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Abstract: A hallmark of membrane protein structure is the large number of distorted

transmembrane helices. Because of the prevalence of bends, it is important to not only understand

how they are generated but also to learn how to predict their occurrence. Here, we find that there
are local sequence preferences in kinked helices, most notably a higher abundance of proline,

which can be exploited to identify bends from local sequence information. A neural network

predictor identifies over two-thirds of all bends (sensitivity 0.70) with high reliability (specificity
0.89). It is likely that more structural data will allow for better helix distortion predictors with

increased coverage in the future. The kink predictor, TMKink, is available at http://

tmkinkpredictor.mbi.ucla.edu/.
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Introduction

Roughly half of all transmembrane helices contain

bends or other deviations from ideality.1,2 Distortions

in helix geometry can facilitate conformational

changes required for protein function by providing

sites of flexibility3,4 and can be important for posi-

tioning key residues precisely in the structure.5

Kinks that open the polar backbone to alternative

hydrogen bonds are often wedged by water, thereby

providing a polar region within the hydrophobic

core.6 Proline kinks can also prevent off-pathway

events during the folding of membrane proteins,

thereby serving as a negative design feature.7

Because of the common occurrence of helix

breaks in membrane proteins, predicting where they

occur could be an important tool for membrane pro-

tein structure prediction.8,9 Existing structure pre-

diction efforts have typically started with the predic-

tion of transmembrane helices that are then packed

together in a separate step.8,10–13 Clearly, knowing

where helix deviations are likely to occur would be

useful information for packing together transmem-

brane segments, but this requires that local

sequence at least partially encodes the distortion.

An early indication that local sequence can provide

predictive information about helix deviations was

the work of Rigoutsos et al., who found predictive

patterns in transmembrane sequences, although the

database at the time was too small to perform rigor-

ous cross validation.14 Langelaan et al. developed a

kink prediction method exploiting the recent dra-

matic improvement in database size, but the per-

formance is hard to assess because the database did

not exclude homologous proteins.2

One sequence signature that is clearly a power-

ful indicator of helix kinking is the presence of a

proline, an amino acid that is incompatible with a
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helix.1,2,5,15,16 Yohannan et al. found that kinks can

often be identified by looking for prolines in the

aligned sequences of homologs.5 For 36 of 39 kinks

examined, Pro occurred near the kink in at least

10% of homologous family members. More recent

work with a larger database suggests that the Pro

signature may much be less common than originally

seen,1 however (also see below). Nevertheless, it is

clear that Pro in either the protein itself or in a

homolog provides strong predictive information.

There are indications that nonproline residues

can also provide information about kink formation,

although the picture is much less clear. Hall et al.

found that Ser, Thr, and Gly are common in kinked

helices.1 Ser and Thr may collaborate with Pro to

modulate bend angle.17 Langelaan et al. did not

observe the enhancement in Ser, Thr, and Gly fre-

quencies but did find changes in the prevalence of

other polar residues.2 Clearly as our database

expands, our understanding of residue preferences is

evolving.

Here, we examine kinked helices and find that

there are distinct residue preferences in kinked ver-

sus nonkinked helices in a nonredundant database.

We exploit these differences and residue conserva-

tion to predict kinked helices using a neural network

algorithm.

Results and Discussion

Kinked helix search space

To identify possible sequence differences between

kinked and nonkinked helices, we first constructed a

library of kinked and nonkinked regions from a

database of 41 nonhomologous, high-resolution mem-

brane protein structures. Although there are now

many more unique structures available, we believe

it is important to reduce biases as much as possible

by only using unrelated proteins.

We examined nine-residue segments of trans-

membrane helices and identified 323 kinked and 567

nonkinked segments, defined by strict bend angle

criteria as described in Methods. Using only bend

angle criteria has the disadvantage of lumping to-

gether many different helix anomalies (p-helix, 310
helix, etc.).16 Moreover, some helix distortions do not

lead to a change in bend angle and are ignored by

this criterion. Nevertheless, we are restricted by the

small data set of nonhomologous high-resolution

membrane protein structures currently available, so

we opted not to refine the kink type categories

further.

We bolstered the limited sequence data available

by adding information from homologous sequences

to each segment. We counted the amino acids found

at each position in the kinked and nonkinked seg-

ments, but we reduced counting biases by (1)

weighting the counts by sequence divergence so as

not to overcount close homologs to the protein of

known structures and (2) using only 100 randomly

chosen homologs per segment so that all segments

were roughly equally weighted (see Methods). We

were unable to find 100 homologs for 75 of the

kinked segments, and these were eliminated from

the residue preference analysis.

Amino acid preferences in kinked helices

The observed amino acid abundance ratios for

kinked versus nonkinked helices are shown in Fig-

ure 1 (histograms corresponding to this data can be

found in Supporting Information Fig. S1); the kink

center was defined as position 5. As expected from

prior work,1,2,5 Pro is highly overrepresented at posi-

tions 5 through 9 of the kinks. The bias of Pro to-

ward the C-terminus of kinks makes sense because

the loss of the hydrogen bond and steric clashes

occur at residues preceding the proline. The spread

of Pro over many kink positions at least partly

reflects the difficulty of defining the center of a kink

as well as diversity of kink structures. The overall

occurrence of Pro in kinks is lower than we had

observed previously.5 In particular, we found that in

a smaller, less diverse database, � 90% of kinks con-

tained Pro in 10% of homologs. In the current data-

base, the percentage decreased to 56%. Although Pro

had the most pronounced change, other residues

also exhibited significant biases. Other than Pro, the

residues that were at least twofold overrepresented

in kinked helices were as follows: Trp at position 1,

Asn at position 4, Trp at position 6, and Glu at posi-

tion 8. Residues at least twofold underrepresented

were Glu at position 1, Asn at position 2, Gln at

position 3, Thr, Lys, and Arg at position 4, Asn at

position 6, His at postion 7, Gln at postion 8, and

Arg at postion 9. The relative dearth of strongly po-

lar residues in kinked helical regions was also

observed by Langelaan et al.2 This result is perhaps

surprising as polar side chains might be expected to

help satisfy any broken backbone hydrogen bonds1

or support hydrogen bonding to water molecules

that often wedge kinks.6 We do not see the preferen-

ces for Gly, Ser, and Thr observed by Hall et al.1 nor

the dramatic enhancement of Asp noted by Lange-

laan et al.,2 perhaps because of differences in our

database construction. Because of the variety of

kinks and the likely variety of kinking mechanisms,

however, understanding the reason for the residue

preferences in kinks is not straightforward. Never-

theless, the results indicate that there are differen-

ces in amino acid composition in kink positions that

could be exploited for kink prediction.

A kink predictor

We developed a neural network analogous to second-

ary structure prediction algorithms.19–21 A feedfor-

ward network consisting of an input, hidden, and
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output layer was constructed as shown in Figure 2.

The network inputs were amino acid sequence com-

position at each position and a measure of sequence

conservation as described under Methods. The

weights were adjusted using back propagation,21

and we employed early stopping to prevent over-

training of the network.22 Network performance was

assessed using the leave-one-out method. We found

that five hidden nodes provided the best perform-

ance on the strict set of training kinks and non-

kinks. We also tested performance with 7, 9, 15, and

19 residue window sizes and found that a nine-

residue window resulted in the best network

performance.

The performance of the network can be seen in

the receiver–operator characteristic plot shown in

Figure 3. We defined a network output threshold

that maximized the Matthews correlation coefficient

for the strict and relaxed kink databases. The

threshold point for the strict database is shown in

Figure 3 and yields a Matthews correlation coeffi-

cient of 0.40. At this threshold, the sensitivity is

0.46 and the specificity is 0.99. Thus, about half of

all kinks are predicted and those that are predicted

are almost always correct.

We next tested the kink predictor with more re-

alistic criteria. The training data set employed strict

criteria to rigorously separate kinks and nonkinks,

but it omits visually obvious kinks. We therefore

tested our kink predictor using more relaxed criteria

for kink identification that more accurately reflect

what is seen by eye (see Methods). We also assessed

prediction performance more accurately in practice

by performing predictions across all possible protein

windows rather than just selected nine-residue win-

dows in our strict database. Using the relaxed crite-

ria, the sensitivity increased to 0.70 and the specific-

ity diminished somewhat to 0.89. The statistics

described in Table I indicate that the majority of

kinks are predicted, and when a kink is predicted, it

is almost always a correct prediction. As there were

no known freely available TM kink prediction algo-

rithms with which to compare our method, we com-

pared our prediction algorithm to a well-known sec-

ondary structure prediction algorithm developed for

soluble proteins PSIPRED.23 We defined predicted

kinks as a predicted coil or strand and nonkinks as

predicted helices. The results using the relaxed kink

criteria are shown in Table I. Considering the very

different physicochemical basis of helix formation in

soluble and membrane proteins, PSIPRED does sur-

prisingly well. Nevertheless, our method clearly out-

performs PSIPRED.

The performance for our neural network predic-

tions is illustrated for two known structures in Fig-

ure 4. These examples were chosen to simply high-

light the types of correct and incorrect predictions

possible. To give a fuller picture, predictions for all

structures in the database are given in the supple-

ment. The predicted segments were always excluded

during network training (see Methods). For the

structure 1OTS [Fig. 4(A)], seven kinks were cor-

rectly identified (highlighted in red; true positives),

four were missed (dark green; false negatives), three

Figure 1. Amino acid composition differences in kinked

and nonkinked transmembrane segments. The ratio of

residue frequencies in kinked versus nonkinked nine-

residue segments from the strict database is shown. Darker

regions signify residues that are overrepresented when

comparing kinked to nonkinked structures. The position in

the segment is labeled along the horizontal axis, and

residue type is labeled along the vertical axis. A numerical

scale has been provided in the bottom half of the figure.

A more quantitative view of this data is provided by

histograms in the Supporting Information. This heatmap

was generated using Matrix2png.18
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Figure 2. Neural network design. The neural network consisted of three layers: input, hidden, and output. The inputs are the

weighted fractions of each residue type and a conservation score for each position in a set of homologous sequences (see

Methods). The total number of inputs was 189 because of 9 positions � 20 residues for each candidate, and nine

conservation score inputs. Two sets of weight matrices were evolved through learning: one between the input and hidden

layers and the other between the hidden and output layers. For the output layer, the corresponding expressions are

highlighted below and have been left general so as to also apply to the hidden layer. Ii denotes input (i.e., output from hidden

node i) and Wji its corresponding weight. i denotes the hidden node number and j the output node number into which it goes.

Yj denotes the output from a given output node. Sigma is the threshold of a neuron. The expressions are similar for the

hidden layer, with weights W0
ji used in place of the previous weights.

Figure 3. Receiver–operator characteristic plots for prediction performance. The black solid lines represent the receiver–

operator curves for leave-one-out validation on the strict and relaxed databases. Statistics are provided in Table I.
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nonkinked helices were correctly predicted as non-

kinked (true negatives), and there were no false pos-

itives. Looking at the four kinks that were missed, it

appears from Figure 4(A) that these are relatively

subtle bends and may have less distinctive sequence

signatures. For the structure 1H2S [Fig. 4(B)], two

kinks were correctly identified, one was missed, and

the algorithm predicts kinks at five positions that

are not kinked. The seventh helix illustrates an

error in kink identification. We predict a kink at a

point where the helix clearly breaks, but the bend

angle does not change. Thus, we would argue that

the algorithm actually predicted this deviation cor-

rectly, but our method of identifying true kinks in

Figure 4. Examples of predictions. Illustration of kink prediction results using the relaxed database. (A) PDB code 1OTS,

chain A and (B) PDB code 1H2S, chain A. The upper section of each figure illustrates the prediction results as a one-

dimensional sequence. Transmembrane regions have been highlighted in gray. Regions highlighted in red correspond to

correctly predicted regions (true positives), and blue exclamation points to incorrectly predicted positions (false positives). The

maximum bend angle in each kinked region has been indicated by a D. The center of each kink prediction has been marked

with a *, and overlap of a prediction center and the maximum bend angle has been marked with a l. Kinked regions not

predicted have been highlighted in green (false negatives). The bottom of the figure shows the structures of the individual

transmembrane helices. The coloring scheme is the same as for the upper figure. The correctly predicted kinks are

highlighted in red, and the center of each kink prediction is indicated by a red ball at the Ca position. False negatives are

highlighted in dark green. False-positive predictions are indicated by a blue ball at the Ca position.

Table I. Statistical Summary of Prediction Performance

Structures Sensitivity Specificity

Jack-knife
correlation
coefficient

Training
correlation
coefficient

Kink
prediction

Nonkink
prediction

Strict 0.46 0.99 0.40 0.57 96% 78%
Relaxed 0.70 0.89 0.56 — 62% 92%
PSIPRED relaxed 0.64 0.81 0.42 — 54% 86%

Prediction performance was assessed using the leave-one-out method for the strict set of kink and nonkink structures as
well as for the relaxed set of kink and nonkink structures. The PSIPRED results are considered equivalent to a jack-knifed
procedure because none of the proteins used in the current database were included in the original soluble protein training
database.
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structures is not foolproof. The one missed kink and

five mispredicted kinks that are not in fact kinked

may be attributed to the fact that 1H2S chain A had

only 118 homologs compared to other structures that

often had thousands of homologs.

Conclusion

Our results indicate that there are significant

sequence differences between kinked and nonkinked

transmembrane helices and that these differences

can be exploited to predict kinks. This does not

mean that kinks are generated only by local

sequence, however, as we cannot necessarily link

cause and effect. For example, certain residue types

may provide stronger long-range contacts that can

distort helices. Alternatively, if kink occurrence is

more frequent at functional sites, the residue prefer-

ences could reflect the likelihood of being in func-

tional sites rather than kinks. It is likely that pre-

diction results could be greatly improved with more

structures. Sequence preferences other than proline

are much more subtle and seem to vary with data-

base construction. Some of the more subtle sequence

pattern information is likely masked because of the

limited number of kink classifications we can use.

Clearly not all helix distortions are the same, but

because of the small dataset, we used a simple bi-

nary classification of kinked or nonkinked based

solely on bend angle. Ideally, one would like to parse

helix bends into distinct classes as the sequence sig-

natures may be quite different. In spite of these lim-

itations, we have been able to develop a prediction

method that provides useful information that can be

incorporated into helix packing algorithms.8,11,24

Kink prediction will only improve in accuracy and

refinement as more structures become available.

Methods

Structure database
A nonredundant database of membrane proteins was

used as the source from which all kinks and nonkinks

were identified. None of the sequences shared more

than 30% sequence identity, and only structures

solved at a resolution of 2.5 Å or better resolution

were retained. This resulted in a total of 41 mem-

brane protein structures: 1C3W, 1EHK, 1H2S, 1JB0,

1K4C, 1KB9, 1KQF, 1NKZ, 1OKC, 1OTS, 1Q16,

1SU4, 1U19, 1V54, 1XIO, 1XQF, 1Z98, 2A65, 2AHY,

2BHW, 2BL2, 2BS2, 2F2B, 2FBW, 2J58, 2J7A, 2J8C,

2NQ2, 2RH1, 2UUI, 2VPZ, 2W2E, 2WGM, 2Z73,

2ZXE, 3B45, 3B9W, 3BKD, 3C02, 3DDL, and 3KCU.

Kinked and nonkinked transmembrane

helix identification
Kink and nonkink identification was performed dif-

ferently for training and for validation purposes. To

ensure that we only trained on the clearest, most well-

defined kinks, we were particularly strict in our train-

ing set definitions. Subsequently, to more accurately

assess our prediction performance, we relaxed the cri-

teria to identify all genuine kinks and nonkinks. The

strict and relaxed criteria are described below.

Kinked and straight helices were identified by

measuring bend angles of nine-residue stretches of

transmembrane helices. Only unique chains for each

structure were used. For each chain, the transmem-

brane regions defined in the Orientations of Proteins

in Membranes (OPM) database25 were used as a

starting point. The transmembrane region was then

extended to the end of the helix if the region was

defined as helical by DSSP.26 These extended helices

constituted the template from which the nine-resi-

due segments were extracted, although only seg-

ments with a center residue within at least one resi-

due of the transmembrane region (as defined by

OPM) were retained. Kinks and nonkinks for trans-

membrane helical regions were identified using bend

angles measured using the ProKink plug-in avail-

able for Simulaid.27

To extract kinked segments using strict criteria

for training purposes, the nine-residue segments

were filtered using several steps. First, the bend

angle of all segments was sorted from largest to

smallest. Beginning with the largest bend angle seg-

ment, nearby segments were eliminated if they over-

lapped. This process was repeated for every remain-

ing structure in order of decreasing bend angle.

Those segments that remained were then filtered

using two criteria. The average bend angle over four

neighboring sliding windows was required to be

greater than (or equal to) 13�, or the bend angle for

any individual window was required to be greater

than 24�. If only three or fewer neighboring windows

were available because they were at a helix end,

then any candidate with a bend angle of 13� or less

was thrown out. Ultimately, using the strict criteria,

323 kinked structures were obtained.

To identify clear nonkinked segments, we also

employed strict criteria. First, the bend angle of all

segments was sorted from smallest to largest. Any

window exceeding 20� in bend angle was immedi-

ately discarded. Beginning with the smallest bend

angle segment, nearby segments were eliminated if

they overlapped. This process was repeated for every

remaining structure in order of increasing bend

angle. Those structures that remained were then fil-

tered using two criteria: the average bend angle

over four neighboring segments was required to be

less than 8�, and the bend angle for every individual

segment had to be less than 20�. In this manner,

567 nonkinked segments were obtained.

For prediction assessment we employed relaxed

criteria that identified more visually obvious bends.

A kink was identified as an authentic kink if the av-

erage bend angle over three neighboring windows
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was greater than (or equal to) 10� or the bend angle

of an individual window was greater than 18�. A

total of 2048 relaxed kink windows were extracted.

This does not mean that there are 2048 kinks

because overlapping windows can contain the same

kink. We wanted to identify all kink windows for

assessment of predictions because all possible win-

dows are tested in kink prediction. Nonkink regions

were identified as all regions other than the identi-

fied kink regions above.

Family building

Similar sequences in RefSeq’s nonredundant protein

sequence database28 were identified using PSIBLAST

with one iteration, and a P-value cutoff of 1e � 10 to

ensure close similarity between the known structure

and its sequence homologs. The number of sequences

identified was limited to 30,000. Any aligned sequen-

ces with an alignment length less than 70% of the

length of the original sequence were discarded. All

nonnative gapped regions were discarded.

To count amino acid frequencies at each posi-

tion, the counts were weighted by (1-% identity) to

incorporate some information about the likelihood a

residue might have changed in the homologous

sequence (% identity refers to the whole protein).

Thus, when a homolog sequence is 100% identical to

the sequence of the known structure, the new amino

acid is not counted. In this manner, close homologs

do not overweight the counting statistics.

For input to the neural network, each residue at

a given position of the original candidate sequence

was added at full weight a fixed number of times

per homolog. The number of times was optimized to

maximize network performance; this value was 2.

This weighting scheme is described by the fol-

lowing equation for the 180 inputs corresponding to

the 9 positions � 20 amino acids:

Iðresi;posjÞ ¼

P
all homologs

½ð1�% identityÞSðresiÞ þ k�

PNposj

1

½ð1�% identityÞ þ k�

SðresiÞ ¼
1; if resi ¼ resi

0; if resi 6¼ resi

�
;

k ¼ 2; if resi ¼ resi in known structure

0; if resi 6¼ resi in known structure

�
;

Nposj ¼ # residues at position j; excluding gaps:

Use of sequence conservation
Sequence conservation scores were used as inputs to

the neural network in addition to the primary

sequence. Conservation scores were calculated for

the nine-residue segment belonging to each candi-

date sequence window. This was accomplished by

using the PSIBLAST data produced by the family

building step described above. From all pairwise

alignments for each PDB/chain, 3000 were randomly

selected and conservation scores calculated using

SCORECONS with the Trident scoring method.29

For this purpose, ClustalW-formatted pseudo-align-

ments were constructed.30 Positions with excessive

gaps were assigned a score of 0.

Neural network design

A feedforward neural network consisting of an input,

hidden, and output layer was constructed. There

were 9 (positions) � 20 (amino acids) ¼ 180 inputs

to the network related to the fractional occurrence of

all possible residue/position combinations (as

described by the input equation above). In addition,

we used nine inputs corresponding to the conserva-

tion scores of the nine residues in the native

sequence. Two sets of weight matrices were evolved

through learning: one between the input and hidden

layers and the other between the hidden and output

layers. Weights were randomly assigned to values

between �0.5 and 0.5 to start. The number of hid-

den nodes was optimized according to network per-

formance, and the best performance was found to

occur using five hidden nodes. The output layer is

governed by the following equations, which have

been left general so as to also apply to the hidden

layer. Ii denotes the input (i.e., output from hidden

node i) and Wji its corresponding weight. i denotes

the hidden node number (e.g., 3) and j the output

node number into which it goes. Yj denotes the out-

put from a given output node. Sigma is the thresh-

old of a neuron and was set to 0.521:

Xj ¼
X
i

WjiIi

Yj ¼ 1

1þ e�ðXj�rÞ :

The expressions are similar for the hidden layer,

with weightsW0
ji used in place of the previous weights.

For each cycle, the weight matrices were adjusted

once for each example in the training set. Training

was performed over 1000 cycles. The order of training

examples during weight adjustments was shuffled ev-

ery cycle to reduce any noise due to ordering.

Weight adjustment was performed in the follow-

ing fashion. The output layer consisted of a single

node predicting whether a candidate sequence was a

kink (maximum output value of 1) or a nonkink

(minimum output value of 0). The error in this out-

put value for each training example was computed

as follows:

d ¼ D� Y;

where D is the correct value and Y is the predicted

value.21 Adjustments to the weight matrix between
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the hidden and output layers were made according

to the expression:

Wjiðtþ 1Þ ¼ WjiðtÞ þ gdjIi;

dj ¼ d;

where g is the learning rate. The optimal learning

rate was found to be 0.1 (according to how far train-

ing progressed). The weight matrix between the

input and hidden layers was adjusted by first back

propagating the error according to the expression21:

d0i ¼
X
j

Wjid:

The weight layer adjustments were then made

using the Wji (t þ 1) expression above but with

weights W0
ji used in place of the previous weights,

error dI0 in place of the previous error, and inputs to

the appropriate layer.

Early stopping was used to prevent overtrain-

ing. To find the point at which overtraining occurs,

we evaluated the network every 10th cycle (of 1000

cycles) for its ability to predict structures in a test

set that was not used for training. The test set con-

sisted of 50 kinked and 50 nonkinked structures.

The total error over all test set examples was com-

puted as follows:

dT ¼
X

all examples in test set

d:

The training network for which the lowest total

error occurred on the test set was taken as the best

network.22

Training and test set creation

To ensure no bias in the datasets used for training

and early stopping, kink and nonkink selection was

randomized. Test set kink selection was done by

selecting 50 structures at random from the total

number of identified strict kinks. Similarly, test set

nonkink selection was done by selecting 50 struc-

tures at random from the total number of identified

strict nonkinks. These two groups became the test

set used for early stopping. The remaining strict

structures (273 kinks and 517 nonkinks) were

retained for training of the neural network.

Evaluation
Because of limited data for membrane proteins, we

chose to use the jack-knife or leave-one-out method

to evaluate our strict and relaxed predictions. The

threshold for each database (strict or relaxed) was

chosen using a receiver–operator plot where the

Matthews correlation coefficient was maximized (see

Fig. 3). Relaxed predictions were done across all pos-

sible protein windows in transmembrane segments.

Relaxed evaluation was done using the jack-knife

approach for trained examples from the strict data-

base and the best network (i.e., one with lowest total

error) for all other structures. Assessment of kinks

and nonkinks using the relaxed criteria was done

separately. Because it is difficult to unambiguously

separate the transition region between kinked and

nonkinked regions, a buffer region of four residues

to the left and right of the original kinked region

centers was created. We only evaluated nonkinked

region centers that were more than four intervening

residues from this unambiguously defined transition

kink area. These residue separations were arrived

at after visual evaluation of many structures.

Kinked regions that passed the relaxed criteria

were merged together to form contiguous regions

when separated by one residue or less. These

merged regions defined the contiguous kink regions

that would be checked to see if they contained pre-

dicted kinks or not. If a contiguous kinked region

contained a single kink prediction, it was recorded

as a single true positive. If a contiguous kinked

region did not contain a single kink prediction, it

was recorded as a single false negative.

Nonkinks were evaluated differently. When

evaluating a nonkink region, every single nine-resi-

due window contained within the contiguous region

was evaluated individually (rather than as a contin-

uous region). If a given window was correctly pre-

dicted as a nonkink, it was recorded as a single true

negative. If it was incorrectly predicted as a kink, it

was recorded as a single false positive. All of these

true and false negatives and positives were summed

over all predictions. Predictions using the secondary

structure prediction algorithm PSIPRED23 were

evaluated in the same way except that predicted

coils or strands were defined as kinks. As with kink

prediction, a nine-residue window around the pre-

dicted coil or strand was defined as the kink region.

Website predictor
De novo prediction by our web application available

online is done solely using the primary amino acid

sequence of entire proteins. The transmembrane hel-

ical regions can be input manually or determined

automatically by Proteus2.31

We ran three trials of our neural network using

five hidden nodes. This resulted in jack-knife net-

works with correlation coefficients of 0.39, 0.38, and

0.40. We chose to use the network with the highest

correlation coefficient. We looked at all networks

making up this jack-knife network and retained the

network with the lowest total error when early

stopped using the test set. This network was in-

stalled for use in online predictions.

The network threshold for online predictions

was chosen to be that determined by the receiver–

operator curve analysis for the relaxed database (t ¼

Meruelo et al. PROTEIN SCIENCE VOL 20:1256—1264 1263



0.67). This was done because the relaxed database

most closely mirrors practical usage of the prediction

software on entire proteins.
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