phase I/II clinical
trial in melanoma patients using DCs transfected with the mRNA of tumor cells along with
that of telomerase and survivin (NCT00961844). The use of multiple antigens may protect
against tumor escape variants.
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For some pancreatic tumor antigens, HLA-restricted immunogenic peptide epitopes have
been identified and have been used to pulse DC vaccines. This approach allows the immune
system to respond only to the immunologically relevant epitope, although its use is limited
to patients expressing the corresponding HLA alleles. In an encouraging study by Lepisto et
al., patients with resected pancreatic and biliary tumors were administered MUC-1, peptide-
pulsed, autologous DCs in a Phase I/II clinical trial [57]. Although a clear antigen-specific
T-cell response was not detectable following vaccination, 25% of the patients were alive at
year 4. In similar studies with a telomerase peptide-pulsed DC vaccine, an antigen-specific
CD8+ T-cell response was generated in patients who developed various cancers following
vaccination. This response was enhanced when DCs were also pulsed with class II
telomerase peptides, illustrating the importance of CD4+ T cells in fighting tumor [58].
Pulse can also be performed with peptides from multiple tumor antigens, as was performed
in a Phase I clinical study by Carbone et al. Patients with various cancers, including
pancreatic cancer, immunized with p53 and K-Ras peptide-pulsed PBMCs saw increased
survival [59].

Peptide vaccines
Peptides corresponding to immunogenic tumor antigens or antigen epitopes have been
administered as cancer vaccines, many of which have been designed to enhance the CD8+ T-
cell response – the most important response for elimination of tumor. Peptide vaccines do
not require manipulation of patient tissues, whose availability may be limited. A number of
peptide vaccines have been successfully used to produce antigen-specific responses in
pancreatic cancer patients. In a Phase I study, vaccination with a 100-mer peptide of the
MUC-1 extracellular tandem repeat generated a MUC-1-specific T-cell response in some
patients with resected or locally advanced pancreatic cancer, with two of the 15 patients
alive at 61 months [60]. In a separate Phase I clinical trial using the same 100-mer peptide
vaccine, the production of anti-MUC-1 circulating antibodies was detected in patients with
inoperable pancreatic or biliary cancer, although no significant impact on survival was
discovered [61]. A telomerase-based vaccine, consisting of the human telomerase reverse
transcriptase (also known as GV1001) peptide, was found to induce a telomerase-specific
immune response in 63% of evaluable patients, as measured by DTH in nonresectable
pancreatic cancer. Those with a positive DTH were found to live longer than those that did
not have a positive DTH [62]. More recently, a Phase III clinical trial was performed in
which the effect of gemcitabine treatment on survival was compared with gemcitabine
treatment in combination with GV1001 therapy in unresectable and metastatic pancreatic
cancer patients [63]. However, the trial was terminated when no survival benefit was found.
In similar studies, VEGF receptor (VEGFR)2–169, a peptide epitope vaccine, has been
administered with gemcitabine to patients with advanced pancreatic cancer. A total of 83%
of patients receiving the vaccine had an antigen-specific DTH and VEGFR2-specific CD8+

cells were detected in 61% of those vaccinated, with a median overall survival time of 8.7
months [64]. A randomized, placebo-controlled, multicenter, Phase II/III study of this
VEGFR2–169 peptide vaccine therapy, combined with gemcitabine, is currently underway
in patients with unresectable advanced or recurrent pancreatic cancer [301].

The most exciting results have come from studies of K-Ras-targeted peptide vaccines. In a
pilot vaccine study, pancreatic and colorectal patients were vaccinated with K-Ras peptides
containing patient-specific mutations. Three of the five pancreatic cancer patients displayed
an antigen-specific immune response to a K-Ras [65]. Disease progression was observed in
the two pancreatic cancer patients that did not respond to the vaccine, with the responders
having no evidence of disease. Of the pancreatic cancer patients, a mean disease-free
survival of 35.2+ months and a mean overall survival of 44.4+ months were observed. In a
longer-term study, patients were followed for up 10 years after surgical resection of
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pancreatic adenocarcinoma and vaccination with a K-Ras peptide vaccine administered
concomitantly with GM-CSF [33]. Remarkably, 20% of patients who received the vaccine
were still alive at this time point. Immunological tests showed that a memory T-cell
response was still present in 75% of the survivors. Such results with peptide vaccines are
highly encouraging.

To increase the immunogenicity of peptide vaccines, some groups have mutated key anchor
residues in the peptides such that binding to MHC-I molecules is increased. Therefore,
presentation to CD8+ T cells is also increased. This is especially important when vaccinating
against tumor (self) epitopes, as they are often weak or only intermediate binders to HLA
molecules [66–70]. In a murine model of pancreatic cancer, our group has found this
strategy to increase survival when applied to a peptide vaccine derived from murine
mesothelin [Hamilton N & Hawkins WG: Unpublished Data]. Similarly, a MUC-1 peptide
vaccine modified in this way was shown to enhance production of IFN-γ from patient and
normal donor T cells. MUC-1-specific T-cell clones, generated via stimulation with this
peptide, could lyse targets pulsed with native Muc-1 epitope as well as HLA-A2+ MUC-1+

human tumor cells in vitro [71]. Remarkably, one case has been reported in which
vaccination with a modified HLA-A2-restricted survivin peptide resulted in remission of
liver metastasis in one individual with pancreatic cancer [72].

An alternative method to enhance the presentation of peptides is to link them to antibodies,
or other peptides, which target them to DCs. For example, an antimurine DEC205 antibody
fused to either human mesothelin or survivin has been shown to enhance the immune
response by directing delivery of tumor antigen to activated DCs in murine studies [73,74].
Similarly, the TAT protein from HIV, which facilitates entry into cells, has been fused to
antigens in order to enhance uptake by DCs [75]. However, this technique has been used
mainly to introduce antigens, such as carcinoembryonic antigen (CEA), into DCs and not as
a peptide vaccine alone [76–79].

Another protein-based vaccine approach utilizes an anti-idiotypic vaccine that mimics the
tumor antigen, CEA. This murine monoclonal, 3H1, has been successfully used to generate
anti-CEA humoral and T-cell responses resulting in the rejection of CEA-expressing tumor
in a murine model of colon cancer [80–82]. Two Phase II trials involving 3H1 have been
completed in lung and colorectal cancer, although the results have yet to be published
(NCT00006470 and NCT00033748).

More recently, an effort has been made to generate personalized peptide vaccines based on
the tumor-antigen epitopes that are most immunogenic for a particular patient. Yanagimotto
et al. applied this approach, in combination with gemcitabine therapy, to pancreatic cancer
in a Phase I clinical trial. Prior to vaccination, T cells from patient PBMCs were screened
against a panel of tumor antigen-derived peptides. Patients were vaccinated only with the
peptides to which they had a response [14]. An increase in tumor antigen-specific T-cell
responses was observed from the 13 evaluable patients with no correlation to clinical
responses or humoral responses post vaccination, although 11 patients experienced either
reduction in tumor size. Median survival time was 7.6 months. In 2010, this group published
a similar Phase II study and found a median survival time of 9 months and a 1-year survival
of 38% [83].

DNA vaccines
When specific tumor antigens are known, DNA vaccination can be utilized. DNA vaccines
can be administered to humans via intramuscular injection with or without electroporation.
This technique allows for an immune response to multiple potential epitopes within an
antigen to be generated regardless of the recipients’ MHC profile [84]. In pancreatic cancer
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studies, DNA vaccination has mainly been applied to murine models of cancer, though there
are ongoing clinical trials in other cancers (NCT00807781, NCT00859729, NCT00471133
and NCT01064375).

In one such murine pancreatic cancer study, vaccination with either murine or human
fulllength survivin DNA generated an antitumor specific response, increased infiltration of
tumor with lymphocytes and increased survival [85]. Similar results were found in studies
with Muc-1 DNA vaccine when used as a preventative or therapeutic vaccine in a pancreatic
cancer model [86]. In a murine ovarian cancer model, a full-length human mesothelin DNA
vaccine has also been shown to inhibit growth of human mesothelin-expressing tumors,
enhance survival and induce a CD8+ T-cell, CD4+ T-cell and humoral response [87].
Likewise, an oral DNA vaccination with either full-length extracellular domain or regions
1–4 of VEGFR2 resulted in decreased tumor size, intratumoral microvessel and density of
liver metastases in murine colon cancer studies. An increase in survival time and VEGFR2
antibody was also observed in serum with both vaccines [88].

DNA vaccination has also been used to express a CEA66, which encodes for CEA linked to
a T-helper epitope from tetanus toxin [89]. This vaccine skews the response to a Th1
phenotype and increases IFN-γ production from CEA-specific T cells when boosted with
either CEA peptide or with repeat DNA vaccination in mice [90,91]. However, no studies
with tumor challenges have been published with the CEA66 vaccine.

Highly engineered molecules, such as HLA-A2 single-chain trimers (SCTs) can also be
expressed by DNA vaccination. HLA SCTs consist of the HLA heavy chain, β2M, and a
peptide of interest connected by flexible linker regions (Figure 2). When introduced via
DNA vaccination, SCTs bypass antigen processing, leading to direct expression of the
encoded HLA/peptide complex on the cell surface [92]. This expression is more stable than
that of the endogenous HLA/peptide compound, allowing for increased stimulation of
antigen specific CD8+ T cells [93–95]. As such, SCTs are the ideal platform for the
presentation of tumor antigens to CD8+ T cells.

In fact, SCT DNA vaccines have been utilized for multiple viral and tumor targets and have
been shown in in vivo murine studies to be more effective as DNA vaccines than comparable
peptide and cDNA vaccines [93,94,96–100]. For example, Hung et al. administered such a
DNA vaccine encoding a HLA-A2 SCT presenting a human mesothelin peptide to mice that
transgenically expressed HLA-A2 in an ovarian cancer model. A mesothelin specific CD8+

T-cell response was generated and tumor-free survival was enhanced compared with
vaccination with an Ova-SCT [99]. However, the HLA-A2 mice used were not tolerized to
the foreign human mesothelin peptide presented in the SCT, making these data less
translationally relevant. More recently, the SCT platform has been improved upon such that
peptide binding to the HLA molecule and interaction with CD8 is enhanced. In addition, the
pan-T-cell helper epitope (PADRE) has been included in the SCT DNA vaccines [94]. Such
a SCT vaccine presenting a West Nile virus peptide showed increased survival in West Nile
virus-infected HLA-A2 transgenic mice [100]. This improved SCT platform shows great
promise and is currently in development for testing in patients with breast cancer at our
institution.

Vaccines with microorganisms
In addition to more traditional (i.e., peptide-based) vaccine modalities, other groups have
utilized various properties of microorganisms or viruses to enhance vaccination.
Microorganisms can be used essentially as an antigen delivery system, but also have the
added benefit of acting as an adjuvant by stimulating an innate immune response though
engagement of pattern recognition receptors, such as Toll-like receptors (TLRs). A number
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of groups have used virus to deliver pancreatic cancer associated antigens and have tested
them in murine models and/or clinical trials. For example, one group has used virus as a
scaffold to display MUC-1, administration of which resulted in a robust immune response
and a delayed growth of MUC-1-expressing tumors in mice transgenic for human MUC-1
[101].

However, most virally based vaccines are designed to deliver transgenes that enable infected
cells to produce the tumor antigen of interest. Adenovirus has been used in this way to
deliver CEA and was found to decrease tumor volume in mice bearing CEA-expressing
tumors [102]. In human clinical trials, a pox virus-based approach to deliver tumor antigens,
as well as costimulatory molecules, has been used. Kaufman et al. have completed a Phase I
study of pancreatic cancer patients vaccinated via a vaccinia virus (PANVAC-V) expressing
a HLA-A2-restricted CEA peptide, a MUC-1 peptide and three costimulatory molecules
(B7.1, ICAM-1 and LFA-3 – also known as TRICOM) with GM-CSF administered as an
adjuvant. An additional vaccination with a fowlpox virus (PANVAC-F) expressing the same
molecules was also administered [103]. An antigen-specific antibody response was
discovered in all ten patients and antigen-specific T-cell responses were found in five out of
eight patients tested, with increased survival seen in those who generated an immune
response.

Similarly, Morse et al. have generated an alphavirus vector expressing CEA that is packaged
in a virus-like particle termed CEA(6D) VRP (AVX701) [104]. The alphavirus was chosen
as it preferentially infects DCs [105]. Although only one pancreatic cancer patient was
included in this study, the liver metastasis of that individual remarkably resolved after
vaccination. A lentiviral system has also been generated that specifically targets DCs and
has been shown to inhibit tumor growth in a murine tumor model. However, this virus has
not been used to vaccinate against pancreatic tumor antigens, nor has it been utilized in a
pancreatic cancer model or clinical studies [106].

Heat-killed yeast, transfected with tumor antigens, have been shown to activate DCs when
used as vaccines in murine models [107]. Remondo et al. showed that Saccharomyces
cerevisiae (SC), expressing a CEA transgene, activated human DCs, which then successfully
activated CEA-specific T-cell clones. The T-cell clones were able to lyse human CEA+

pancreatic tumor lines [108]. In murine studies, vaccination with SC-CEA resulted in the
generation of CEA-specific T cells, reduced tumor volume and increased survival when
vaccinated hCEA-transgenic mice were challenged with a CEA-expressing tumor [109,110].
When compared with a CEA-pox vaccine platform, similar levels of CEA-specific T cells
were generated in response to SC-CEA [110]. However, T-cell receptor (TCR) repertoires
differed in their specificity and avidity. The authors suggest taking advantage of this
diversity by vaccinating with both modalities, although this has not been performed in
humans as of yet. In a murine carcinogen-induced lung tumor model, SC has been used to
vaccinate against K-Ras, resulting in tumor regression [111].

Bacteria can also be used in vaccination, with the most popular being the intracellular
facultative bacteria Listeria monocytogenes (LM) and Salmonella enterica serovar
Typhimurium (ST) [112]. Bacteria have the advantages of being inexpensive to generate, are
easily attenuated and can be killed with antibiotics if needed. LM infects phagocytic cells
and has the unique ability to escape the phagosome and live intracellularly. Therefore, live-
attenuated LM can deliver a protein, mRNA or cDNA of interest directly to the cytosol of
antigen-presenting cells such as macrophages. This platform has been applied to human
mesothelin, resulting in a mesothelin-specific CD8+ and CD4+ T-cell response in mice and
in cynomolgus monkeys, which had a therapeutic effect in tumor-bearing mice [40]. More
recently, a Phase I clinical trial found this LM-based mesothelin-expressing vaccine,
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CRS-207, to be well tolerated [113]. LM vaccines expressing Her-2/neu, p53 and VEGFR2
have been applied to murine breast cancer models, showing antigen-specific T-cell
responses and decreased tumor growth [114–117].

Similar to LM, ST infects phagocytic cells but evades lysis by blocking the fusion of the
phagosome and lysosome. Most work has focused on developing oral ST-based DNA
vaccines. One such vaccine delivered CEA DNA and was shown to prevent growth of lung
carcinoma in CEA transgenic mice [118]. Similarly, a ST-CEA/CD40 DNA vaccine resulted
in a complete rejection of a CEA-expressing MC38 colon carcinoma in murine studies
[119]. In addition, the type III secretion system of ST can be utilized to deliver protein
antigen directly into the cytosol of antigen-presenting cells. When this strategy was used to
vaccinate against survivin in a murine model, an antitumor immune response against CT26-
derived tumors was observed [120].

Monoclonal antibody treatment
The humoral immune response to tumor antigens, such as mesothelin, has been found to be a
favorable prognostic factor for pancreatic cancer [10,17,121,122]. The anticancer effect of
such antibodies is thought to be primarily mediated via antibody-dependent cell cytotoxicity
(ADCC), although complement-mediated lysis may contribute [108,123–126]. A number of
groups have generated monoclonal antibodies to cell surface tumor antigens, such as
mesothelin, MUC-1, CEA and Her-2/neu. In addition to ADCC, these antibodies can be
linked to immunotoxins resulting in direct killing of the tumor cell after internalization or
linked to a radioisotope and used as radiopharmaceuticals. We restrict our discussion to
antibodies directed at antigens that have been extensively studied as vaccine targets (Table
3). As such, antibodies targeted to blocking angiogensis, such as bevacizumab, will not be
discussed.

A number of antibodies to mesothelin have been studied in both mouse and humans. For
example, SS1P is a murine single-chain Fv, specific for human mesothelin, which has been
linked to Pseudomonas exotoxin A (PE), which results in cell death via inhibition of EF2
when internalized [127]. In Phase I clinical studies SS1P was found to be well tolerated and
administration of a version of SS1P with releasable PEGylation resulted in complete
regression of a mesothelin-expressing human carcinoma in mice with only a single dose
[127–129]. A mouse–human chimeric IgG1k monoclonal antibody, MORAb-009, utilizes
the same Fv as SS1P and was shown to elicit ADCC on mesothelin-positive cells. When
combined with gemcitabine, MORAb-009 reduced tumor growth in nude mice compared
with either treatment alone and had no adverse effects in nonhuman primates [130]. Two
fully human, antihuman mesothelin antibodies, M912 and HN1, have been developed, which
bind mesothelin- positive cells and result in their lysis via ADCC [131,132]. Similar to
SS1P, HN1 has been fused to truncated PE-A immunotoxin, although its binding site on
mesothelin probably binds a distinct but overlapping epitope to that of SS1P [132].

Many anti-CEA antibodies have been generated, with the bulk of studies in
radioimmunotherapy, which will not be covered in the scope of this article. However, there
are a number of anti-CEA antibodies that have been used for immunotherapy. One such
antibody is hPRIA3, a humanized anti-CEA antibody, originally developed in mice, which
binds membrane-bound CEA [133,134]. hPRIA3 has been shown in in vitro studies to bind
to, and enhance, CEA-specific cytotoxicity of CEA+ human colorectal cancer cell lines
when incubated with human PBMCs and NK cells, which can be increased when the Fc
portion of the antibody is glycosylated [135,136]. A second anti-CEA monoclonal, hMN-14
(labetuzumab), has also been shown to induce ADCC in vitro with CEA+ colon tumor cells
and inhibited growth of lung metastases in nude mice [137]. A Phase I/II trial with hMN-14
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in pancreatic cancer patients has been completed but the results have not been published
(NCT00041639).

PankoMab™ (Glycotope, Germany) is a murine antihuman MUC-1 antibody that binds to a
carbohydrate induced conformational tumor epitope of MUC-1, greatly increasing its tumor
specificity [138]. PankoMab can induce ADCC of MUC-1 positive cells and can also induce
death following internalization by inhibition of RNA polymerase when linked to β-amanitin.
The humanized version of PankoMab has been shown to react to the tumor expressed
MUC-1 in multiple human carcinomas, although no clinical trials have been published
[139].

An anti-Her-2/neu antibody, know as Herceptin® (Genetech Inc., CA, USA) or trastuzumab,
has been used with some success to treat pancreatic cancer in murine models. Treatment
with trastuzumab prolonged survival and reduced liver metastasis in nude mice
orthotopically challenged with human pancreatic tumor cell lines that expressed Her-2/neu
at low levels. The pancreatic lines were sensitive to ADCC lysis by trastuzumab in vitro
[140]. Similar results were found when nude mice, challenged with Her-2/neuhigh-
expressing human pancreatic cancer cell lines, were treated with both trastuzumab and 5-
fluorouracil [141]. The combination of treatment significantly inhibited tumor growth
compared with either treatment alone. When combined with matuzumab, an anti-EGFR
antibody, trastuzumab treatment resulted in inhibited tumor growth in a nude mouse model
of pancreatic cancer [142]. This combined treatment was more than four-times more
effective than treatment with either antibody alone. This group also found that the combined
antibody treatment was more effective than gemcitabine treatment in orthotopic nude mice
studies [143]. A number of clinical trials involving trastuzumab are listed in Table 3.

Passive T-cell therapy
In recent years, much work has focused on adoptive tumor immunotherapy in which the
patient’s own T cells are expanded and reinfused into the patient. One method results in the
selective expansion of T cells endogenously expressing TCRs specific for the tumor antigen
of interest. For example, in a murine ovarian cancer model, Hung et al. vaccinated mice with
a murine mesothelin DNA prior to antigen-specific T-cell expansion ex vivo. The
mesothelin-specific T-cell clones were transferred to tumor-challenged mice, resulting in
decreased tumor volume and increased survival [144]. Similarly, in a clinical study, MUC-1-
specific autologous T cells, isolated from patient PBMCs, were expanded by incubation with
a MUC-1-presenting cell line prior to administration to pancreatic cancer patients. The mean
survival time for unresectable patients in this study was 5 months [145]. However, patients
with resectable pancreatic cancer had 1-, 2- and 3-year survival rates of 83.3, 32.4 and
19.4%, respectively, and a mean survival time of 17.8 months. In a similar study by the
same group, Kondo et al. isolated adherent cells from patient PBMCs to generate mature
DCs that were then pulsed with MUC-1 peptide. The pulsed DCs were administered, along
with autologous expanded MUC-1-specific T cells, to patients with unresectable or recurrent
pancreatic cancer. Remarkably, a complete response was observed in one patient with lung
metastases and the mean survival time of the whole group was 9.8 months, suggesting that
the addition of pulsed DCs may have improved the outcome [146].

Chimeric antigen receptors
An alternative to antigen-specific expansion is the transduction of patient T cells, usually via
lentivirus, with a chimeric antigen receptor (CAR) specific for a tumor antigen. Such
receptors are transmembrane proteins typically comprise an antibody-derived single-chain
variable fragment (scFv) specific for a tumor antigen fused to a hinge region, a spacer, a
membrane spanning element and signaling domain [147,148]. Often the intracellular
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signaling domain contains the signaling motifs from multiple molecules, such as 41BB,
OX40, CD28 and TCRζ chain. This allows for both TCR and costimulatory signaling
cascades to be initiated, leading to T-cell activation. The resulting T cells recognize the
tumor antigen in its native form and do not rely on presentation of antigen by MHC I. This is
highly advantageous, as tumors often downregulate MHC-I expression.

Chimeric antigen receptors have been created with specificity for mesothelin, CEA, MUC-1
and Her-2/neu. Carpenito et al. have generated a CAR that recognizes mesothelin via the
SS1 scFv and utilizes the intracellular signaling domains of CD3ζ, CD28 and CD137 [147].
When human T cells expressing this receptor were transferred to tumor bearing NOD/SCID/
IL2rγ−/− mice, a reduced tumor volume was observed. Similar results were generated when
T cells expressing CARs, possessing CD28 and TCRζ intracellular motifs and a specificity
for human CEAs were administered to CEA+ tumor-challenged mice [149]. In addition,
Shirasu et al. generated a CEA-specific CAR utilizing the human monoclonal antibody C2–
45 and cytoplasmic motifs of CD28 and CD3ζ [150]. When expressed in Jurkat cells, the
CEA-CAR initiated signaling cascades similar to those expected from TCR-mediated
activation.

A CAR with specificity to MUC-1 has also been generated using the SM3 antibody with
intracellular signaling motifs of CD28, OX40 and CD3ζ [151]. T cells expressing this CAR
proliferated and produced cytokine in response to antigen challenge, killed MUC-1+ tumor
cells in vitro and delayed growth of Muc-1 tumors in mice. Bakhtiari et al. developed a
similar anti-MUC-1 CAR with the intracellular signaling motifs CD28 and CD3ζ [152].
When expressed in Jurkat cells, MUC-1-specific stimulation included cytokine production
and killing of a MUC-1+ cell line.

T cells expressing a Her-2/neu-specific CAR with CD28 and CD3ζ chain signaling motifs
has been shown to produce cytokines and to lyse a Her-2/neu+ breast cancer tumor line
following antigen stimulation [153]. Mice challenged with breast cancer tumors had long-
term tumor-free survival after administration of these T cells and were found to have
developed a memory response that protected from rechallenge with tumor. Likewise, T cells
expressing a Herceptinbased CAR with signaling motifs from CD28, CD3ζ and 41BB was
shown to lyse Her-2/neu+ tumor in vitro and suppressed tumor growth in an in vivo murine
model [154]. A number of Phase I clinical trial involving Her-2/neu CAR-expressing T cells
are currently recruiting breast cancer patients (NCT00889954, NCT00902044 and
NCT01109095).

Although this process results in a large population of antigen-specific T cells, adoptive
immunotherapy is a very expensive and time consuming process in comparison with the
vaccine and antibody therapies discussed in this article. There are no published studies
utilizing CAR expressing T cells in pancreatic cancer or in murine models of pancreatic
cancer.

Pancreatic cancers induce an immunosuppressive tumor
microenvironment

Despite all the progress in vaccine development and increased understanding of basic
immune mechanisms, the clinical application of therapeutic cancer vaccines has been
characterized by many setbacks. Recent vaccines for melanoma (e.g., Canvaxin™

[CancerVax, CA, USA] and Melacine® [Corixa, WA, USA]), renal cell carcinoma
(Oncophage® [Antigenics Inc., MA, USA]) and prostate cancer (G-VAX), tested in Phase
III clinical trials, all failed to show clinical efficacy [7,155]. This has increased awareness of
gaps in our knowledge regarding tumor-induced immune suppression.
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We, and others, have shown that the tumor microenvironment in pancreatic cancer
preferentially favors the recruitment of immune suppressor, rather than immune effector,
cell types (Figure 3) [30,156]. Pancreatic cancer cells themselves actively contribute to
immune suppression through production of immune suppressive cytokines (e.g., TGF-β
[157]) and by expressing surface molecules that mediate immune suppression (e.g., FasL
[158], PD-L1 [25] and possibly BTLA [159]). In addition, tumor-associated macrophages
(TAMs), tumor-associated fibroblasts, plasmacytoid dendritic cells (pDCs) expressing the
tryptophan-converting enzyme 2,3-indoleamine dioxygenase (IDO) [160], Treg and soluble
factors produced by suppressor cells all contribute to pancreatic cancer-induced immune
suppression. Finally, recent studies have described a heterogeneous population of immature
cells arising from the myeloid lineage, termed myeloid-derived suppressor cells (MDSCs)
[161]. MDSCs express CD11b and myelomonocytic/macrophage markers such as CD14 and
CD33, or granulocytic/neutrophilic markers such as CD15. In some reports, the immature
status of MDSCs was demonstrated by the absence of markers of terminal differentiation
(Lin−DRlo/−) [162]. As such, MDSCs differ from TAMs and pDCs, which are fully
differentiated lineages of cells. The accumulation of MDSCs in patients with advanced
cancers, including pancreatic cancer, were demonstrated to be closely related to the extent of
disease and correlated well with disease stage [163].

Instrumental in shaping the immunosuppressive environment are the tumor cells and tumor-
associated fibroblasts, in particular through secretion of chemokines and other cytokines
[164]. Chemokines induce motility of endothelial cells and tumor cells. In addition,
leukocyte subpopulations recruited to the tumor by chemokines are skewed in the tumor
environment towards cells that support tumor growth, promoting angiogenesis, tumor
invasion and metastasis formation while suppressing immune effector cells. For example,
we recently observed that Treg cells in the tumor microenvironment of human pancreatic
adenocarcinoma express CCR5 and the pancreatic tumor cells produce greater than tenfold
higher levels of the CCR5 ligands, CCL3, CCL4 and CCL5 [165].

There is clear evidence of cross-talk between the various suppressor cell subsets. For
example, MDSCs can promote Treg recruitment and maintenance through TGF-β-dependent
and -independent mechanisms. IDO production by tumor-associated DCs and macrophages
has also been implicated in Treg activation and expansion. IDO expression can be induced
in DCs by reverse signaling through B7–1 and B7–2 (CD80 and CD86, respectively) and
CTLA-4 expressed on Tregs. In turn, IDO activates Tregs and induce differentiation of
naive CD4 T cells towards Tregs. By converting tryptophan into N-formyl kynurenine,
effector T cells that are dependent on tryptophan for proliferation, are inhibited [166,167].
TAMs and MDSCs also skew the CD4 T-cell subset composition towards a Th2 phenotype
through cytokines such as IL-10. The interplay between the various subsets of suppressor
cells and cytokines creates a powerful barrier against immune attack.

Enhancing vaccine efficacy by targeting immune suppression
As we make progress in defining the molecular pathways of immune suppression, it
becomes more and more relevant to integrate strategies that activate antitumor immunity
with those that neutralize or overcome tumor-induced immune suppression (Figure 4) [155].
Just as immune activation strategies should be multifaceted to take advantage of both innate
and adaptive immune effector mechanisms, targeting immune suppression may need to be
equally comprehensive in order to have an effect. Preclinical studies in animal tumor models
have provided proof-of-concept that targeting immune suppression may have an impact on
cancer vaccines. For example, a promising antibody treatment involves the use of anti-
CTLA-4 [168]. Aimed at preventing the downregulation of activated T cells, anti-CTLA-4
monotherapy has shown encouraging results in a small percentage of patients with advanced
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cancers [169]. In a recently completed Phase III trial, anti-CTLA-4 antibody with or without
gp-100 peptide vaccine significantly prolonged survival of patients with metastatic
melanoma. Interestingly, anti-CTLA-4 did not improve the gp-100 peptide vaccine efficacy.
The reason for the lack of additive effect is not clear to the investigators of the study but
may be due to minimal clinical activity of the gp-100 vaccine [170]. Although
disappointing, the clinical benefit of anti-CTLA-4 was statistically significant with or
without gp-100 vaccine, supporting the idea that in patients with an existing endogenous
antitumor immune response, the use of anti-CTLA-4 may enhance this response and induce
a clinically meaningful response. At the same time, it is unlikely that anti-CTLA-4
monotherapy will lead to long-term cures in the majority of patients. In this regard, a
recently completed Phase II trial in patients with locally advanced or metastatic pancreatic
cancer (NCT00836407) showed that anti-CTLA-4 monotherapy is ineffective in this patient
population [171]. Likewise, the most commonly used strategy for neutralization of the
PDL1-PD1 pathway is via antibodies that either block signalling through PD1 or that
neutralize PDL1. The first clinical studies have been performed with PD-1-blocking
antibodies, both in solid tumors (MDX-1106)[172] and in hematologic malignancies
(CT-011)[173]. An experimental drug, AMP-224, consisting of a PD-L2/Ig fusion protein
that binds to PD-1 on T cells and prevents the inhibitory signal [302] has not yet been tested
clinically. Finally, the depletion of MDSCs in murine models has been associated with
improved host immune responses, resulting in delayed tumor growth, improved survival and
increased efficacy of vaccine therapy. Elimination of MDSCs has been shown to improve
antitumor responses, restore CTL and NK function, decrease tumor angiogenesis and
enhance immunotherapy [174–176].

Rather than describe specific strategies in detail, we will offer some comments on this topic:

• It can be concluded from our current knowledge of immune suppressor
mechanisms in cancers that multiple mechanisms are at play, which act in concert.
Some of these, for example the production of certain cytokines such as IL-10, are
not restricted to an individual cell type. Thus, successful intervention may require a
multipronged attack;

• There is heterogeneity among different histological types of tumor with regard to
which suppressor mechanisms are present or dominant, and perhaps even within
tumors of the same clinical stage and histologic type. This has obvious implications
for the type of strategy that will be used;

• Vaccination against self-antigens has been associated with induction Tregs and
MDSCs. For example, Nishikawa et al. have reported that immunization of mice
with plasmids encoding tumor antigens resulted in marked enhancement of in vivo
tumor growth in a murine pulmonary metastasis model [177]. Subsequent analysis
of their findings revealed that depletion of Tregs reversed this effect and adoptive
transfer restored it, suggesting that vaccination promoted the proliferation of
autoantigen-reactive Tregs. Similarly, T-cell clones derived from tumor-infiltrating
lymphocytes were recently described, which recognized the melanoma antigen,
LAGE-1 with characteristics of Tregs [178];

• Finally, we reiterate that tumor vaccines may be most effective in a setting of
minimal disease (i.e., postsurgery, at a time when tumor-induced immune
suppression is likely to also be minimal). In this setting, vaccines that induce
immunological memory through tumor-specific CD4 T cells and IgG antibodies
may be most effective.

However, as discussed previously, most patients with pancreatic cancer have advanced
disease at the time of diagnosis and are not candidates for surgery.
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Conclusion
There is ample evidence to suggest that pancreatic cancer induces an antitumor immune
response. There is also ample evidence that this response can be enhanced by various
immune-based strategies. However, successful clinical application may require a better
understanding of how pancreatic cancers evade immune recognition and integration of
specific strategies that target immune suppressor mechanisms.

Future perspective
When reviewing the current status of FDA-approved immune-based interventions for
cancer, it is relevant to ask whether there is a future for immune therapy for the treatment
and prevention of cancer. With the recent FDA approval of Provenge being a prime example
[52,179,180] we consider the future to be optimistic for several reasons. First, our
understanding of immune mechanisms has accelerated over the past decade and will
probably continue. This includes specific knowledge on how to overcome tolerance to self
(tumor) antigens, implementation of immunological adjuvants and strategies to induce
immunological memory. Combined with the growing emphasis on defining molecular
pathways of immune suppression and negative regulatory pathways (CTLA-4, PD-1 and
others), the challenge going forward in the near future is to integrate everything we have
learned into new generation vaccines. Furthermore, we expect the rapidly evolving
techniques, developed to sequence cancer genomes, to have unprecedented consequences for
the treatment and prevention of cancer. What was considered a monumental task just several
years ago will become a routine and straightforward assay in the next few years. The first
such efforts have already been successfully completed in pancreatic cancer [181,182]. These
studies not only demonstrated the presence of multiple mutations that can be targeted; they
also showed that many of these mutations are already present in primary pancreatic cancers,
and suggest vaccination after primary resection may protect against recurrence. The main
implication for immune therapy will be that personalized vaccines will no longer be science
fiction, but state of the art. The main advantage will be that vaccines can be tailored towards
unique mutations found only in the patient’s cancer [183], or, alternatively, applied to
certain subtypes of tumors. Such mutations have been identified in the past [184], but in the
next 4–6 years we expect the sequencing of a patient’s cancer (and normal cells) to be part
of the diagnosis. From an immunological standpoint, the immune response to mutated
(nonself) antigens will be much more robust, as tolerance to such antigens should be
minimal.
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Executive summary

Epidemiology of pancreatic cancer & clinical management

• Pancreatic adenocarcinoma is the fourth leading cause of cancer death in the
USA.

• No effective therapy exists for pancreatic adenocarcinoma owing to its late
discovery and strong resistance to conventional therapy.

A role for the immune response in pancreatic cancer

• Pancreatic cancer elicits an adaptive antitumor immune response.

• Both the prevalence of Tregs and expression levels of PD-L1 in the tumor are
prognostic factors.

Vaccination against tumor antigens as a treatment for pancreatic cancer

• Vaccination against pancreatic cancer antigens is an attractive approach to
adjuvant treatment postsurgery.

• The ideal cancer antigen not only elicits a strong immune response but is
exclusively expressed on tumor cells.

Whole-cell vaccines, peptide vaccines, DNA vaccines & vaccines with
microorganisms

• Pancreatic cancer-associated antigens that are candidates for immune targeting
include Her2/neu, Muc-1, CEA, mesothelin, telomerase and survivin.

• Multiple vaccine platforms have been used successfully for induction of
antigen-specific immune responses in animal tumor models and in in vitro
studies.

Monoclonal antibody treatment

• Adoptive transfer of antibodies to pancreatic cancer surface antigens such as
mesothelin has been used for therapy with promising results in animal tumor
models.

• The antibodies may induce antibody-dependent cell cytotoxicity or complement-
dependent lysis, or block tumor growth, for example when directed to growth
factor receptors such as EGF and Her2/neu.

Passive T-cell therapy

• Promising clinical results were obtained through adoptive transfer of patient-
derived T cells expanded ex vivo.

Chimeric antigen receptors

• A variation of passive T-cell therapy involves the genetic engineering and
expansion of T cells expressing a chimeric receptor consisting of a single-chain
variable fragment antibody chain specific for a pancreas cancer-associated
antigen fused to a transmembrane signaling domain essential for T-cell
activation such as CD28 and TCRζ.

• This strategy has not yet been tested in patients with pancreatic cancer.

Pancreatic cancers induce an immunosuppressive tumor microenvironment
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• The tumor environment in pancreatic cancer is highly immunosuppressive
through increased prevalence of multiple types of suppressor cells.

Enhancing vaccine efficacy by targeting immune suppression

• It is key for the treatment of patients with established disease to integrate
immunization strategies with those that neutralize immune suppression.

• Alternatively, vaccines may be most efficacious when administered as an
adjuvant therapy, when immune suppression is minimal.
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Figure 1. Overview of current immunotherapy trials in pancreatic cancer
All active trials listed on Clinical Trials.gov were categorized based on the type of vaccine
used.
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Figure 2. Structure of the disulfide trap single-chain trimer
Representation of a fully folded dtSCT as expressed on the cell surface (A). Note the
presence of the Y84C mutation, creating the disulfide trap. SCTs that contain this mutation
are more stably expressed on the cell surface. dtSCTs are encoded by a single DNA
sequence that, when expressed, produces a peptide–MHC class I complex (B).
β2M: HLA heavy chain; dt: Disulfide trap; SCT: Single-chain trimer.
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Figure 3. Immunohistology of human pancreatic adenocarcinoma
(A) Tissue slides were stained with antibodies for CD11b (red), and CD15 (green), and
shows dual positive cells (yellow), indicative of MDSC. (B) Intracellular Foxp3 staining as a
marker of Treg (green). No immune infiltrate was detectable in normal human pancreas
tissue (data not shown).
MDSC: Myeloid-derived suppressor cell.
Images courtesy of David C Linehan and Jonathan B Mitchem, Washington University,
Department of Surgery.
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Figure 4. Depiction of ideal therapy strategy
Prior to therapy, the immunological milieu is characterized by high levels of immune
suppression and low levels of immune responders, as well as immunological memory. The
ideal immune therapy not only augments the antigen-specific immune response, but also
reduces immune suppression. Key players such as NK cells, macrophages, B cells,
complement and cytokines have been omitted to increase clarity.
ADCC: Antibody-dependent cell cytotoxicity;
MDSC: Myeloid-derived suppressor cell; PC: Pancreatic cancer.
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Table 2

Selection of current vaccine/immunotherapy clinical trials open to pancreatic cancer patients.

Treatment ClinicalTrial.gov ID Status Phase

CEA RNA-pulsed DC NCT00004604 Active, not recruiting I

Muc-1 α-gal epitope (HyperAcute®) NCT00569387 Active, not recruiting II

Muc-1 α-gal epitope (HyperAcute®) NCT00614601 Active, not recruiting II

Muc-1 α-gal epitope (HyperAcute®) NCT01072981 Recruiting patients III

Pancreatic tumor cell line/GM-CSF NCT00389610 Active, not recruiting II

Pancreatic tumor cell line/GM-CSF NCT01088789 Recruiting II

Pancreatic tumor cell line/GM-CSF (GVAX) NCT00727441 Recruiting I

Pancreatic tumor cell line/GM-CSF ± ipilimumab NCT00836407 Recruiting I

Pancreatic tumor cell line/GM-CSF and cetuximab NCT00305760 Active, not recruiting II

CEA peptide NCT00203892 Active, not recruiting II

Muc-1 peptide NCT00008099 Active, not recruiting I/II

Survivin peptide NCT00108875 Recruiting patients I/II

Telomerase peptide (GV1001) NCT00425360 Recruiting patients III

VEGFR1/VEGFR2 peptide NCT00639925 Active, not recruiting I/II

VEGFR1/VEGFR2 peptide NCT00655785 Active, not recruiting I/II

ALVAC-CEA, Vaccinia-CEA, GM-CSF, aldesleukin NCT00003125 Active, not recruiting II

PANVAC™-VF (CEA, MUC-1, TRICOM) NCT00088660 Active, not recruiting III

Fowlpox-CEA (6D), TRICOM, autologous DCs, denileukin diftitox NCT00128622 Active, not recruiting I

PANVAC-V, PANVAC-F, GM-CSF (CEA, MUC-1, TRICOM) NCT00669734 Recruiting I

Vaccinia Virus Ankara Vaccine (p53) NCT01191684 Recruiting I

SC-K-ras (GI-4000) NCT00300950 Active, not recruiting II

SC-CEA (GI-6207) NCT00924092 Recruiting patients I

ALVAC: Canary pox virus; CEA: Carcinoembryonic antigen; DC: Dendritic cell; GM-CSF: Granulocyte–macrophage colony-stimulating factor;
MUC: Mucin; PANVAC-F: Vaccine containing fowlpox virus; PANVAC-V: Vaccine containing vaccinia virus; SC: Saccharomyces cerevisiae;
TRICOM: Three costimulatory molecules (B7.1, ICAM-1 and LFA-3); VEGFR: VEGF receptor.
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Table 3

Selection of current monoclonal therapy clinical trials open to pancreatic cancer patients.

Treatment ClinicalTrials.gov ID

MORAb-009 (anti-mesothelin) NCT01018784, NCT00711191

Trastuzumab (anti-Her2/neu) NCT00003797

Cetuximab (anti-EGFR) NCT00923299, NCT00042939, NCT00448838, NCT00305760, NCT00075686, NCT00408564,
NCT00467116

Panitumumab (anti-EGFR) NCT00004879, NCT00601627, NCT00550836

Nimotuzumab (anti-EGFR) NCT00561990

Trastuzumab and cetuximab NCT00599833

EGFR: EGF-receptor.
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