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Abstract
Purpose—The present study had two purposes: provide an illustration of use of the National
Longitudinal Survey of Youth 1979 Children’s (CNLSY; U.S. Department of Labor, 2009)
database and use the database to seek convergent evidence regarding the magnitude and
significance of genetic effects influencing low and typical performers on measures of language,
reading, and mathematics.

Methods—A kinship algorithm that assigned a degree of genetic relatedness to all available
pairings was applied to the 1994 wave of the CNLSY sample. Four cognitive achievement
outcomes related to language, reading, and mathematics were analyzed across the general sample
as well as for children selected below the lowest 20th percentile.

Results—The tests of receptive vocabulary, decoding, reading comprehension, and mathematics
all suggested estimates of group heritability and full sample heritability of moderate effect sizes,
and all estimates were statistically significant. Furthermore, all estimates were within confidence
intervals of previously reported estimates from twin and adoption studies.

Conclusion—The present study provides additional support for significant genetic effects across
low and wide ranges of specific achievement. Moreover, this study supports that genetic
influences on reading, language, and mathematics are generalizable beyond twin and adoption
studies.
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The National Longitudinal Survey of Youth 1979 (NLSY79) is a large-scale, nationally
representative multipurpose panel survey of 12,686 men and women who were between the
ages of 14 and 22 years of age on December 31, 1978 (Baker, Keck, Mott, & Quinlan,
1993). Annual interviews were conducted on the original sample from 1979 until 1994, after
which biannual interviews were performed. The collection of this survey was initiated and
sponsored by the U.S. Department of Labor to ascertain information about this cohort’s
employment, education, training, and family experiences. More specifically, each survey
round contained a core set of questions concerning the following topics: labor market
experience, training investment, schooling, family income, health conditions, geographic
residence and environmental characteristics, household composition, and marital and
fertility histories (Center for Human Resource Research, 2006).
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The sampling design of the original NLSY79 cohort was composed of three subsamples (see
Figure 1): (a) a “cross-sectional sample” of 6,111 respondents who were representative of
the non-institutionalized civilian segment of young people living in the United States in
1979 who were between the ages of 14 and 22; (b) a “supplemental sample” of 5,295
respondents of oversampled civilian Hispanic or Latino, Black, and economically
disadvantaged White youth living in the United States in 1979 between the ages of 14 and
22; and (c) a “military sample” of 1,280 respondents who were enlisted in any branch of the
military as of September 30, 1978, between the ages of 17 and 22 (Center for Human
Resource Research, 2006). Funding limitations resulted in the second and third (other than
201 randomly selected individuals) subsamples being dropped from the survey after 2000
and 1984, respectively.

To date, there are 21 rounds of publicly available data from the NLSY79 cohort. Retention
is calculated by dividing the total number of respondents by the number of respondents who
are eligible for interview. Retention rates from rounds 1 through 16 were all around or above
90%. After round 16 (1994), retention rates have lessened to an extent, falling to a low of
76.9% in the most recent year available, 2004 (Center for Human Resource Research, 2006).

The Children of the NLSY79 Database
Beginning in 1986, children of the 5,255 women in the NLSY79 cohort have been
interviewed every 2 years (see Figure 1). It should be noted that because the military sample
was dropped from data collection before 1986, none of their potential children is included.
This sample of the children of the NLSY79 women (CNLSY) is supported by the National
Institute of Child Health and Development (NICHD). As of the last available collection
point (2004), a total of 11,428 children have been identified as born to the women of
NLSY79 (see Figure 1). On average, it has been calculated that the NLSY79 women have
1.9 children identified in the children’s sample, representing a predicted 90% of their total
childbearing. In general, the CNLSY sample represents all children who were born to
women between the ages of 14 and 22 in 1979.

However, there is a selection bias within the CNLSY that must be recognized. Given that the
sampling design is to measure all children of the original cohort of women once they are
born, there is an intrinsic prejudice toward which women are having children at any given
time of data collection. More specifically, the women who already had children in the first
few measurement points had their children young, as either teenage mothers or young adults.
This group of women is more likely to be less educated and from one of the minority groups
(Chase-Lansdale, Mott, Brooks-Gunn,&Phillips, 1991). Therefore, the older children present
in the CNLSY database also tend to have lower education attainment and come from a lower
socioeconomic status (Chase-Lansdale et al., 1991). Given this trend, there is a
complementary bias toward the younger children present in the CNLSY sample in that they
were born from older mothers, making them more likely to be at a higher socioeconomic
status and to be of non-minority status (Center for Human Resource Research, 2004).

Data collection across survey dates focused on assessments of cognitive ability,
temperament, motor and social development, behavior problems, self-competence, and the
quality of the home environment (Center for Human Resource Research, 2004). Further,
beginning in 1988, children older than 10 years of age were assessed via personal interviews
on school, family, peer relations, and general attitudes and behaviors. As of 1994, all
children of the CNLSY who were 15 years old or older for that year (termed “young adults”)
were given a different protocol than those younger than 15 (termed “younger children”),
who continued to receive the same assessment and interview battery as previously
conducted. Specifically, the young adults were given personal interviews that were akin to
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the interviews that were given to their mothers when they were adolescents and young
adults.

Until 1992, all data collection was conducted by trained field testers using a pencil-and-
paper method. Beginning in 1994, collection moved to a computer-assisted personal
interview (CAPI), with all instruments fully computerized by the year 2000. The CAPI
involves the testers going into the field with laptop computers that are programmed to
automatically select the appropriate next question based on skip patterns. After the split to
young adult or younger children subsamples in 1994, all younger children interviews were
conducted in person. All young adult interviews were conducted in person from 1996 until
1998, after which data collection moved to telephone rather than in-home visits. Completion
rates for the CNLSY cohort are calculated by taking the number of all children who are
interviewed and dividing that by the number of children who are eligible for collection
based on their mother being interviewed. Younger children must be living in the home of
their mother, but young adults need not be to be eligible. Therefore, before the age split,
child completion rates were relatively stable at around 97%. After the split, the completion
rates for younger children stayed around 90%, and for young adults, around 83%.

Interviews for the CNLSY involve multiple modes conducted in the mother of the
respondent’s home by experienced trained field staff. These modes include mother reports,
child reports, interviewer observations, and interviewer-administered assessments (Center
for Human Resource Research, 2004). The mother report includes, at the family level,
questions about the home environment, employment, family education and competence,
household composition, and father presence and contact. Mothers of the children also report
on child-specific questions such as temperament, behavior problems, motor and social
development, family (e.g., parent monitoring, religiosity, feelings toward child), school
(e.g., overall success, quality of school, total number of school attended), and health. The
child report contains questions concerning family interactions and parenting, attitudes,
behaviors, moods, classroom activities, teacher practices, homework, after-school and
summer activities, computer use, friends, dating, TV viewing practices, work for pay,
community service and volunteering, alcohol and drug use, peer pressure, risky behavior,
neighborhood safety, and religion. The interviewer report is an evaluation on the attitude of
the child toward the testing paradigm, the child’s physical condition, and whether anything
occurred that interfered with the testing session. Also, the interviewer comments on the
home environment. Finally, the interviewer-administered assessment includes general
questions about the child’s age, height, and weight, as well as a measure of self-perceived
adequacy and competence, and psychometric batteries of ability. The measures of ability
include a test of short-term memory, mathematics, word recognition and reading
comprehension, and receptive vocabulary.

User guides are available online for both the original NLSY79 sample (Center for Human
Resource Research, 2004) as well as the CNLSY sample (Center for Human Resource
Research, 2006). All available data for both samples are available in one publicly available
Web site (U.S. Department of Labor, 2007). A free user account is required to pull the data,
which are easily available by variable name or topic area.

Genetic Influences on Language, Reading, and Mathematics Skills
Quantitative genetics methodology allows for individual differences in measured abilities to
be decomposed into genetic and environmental contributions (Plomin, DeFries, McClearn,
& McGuffin, 2008). Both twin and adoption studies have been employed to study the
etiology of language, reading, and mathematics performance. These are described in terms
of additive genetic (effects that are due to the summation of genetic influences across many
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genes; h2), shared environmental (environmental influences that make family members more
similar; c2), and nonshared environmental (environmental influences that make family
members distinct; e2) effects. Twin studies achieve this by comparing differences in the
amount of similarity between a set of twins based on the extent to which they share genes
(i.e., monozygotic twins share 100% of their genes, and dizygotic twins theoretically share
50% of their genes on average). Adoption studies compare the extent to which nonrelated
children in a family are similar to each other and to their adoptive and/or biological parents.
These two types of studies, and their extensions, have informed the literature as to genetic
etiology of the components of language, reading, and mathematics skill in an unselected
population, as well as within populations of individuals with disabilities (Plomin et al.,
2008).

In general, within most domains of language, reading, and mathematics, genetic effects are
substantial and significant (see Plomin & Kovas, 2005, for review). For example,
vocabulary skills in young children show significant genetic estimates (h2 = .32–.46; Byrne
et al., 2006; DeThorne et al., 2008). Mathematics performance has shown significant genetic
influences across a broad base of studies as well (h2 = .44–.67; Hart, Petrill, Thompson, &
Plomin, 2009; Knopik & DeFries, 1999; Oliver et al., 2004). Likewise, word recognition has
shown consistent and significant estimates of genetic effects across both twin (h2 = .42–.49;
Light, DeFries, & Olson, 1998; Petrill, Deater-Deckard, Thompson, DeThorne, &
Schatschneider, 2006) and adoption studies (h2 = .45; Brooks, Fulker & DeFries, 1990).
However, other measures of reading, such as decoding fluency, phonological decoding, and
reading recognition, have suggested higher point estimates for heritability across both twin
(h2 = .65–.80; Gayan &Olson, 2003; Harlaar, Dale, & Plomin, 2007) and adoption studies
(h2 = .57; Wadsworth, Corley, Hewitt, & DeFries, 2001). However, these more recent higher
point estimates are within the range of confidence intervals of the more moderate estimates.

The above studies have provided estimates of genetic heritability for the full spectrum of
performance in language, reading, and mathematics; other studies have focused specifically
on heritability of disabilities in both twin and adoption studies (Plomin & Kovas, 2005). For
example, several projects have examined the genetic influences for reading impairment (hg

2

= .52–.73; Castles, Bates, Coltheart, Luciano, & Martin, 2006; Harlaar, Hayiou-Thomas, &
Plomin, 2005; Hawke, Wadsworth, Olson, & DeFries, 2007; Light & DeFries, 1995) and for
impairment in mathematics performance (hg

2 = .38–.65; Alarcón, DeFries, Light, &
Pennington, 1997; Oliver et al., 2004). More specifically for language impairment,
significant genetic influences have been suggested for composites of widely varying
language aspects (e.g., vocabulary, syntax, phonology, and articulation, hg

2 = .38; Viding et
al., 2004), as well as for individual components (e.g., nonword repetition, hg

2 = .38; Bishop
et al., 1999). Moreover, research has suggested that in general, the magnitude of genetic
effects that influence the lower end of performance (i.e., impairment) is similar to that
influencing the wide range of performance (see Plomin & Kovas, 2005, for review). This
has led to a general conclusion across the field toward a “quantitative trait locus (QTL)
hypothesis,” which assumes that multiple genes influence a disorder such as dyslexia,
forming a continuum of vulnerability (Plomin & McGuffin, 2003). Therefore, these genes
influence not just the disability, but the entire spectrum of ability.

The results from twin and adoption studies have been persuasive within the field of
quantitative genetics, but there are also some important possible limitations regarding the
use of twin and adoption studies to provide estimates of genetic effects. That is, given the
seemingly special nature of families of both twins and adoptees, there has been debate as to
whether genetic influences are inflated in these samples (see Plomin et al., 2008, for review)
and whether results showing moderate and significant genetic effects are generalizable to
nontwin and nonadoptive samples of children (e.g., Stoolmiller, 1999). For example, one
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methodological assumption of a twin design is the “equal environments assumption.”
Specifically, this assumption states that the influences of the environment that makes
siblings more similar are roughly equal for both monozygotic and dizygotic twins in the
same family (Plomin et al., 2008). If this assumption were violated by identical twins being
treated more similarly solely by virtue of their status as identical twins (e.g., due to looking
more like) than fraternal twins, then estimates of genetic influences would be artificially
inflated. Similarly, given that parents self-select into the adoptive process and are on average
more affluent and provide a high-quality home environment, they may have a more
restricted range of influence than the typical family (Baumrind, 1993; Stoolmiller, 1999).
This restriction of family environment would also serve to artificially inflate the estimates of
genetic influences while undermining the importance of the shared environment
(Stoolmiller, 1998, 1999). Taken together, the possible violation of the equal environments
assumption in twin designs (e.g., Eaves, Foley, & Silberg, 2003), along with the potentially
restricted range of family environment in adoption designs (e.g., Stoolmiller, 1999), may
serve to limit the generalizability of these methodologies.

However, there is evidence to the contrary. First, the theoretical limitations in twin and
adoption studies have shown negligible influence on the magnitude and significance of
genetic estimates (e.g., Evans & Martin, 2000). Furthermore, despite the limitations to both
twin and adoption studies separately, results are highly concordant across both types of
designs, as well as for combined designs (Plomin et al., 2008; Plomin & Kovas, 2005). That
said, although there is much support for the twin and adoption studies in the field, these
samples cannot address the question of genetic influences in nontwin samples (Eaves et al.,
2003). There has yet to be much research to support the conclusion that genetics play a
moderate and significant role within cognitive domains outside of the typical twin and
adoption studies.

The NLSY79 study is a publicly available data set that is nationally representative of women
ages 14 to 22 in 1979. Moreover, data are available in the children’s data set on all of the
children these women have had (CNLSY; Baker et al., 1993). Importantly, the CNLSY was
in part designed to examine early development and is also genetically sensitive in design. As
part of the study design of measuring all available children in the women’s households, it is
possible to analyze the naturally occurring kinship pairs within the sample. Furthermore, by
using information on the genetic relatedness from these kinships, estimates of genetic
influences on achievement outcomes can be calculated (Rodgers & Rowe, 1987; Rodgers,
Rowe, & Li, 1994). By using a large, representative sample such as the CNLSY, issues of
generalizability of results such as those raised against twin and adoption studies are less
meaningful. Therefore, any consistency in results across study designs would serve to
strengthen the results of hallmark quantitative genetic designs.

As mentioned previously, the CNLSY administers psychometric batteries of school
achievement tests that incorporate language, reading, and mathematics to thousands of
children (Center for Human Resource Research, 2004). Given the potential power of such a
large sample size, it is possible to examine not only the genetic point estimates of the total
“unselected” sample (e.g., Rodgers, Rowe & May, 1994), but also whether that same
magnitude of effects influences the low end of the performance spectrum. Moreover, these
results can be compared to previously reported estimates from the twin and adoption study
literature. For example, Rodgers, Rowe, and May used the CNLSY to examine genetic
influences on broad-based intelligence, resulting in estimates of heritability in the total
unselected sample (h2 = .50) similar to those found across numerous twin and adoption
studies (see Plomin & Rende, 1991, for review). This same study (Rodgers, Rowe, & May,
1994) also examined genetic influences on the individual measures of language, reading,
and mathematics within the unselected sample and found similar results in terms of
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magnitude and significance as research reported previously (h2 = .48–.74; e.g., Plomin &
Kovas, 2005). The present study will build on the Rodgers, Rowe, and May (1994) analysis
in numerous ways. First, Rodgers, Rowe, and May examined the genetic and environmental
estimates of the full sample only and did not apply any selection to the sample, such as low
performers only. Second, the present sample will be more inclusive of the entire CNLSY
sample, as the linking algorithm has since been applied to all individuals in the CNLSY,
something that was not available to Rodgers, Rowe, and May. More specifically, the
Rodgers, Rowe, and May sample only included 1,044 pairs of children, whereas the present
sample includes 7,681 pairs. Finally, the present analyses include psychometric batteries
measured at a later survey year (i.e., 1994) than Rodgers, Rowe, and May, which included
1986 and 1988. This is important because beginning in 1994, a more accurate testing
paradigm, CAPI, was introduced.

ANALYSIS IN THE CNLSY: ILLUSTRATIVE RESEARCH STUDY
Research Question

To provide an illustration of how the CNLSY may be used to answer important questions
regarding the heritability of specific cognitive skills in both typical and low-performing
samples, the present study addressed three major goals: to examine the extent to which (a)
genetic influences were present in a selected sample of low performers on language, reading,
and mathematics achievement tests; (b) the magnitude of the genetic influences for the total
sample was similar to the magnitude of a selected sample of low performers; and (c)
estimates of genetic influences on language, reading, and mathematics outcomes from a
selected and an unselected sample based on representative data generalized to the findings
from twin and adoption studies. We hypothesized that (a) a selected sample of low-ability
(defined as the lowest 20th percentile) performers within the CNLSY would have significant
and substantial effects that are attributable to genetic influences for language, reading, and
mathematics achievement; (b) the unselected sample of the nationally representative
CNLSY would have genetic estimates of similar magnitude to the selected sample for
language, reading, and mathematics achievement; and (c) in total, the genetic estimates of
both the selected and unselected sample from the CNLSY would be within range of those
that were previously published from twin and adoption studies measuring cognitive
domains.

METHOD
Sample

Due to an effort to include all available children in the 2,400 sampled homes from the
NLSY79, the sample included full siblings (including twins), half-siblings, and cousins (see
Figure 1). In previous studies, Rodgers and colleagues used all available information within
the CNLSY data to assign genetic relatedness coefficients to each pair available within the
data (Rodgers, Johnson, & Bard, 2005; Rodgers, Rowe, & Li, 1994; Rodgers, Rowe, &
May, 1994). These identified pairs represent approximately all of the possible relationship
pairs known in the CNLSY through to the 2002 cycle, meaning that all kinship pairings in
the CNLSY up until that cycle have received a coefficient of relatedness (Van Hulle,
Rodgers, D’Onofrio,Waldman, & Lahey, 2007). Briefly, twins were identified by having the
same birth date for two siblings with zygosity determined by specific survey questions. Full
and half-siblings were determined by survey questions concerning paternity. When sibling
classification could not be assured, the pair received a genetic coefficient of the midpoint
between full and half-siblings (“unknown siblings”). Finally, cousins were identified by
determining the children of sisters in the original NLSY79 database. A more complete
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discussion of the linking algorithm and the logic behind the classification criterion may be
found elsewhere (Rodgers et al., 2005; Van Hulle et al., 2007).

To date, there are 12,431 pairs who have been identified across the waves of analyses (see
Figure 1). It should be noted that an individual child can contribute to multiple pairings,
therefore resulting in a greater total functional sample size for these analyses than is present
in the CNLSY sample without the pairings. For example, a family with four siblings would
represent six pairings; therefore, the total number of pairings is not reflective of the total
number of children in the data set. Given the large number of waves, the present analyses
come from the 1994 wave of the CNLSY, which includes interviews of 7,862 “younger
children” (younger than 15 years old) who were available and were in the correct age range
for surveying. The present analyses are based on only the “younger children” of the 1994
wave because of the following benefits this afforded: more accurate scoring of the
achievement tests due to the introduction of the CAPI technology, and the most available
data based on the psychometric batteries for any wave (Center for Human Resource
Research, 2004). Therefore, once the kinship algorithm was applied to the 1994 wave of the
CNLSY, 7,681 pairs of children were assigned genetic relatedness coefficients, of which
there are five kinship levels: monozygotic (MZ) twins (17 pairs), full siblings/dizygotic
(DZ) twins (3589 pairs), unknown siblings (1158 pairs), half-siblings (1515 pairs), and
cousins (1402 pairs).

In 1994, the mothers of the children were between the ages of 29 and 37 years. In general,
most of the mothers had at least two or more children (40% with two, 40% with more than
two, and 20% with one). Of the 3,363 mothers who were included, approximately 50% were
White (1645), 30% were Black (1040), and 20% were Hispanic (658). The mothers of the
children present in 1994 also represented a wide range of educational attainment, with
18.7% of the sample having less than 12 years of education, 45.2% having 12 years of
education, 32.2% having up to 4 years of college, and the remaining 3.9% having more than
4 years of college. The children available from the 1994 wave of assessment have a mean
age of 9.57 years (SD = 2.70 years, range = 4.92–14.83).

Measures
Four individual achievement measures of ability were given during in-depth home-based
testing that was administered by trained field workers. Three of the measures came from the
full Peabody Individual Achievement Test (PIAT; Dunn & Markwardt, 1970), specifically,
the Reading Comprehension, Reading Recognition, and Mathematics subtests. The fourth
test administered was the Peabody Picture Vocabulary Test—Revised (PPVT–R; Dunn &
Dunn, 1981). Published median test–retest reliabilities for all measures are moderate to high:
Reading Comprehension, r = .64; Reading Recognition, r = .89; Mathematics, r = .74 (Dunn
& Markwardt, 1970); and PPVT–R, r = .78 (Dunn & Dunn, 1981). Some testing parameters
reduced the range of children tested for some of the measures, thus resulting in different
sample sizes depending on the test. For example, only children over the age of 5 years who
had scored greater than 19 on the Reading Recognition subtest were administered the
Reading Comprehension subtest. Also, the PPVT–R was only administered to children
between the ages of 10 and 11 years, unless they had not been previously sampled (Center
for Human Resource Research, 2004).

All scores for individual children were standardized to age and gender norms, for a
population mean of 100 and a standard deviation of 15. It should be noted, however, that the
norming sample for the CNLSY PIAT achievement subtests was drawn from the 1968
version of the PIAT, meaning that the norming occurred approximately 30 years before
sampling of the CNLSY (see Center for Human Resource Research, 2004). In general, this
has had the effect of the entire CNLSY sample having a mean standard score of slightly
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greater than 100 for the PIAT subtests, which is most likely reflective of social changes
toward earlier preparation and education of mathematics and reading skills (see Center for
Human Resource Research, 2004). Rodgers and Wänström (2007) also provide a related
alternative reasoning for the increase in the mean standard score, namely the influence of the
Flynn effect (e.g., Flynn, 1984). The Flynn effect describes the phenomenon of a general
increase in test scores across generations due to many potential factors (Flynn, 1984).

All batteries were standardized for age and gender, but no further covariates concerning
possible sample bias (e.g., maternal education) were controlled for in the present analyses.
Although this may seem atypical for a large-scale sample, the nature of the methodology of
between-pair analysis based on genetic relatedness serves as an implicit control for almost
all covariates that could be identified in a sample with individual units of measurement.
Each member of the kinship pairing serves as a statistical control for variables that are most
likely shared between them, which are typically not shared between singular units of
analysis, such as family-level effects. Moreover, by controlling for influences such as
maternal education within the present analyses, the effect would be to inflate the estimates
of heritability, as the between-family environmental variance would be diminished.

RESULTS
Descriptive Statistics

Means, standard deviations, and the ranges for each of the four achievement battery
subtests’ standardized scores as measured in 1994 are presented in Table 1 for both the
selected and unselected samples. These samples are based on the available individuals after
the kinship algorithm was applied to the CNLSY 1994 wave with available data for the
specific measure. In general, this subsample of the CNLSY scored close to the population
mean of 100 and standard deviation of 15 for each subtest of the PIAT. However, the sample
in general scored below the mean on the PPVT–R (M = 85.89) and above the average
standard deviation (SD = 20.75) than would be expected from the general population.

Genetic Analysis
We employed a DeFries Fulker model (DF; DeFries & Fulker, 1985) to examine the genetic
influence on low and unselected language, reading, and mathematics performance,
analogous to Rodgers, Rowe, and May (1994). DF analysis is also based on the logic of
increased genetic relatedness being associated with increased familiality. The original form
of the DF model (DeFries & Fulker, 1985) was designed for examination of the genetic
influences on the extremes of a population using twin data. This model can be extended to
any pair of related individuals in which a proband is selected for an extreme score on a
measure, with the second member of the pair score regressing to the population mean
(DeFries & Fulker, 1985). From a DF analysis, it is possible to measure the genetic
influence on an outcome in an extreme sample, such as low performers on a test.
Additionally, the model can be extended to measure the genetic influences on an unselected
sample. Following the measurement of genetic influences on both the selected and
unselected samples, the DF analysis allows for an examination of the possible similarities
between the magnitudes of the genetic estimates of a selected sample and an unselected
sample.

Similar to the 1994 work by Rodgers, Rowe, and May on a smaller sample of available
pairings, the present analysis extended the DF twin model to incorporate the five levels of
relatedness that are available in the CNLSY: MZ twins (Relatedness [R] = 1.0), full
siblings /DZ twins (R = .50), unclassified siblings (R = .375), half siblings (R = .25), and
cousins (R = .125; Rodgers et al., 2005; Rodgers, Rowe, & Li, 1994). Therefore, using the
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CNLSY, it is possible to compare the degree of similarity in score, or concordance, of the
various related pairs. From this, it is assumed that the higher the genetic relatedness of the
pair, the greater the concordance should be, if genetics are important to the outcome.
Therefore, if genetic effects are influencing the language, reading, and mathematics
measures, then the identical twins (R = 1.0) should show greater concordance with each
other over the full siblings (R = .50), who will in turn show greater concordance over the
half-siblings (R = .50), and so on. Similarly, any extent to which the concordance is not
explained by the genetic relatedness, environmental influences are assumed.

Selected Sample
The first step in the present analyses was to select any individual who scored at or below the
20th percentile and examine the extent of the similarity in scoring the other member of the
pairing had. If genetic influences on the trait are indicated, the less genetically related the
kinship pair is, the closer to the mean the other member of the pair should score, essentially
widening the gap between their scores. Therefore, by measuring this differential second
member of the pair’s regression to the mean according to genetic relatedness, it is possible
to use quantitative genetic techniques to estimate “group” genetic influences. These
estimates are group estimates in that they measure a selected group’s mean score on an
outcome versus the rest of the population. For example, these group estimates of genetic
influences explain why the mean of the selected group is 80 and the mean of the unselected
group is 100, but they do not explain why these two may be different from one another. The
same logic is applied for environmental influences. Any extent to which genetic influences
cannot explain the regression to the mean by the second member of the pair, group
environmental effects are assumed. This basic DF model based on selection of a proband is
represented by the following multiple regression model:

(1)

where K1 is the second member of the pair’s score on the outcome, K2 is the proband’s
score, R is the degree of genetic relatedness, bo is the intercept, b2 is the influence due to
genetics on the selected group, and e is the error term. Finally, the b1 term is an indicator of
the independent effects on the proband not including influences due to genetics (LaBuda,
DeFries, & Fulker, 1986).

As previously stated, if genetic effects are important, higher familial resemblance on
outcomes of interest should be correlated with higher levels of genetic relatedness (Plomin
et al., 2008). Table 2 displays the result from the group correlations between the members of
the same degree of genetic relatedness on each of the cognitive achievement tests. In
general, as the degree of relatedness increases across a specific measure, so does the degree
of correlation between the individuals in most cases. For example, for the PIAT Reading
Comprehension subtest, the group correlation for the cousins is lower (.34) than that for the
full siblings (.47), which is in itself lower than that for the identical twins (.86). This would
suggest that there is genetic variance underlying each of the achievement test scores.
However, it should be noted that the group correlation for the unknown siblings is higher in
most cases than in the full siblings, which may suggest environmental influences.

Therefore, specific genetic estimates derived from selecting a proband based on the cutoff of
less than or equal to the 20th percentile represent the group heritability (hg

2), which
represents the extent to which the mean differences between the extreme group and the rest
of the population are due to genetic effects (Plomin et al., 2008). As suggested above, this
group heritability is based on the degree of relatedness, in that if in the CNLSY, the means
between the proband and the second member of a pairing of full siblings were more similar
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than the same means in cousins, the greater the group heritability influence that would be
expected. Similarly, it is possible to estimate the group shared environment estimates (cg

2),
which is defined as the extent to which the mean differences between the selected group and
the typical population are due to environmental effects. These influences are assumed by the
extent to which not all of the mean differences can be explained by genetic effects (e.g., if
full siblings are not as less similar to each other than identical twins, as would be expected
by genetic effects only). DF modeling also allows for standard errors to be estimated for the
point estimates. It should be noted that the analyzed data set contains double entered data,
meaning that all individuals have the opportunity to be the “proband” in order to get both
members of the pair included, which effectively doubles the sample size. This is done by
allowing for two lines of data for each twin pair, with the outcome estimate for Child 1 on
one line switched to the outcome estimate for Child 2 on the second line, and vice versa.
This allows each child in the pairing to have the chance to be K1 or K2. Therefore, the
standard errors derived from the DF analysis are overly liberal, as each pairing contributes
two observations to the model. This results in errors being correlated, violating the
assumption of independence of errors (see Rodgers & Kohler, 2005). Given this, a
correction for this was applied using the following formula:

(2)

where S.E. is the standard error, DE is the total number of pairs where both members are
selected as probands, SE is the total number of pairs where only one member of the pairing
is a proband, and k is the total number of elements in the regression formula. From this
corrected standard error, statistical tests of significance can be applied on the estimates of
group heritability and shared environment. This involves multiplying the corrected standard
error by 1.96 and using this as the confidence interval of the point estimate. If the
confidence interval does not bound zero, then the estimate is significant.

Results of group heritability and shared environment from the selection of probands who
scored in the lowest 20th percentile on each of the various achievement tests available in the
CNLSY79 are presented in Table 3. The confidence intervals, as well as the results from the
significance tests, are also displayed. The PIAT Reading Comprehension subtest suggested
moderate and significant group heritability and shared environment (hg

2 = .32, cg
2 = .46).

The Reading Recognition subtest of the PIAT indicated moderate and significant effects of
group heritability and modest shared environment (hg

2 = .47, cg
2 = .32). The PIAT

Mathematics subtest revealed a small to moderate and significant estimate for group
heritability, hg

2 = .39, and for shared environment, cg
2 = .28. Finally, the PPVT–R test

suggested a large and significant estimate of group heritability and shared environment (hg
2

= .69, cg
2 = .59).

Unselected sample—As described above, one issue is whether genetic effects in low and
unselected samples are similar in magnitude (e.g., Plomin & Kovas, 2005). DF analysis for
selected populations can be applied to an unselected population (Rodgers & Kohler, 2005).
However, there are two differences to the formulation of the DF analysis for an unselected
population. First, there is no selection of a proband based on a cutoff score. Instead, the
similarity in scores between every individual in the sample by relationship is considered.
Second, the basic DF regression formula is expanded to include an interaction term, which
in the unselected population represents the broad sense heritability (h2) of the sample. This
results in a simple extension of the DF formula (1), which is represented by the following
formula:

Hart et al. Page 10

Lang Speech Hear Serv Sch. Author manuscript; available in PMC 2011 August 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(3)

where K1 is the first member of the pair’s score on the outcome, K2 is the second member’s
score on the outcome, R is the degree of genetic relatedness, bo is the intercept, b3 is the
heritability (additive genetic effects; h2) of the trait in the total sample, and b2 is a direct
estimate of shared environmental influences (c2; Rodgers & McGue, 1994). Just as in the
selected sample formulation, standard errors are produced but are based on an essential
doubling of the sample size due to double entry. Therefore, these liberal standard errors are
corrected for based on the actual sample size using the same formula as shown above (2),
and then statistical tests of significance are used against the point estimates. All of the
available subtests of achievement in the CNLSY were re-analyzed without the selection
criterion for estimates of genetic and shared environmental influences on the whole sample.
Again, genetic influences are implied if the similarity in score between a pairing increases as
the degree of relatedness increases. For example, if genetic influences are implied, then
identical twins should have a mean score closer to their co-twin than full sisters have to each
other. If the mean differences between the degree of relatedness are not as great as would be
assumed by genetic effects only, than environmental influences are implicated. The results
from this unselected sample DF analysis are presented in Table 3, along with the confidence
intervals and significance levels for each of the available achievement tests in the CNLSY.
The PIAT Reading Comprehension subtest indicated small to moderate and significant
heritability and shared environment (h2 = .43, c2 = .26). The PIAT Reading Recognition
subtest also suggested small to moderate and significant effects due to genetics and shared
environment (h2 = .33, c2 = .26). The PIAT Mathematics subtest suggested small to
moderate and significant heritability and shared environment estimates, h2 = .39, c2 = .16.
Finally, the PPVT–R test revealed a moderate and significant estimate of heritability (h2 = .
51), as well as for the shared environment (c2 = .35).

CONCLUSION
The purpose of the present work was twofold. Our first intent was to provide an illustration
of use of the CNLSY database. The second intent was to use this database to seek
convergent evidence regarding the genetic effects influencing low and typical performers on
measures of language, reading, and mathematics collected outside of the typical twin and
adoption study paradigms. In doing so, three goals were addressed. First, we examined the
extent to which genetic influences were significant in impaired language, reading, and
mathematics performance in the children in the CNLSY. Next, we examined the extent to
which the magnitude of the genetic influences in the unselected sample was similar to the
magnitude of the genetic influences in the selected sample of low performers. Third, we
examined whether the genetic influences on language, reading, and mathematics
achievement outcomes from the present nationally representative selected and unselected
samples generalized to the findings on similar outcomes from the extant twin and adoption
studies. Using the CNLSY, five degrees of genetic relationships were identified between all
pairs of children available who had been administered psychometric batteries of language,
reading, and mathematics.

We tested three specific hypotheses. The first was that the selected sample of the lowest
20th percentile of scorers on each of the four achievement measures available in the CNLSY
would indicate substantial and significant influences attributable to genetic effects. The
results for each of the vocabulary, decoding, reading comprehension, and general
mathematics tests suggested that this was the case in this sample. For all of the achievement
tests, the point estimates for group heritability were significantly different from zero, and all
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were moderate to high in magnitude. It should be noted that the cutoff of the 20th percentile
was chosen because it implies a general low performance on the measure, it is in the range
of commonly used cutoffs in the literature using DF analyses (see Plomin & Kovas, 2005),
and it has previously been suggested to be similar in results to other more stringent cutoffs
(e.g., Petrill et al., 2001).

The second hypothesis predicted that similar significant estimates for genetic influences
would be found in the unselected sample across the measures of achievement. This
hypothesis was also found to be supported by the data, with vocabulary, decoding, reading
comprehension, and general mathematics achievement tests all indicating moderate and
significant estimates of heritability in the unselected sample. Moreover, this hypothesis
stated that the unselected sample estimate of heritability would be of similar magnitude to
the group heritability of the lowest 20th percentile. Importantly, this was the case. For all
four measures, both group heritability and broad-sense heritability were significant and were
within confidence intervals of each other. Therefore, although the point estimates derived in
the present model are slightly different from each other in magnitude, they are well within
the same range of potential estimates given the bounds of probability sampling. This lends
credence to both the phenotypic literature’s movement toward conceptualizing disability in
language, reading, and mathematics to be on the same continuum as typical performance
(Bishop & Snowling, 2004), and the quantitative genetic movement toward accepting the
QTL hypothesis (Plomin &McGuffin, 2003). That is, similar genes influence all variation
within the cognitive performance spectrum, including the extreme ends (Plomin &
McGuffin, 2003).

The third hypothesis stated that the selected and unselected estimates for genetic influences
on all four of the achievement measures would be similar in magnitude to the broader
literature derived from the classic twin and adoption studies. In a review of the literature
concerning the extremes and unselected sample estimates for genetic effects on cognition
across many different twin and adoption projects, a common theme of moderate and
significant genetic estimates was determined (Plomin & Kovas, 2005). The present analyses
suggest that even outside of the typical twin and adoption study methodology, within a data
set that is largely representative of the population of the United States, similar estimates
were found. These were similar in both magnitude and significance to the existing
quantitative genetics literature. Although in some cases, the present estimates were
somewhat on the lower end of the range of magnitudes in the literature, the present estimates
are well within the confidence intervals of previous work. For example, the present estimate
for Reading Recognition of h2 = .33 is lower than many individual point estimates in the
literature. However, it is within the confidence intervals of many of these previous
estimates, such as Foch and Plomin (1980), who suggested a range of heritability estimates
from .09 to .82 (see Plomin et al., 2008). Along with Rodgers et al. (1994), who examined
an earlier and less complete version of the kinship linkage file for the CNLSY, this is the
first known example of heritability estimates for cognitive achievement tests outside of twin
and adoption studies. The high degree to which the present results concur with the
previously published quantitative genetic literature gives support for the results found by the
twin and adoption paradigms. This is despite the concerns of generalizability (e.g., Eaves et
al., 2003; Stoolmiller, 1999) due to the potential overinflation of the genetic estimates in
these sample designs. Although the present analyses did not directly test these issues, by
showing consistency of results, these analyses implicate that they may be in fact more of a
theoretical concern than a practical concern.

There are, however, limitations to the present study that should be noted. First, an
examination of the descriptive means for each of the subtests from the present sample of the
CNLSY79 1994 wave shows that the PPVT–R mean is almost 1 SD below what would be
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expected in a population survey, given that the standardization of the test is around a
population mean of 100. It seems as though the sampling procedure of the CNLSY for
administering this specific test to only 10- to 11-year-olds (unless not previously sampled)
has resulted in some sampling bias toward lower than typically performing children in
receptive vocabulary as measured by the PPVT–R. This possible sample constriction can
also be seen in the lower sample size of this test in the 1994 wave, and may be limiting the
generalizability of this performance measure. It may also be the case that the outcomes of
the children available in the 1994 wave are being influenced by the intrinsic sampling bias
that is present in the CNLSY (e.g., Chase-Lansdale et al., 1991). Although the present
sample contains only the younger children of the total available sample, it may be the case
that the oldest of this group systematically have a greater chance of having mothers who
have lower educational attainment and lower socioeconomic status (Center for Human
Resource Research, 2004). This would increase the chance of the sample scoring lower on
cognitive performance outcomes. Along these same lines, the means of the PIAT subtests
were all lower than what was expected by the CNLSY total sample, which previous reports
have suggested means closer to 110 for all of the tests. This higher than normal total sample
mean has been previously explained as being due to the use of a standardization paradigm
that was built 30 years before the children being tested (Center for Human Resource
Research, 2004). The present sample means being lower than expected would appear to be
due to an introduction of a slight sampling bias by the linking algorithm. Although all
possible kinship pairs are identified in the present sample, this naturally precludes any
children who cannot be matched to a pair (i.e., only children with no cousins). In general,
these limitations highlight the fact that the CNLSY sample is representative at inception
only to all children of women who were between the ages of 14 and 22 in 1979. Moreover,
application of the linking algorithm may be introducing some sampling bias due to it only
representing children with some sort of pairing available in the data. However, in general,
the CNLSY is closest to a truly nationally representative sample that has been used within
the quantitative genetics framework. By the high consistency of the present results with twin
and adoption studies focusing on cognitive achievement is confidence given not only for
those more classic designs, but also to the generalizability of these results.

Future work should seek to replicate these findings for each cognitive performance measure
in other waves of the CNLSY, as well as vary the cutoff points (e.g., lowest 10%) for the
selected analyses to determine if estimates change depending on how low performance is
quantified. Also, there is an implication that the genetic coefficient of many of the unknown
siblings should in fact be higher than assigned, given that the group correlation for these
pairs was higher than the correlation for the full sibling group in all cases. More work in
properly identifying these pairs, or using analyses that allow for an unknown rather than a
set genetic coefficient, may be called for in the future.

The present analyses can only speak to the significance and relative magnitude of genetic
estimates within and between the selected and unselected samples for individual tests of
language, reading, and mathematics. Therefore, these analyses do not test whether the same
or overlapping genes are influencing the selected and unselected groups across domain.
Future research should analyze multivariate models that would allow for such an
examination of the overlap to occur (e.g., Kovas & Plomin, 2006). Another interesting
question for future research would be to examine why the scores for the PIAT measures
seemed to fall toward the population mean in the present sample of the CNLSY with the
kinship algorithm applied. This seems to suggest that there are some unmeasured factors that
are influencing a selection effect of lower mean scores for “larger” families.

Despite these limitations, the present study is compelling in its consistency with not only the
previous literature from twin and adoption studies, but also in its suggestion of similar levels
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of influence due to genetics across performance levels. Again, this seems to substantiate the
work of twin and adoption studies despite the special populations that they focus on. This is
not to say that environmental influences are not important to these domains. In fact,
environmental effects tend to be similar in magnitude and significance as genetic effects for
achievement outcomes, as can be seen in the present analyses. Further examination of these
environmental effects in the CNLSY, specifically with a focus on measuring direct aspects
of the environment (e.g., neighborhood and home effects; e.g., Rodgers, Rowe & May,
1994), is also important. Twin and adoption studies are powerful ways to examine these
genetic and environmental effects, and the present results not only collaborate with these
designs but are powerful in their own right. The continuing support for the role of genetics
and environments within and across the cognitive domains and levels of performance has
far-reaching significance for educational and clinical intervention and prevention work.
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Figure 1.
Flow of data from the total National Longitudinal Survey of Youth 1979 (NLSY79) sample
to the sample used in the present analysis.
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