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DNA methylation is a tightly regulated epigenetic mark associated with transcriptional repression. Next-generation se-
quencing of purified methylated DNA obtained from early Xenopus tropicalis embryos demonstrates that this genome is
heavily methylated during blastula and gastrula stages. Although DNA methylation is largely absent from transcriptional
start sites marked with histone H3 lysine 4 trimethylation (H3K4me3), we find both promoters and gene bodies of active
genes robustly methylated. In contrast, DNA methylation is absent in large H3K27me3 domains, indicating that these two
repression pathways have different roles. Comparison with chromatin state maps of human ES cells reveals strong con-
servation of epigenetic makeup and gene regulation between the two systems. Strikingly, genes that are highly expressed in
pluripotent cells and in Xenopus embryos but not in differentiated cells exhibit relatively high DNA methylation. Therefore,
we tested the repressive potential of DNA methylation using transient and transgenic approaches and show that meth-
ylated promoters are robustly transcribed in blastula- and gastrula-stage embryos, but not in oocytes or late embryos.
These findings have implications for reprogramming and the epigenetic regulation of pluripotency and differentiation and
suggest a relatively open, pliable chromatin state in early embryos followed by reestablished methylation-dependent
transcriptional repression during organogenesis and differentiation.

[Supplemental material is available for this article.]

During early embryonic development, both transcriptional re-

pression and activation play an important role in maintaining

correct gene expression patterns. Cytosine methylation within

CpG dinucleotides is one of the predominant gene-silencing

mechanisms in vertebrates, which have the majority of their ge-

nomic CpG sequences methylated (Hendrich and Tweedie 2003).

The exceptions are CpG islands, GC-rich regions that often co-

incide with gene promoters and that are mostly methylation-free

(Bird 1986). Apart from CpG methylation, a number of recent

studies on mammalian ES cells have provided experimental evi-

dence for the existence of non-CpG (mainly CpA) methylation

(Ramsahoye et al. 2000; Lister et al. 2009; Laurent et al. 2010). DNA

methylation has so far been described to play an important role in

a variety of biological processes like X-chromosome inactivation,

genomic imprinting, and silencing of intra-genomic sequences of

parasitic origin (Bird 2002; Weber and Schubeler 2007). De-

velopmental changes in DNA methylation have been compre-

hensively studied in different organisms (Bogdanović and Veenstra

2009). In contrast to the global wave of demethylation and sub-

sequent gradual remethylation of the mouse zygote (Mayer et al.

2000; Oswald et al. 2000), the genome of the amphibian Xenopus

laevis maintains high DNA methylation levels throughout early

development (Veenstra and Wolffe 2001), although some changes

in the DNA methylation content have been reported for a number

of developmentally regulated promoters (Stancheva et al. 2002).

Depletion of the maintenance DNA methyltransferase (DNMT1)

in Xenopus results in an early apoptotic phenotype (Stancheva and

Meehan 2000; Stancheva et al. 2001), and mouse knockouts for

Dnmt1 and the de novo DNA methyltransferase (Dnmt3b) are

embryonically lethal (Li et al. 1992; Okano et al. 1999). However,

DNA methylation itself may not be essential for early embryo-

genesis because ablation of DNMT1 could be rescued by a cata-

lytically inactive DNMT1 mutant (Dunican et al. 2008). DNA

methylation in animals can repress transcription via methyl-CpG

binding domain (MBD) proteins (Hendrich and Bird 1998), which

recruit HDAC-containing complexes and promote formation of

inactive chromatin on targeted loci (Jones et al. 1998; Nan et al.

1998; Wade et al. 1999; Zhang et al. 1999). MECP2, however, the

Rett Syndrome MBD protein (Amir et al. 1999; Shahbazian and

Zoghbi 2001), may also act as an activator of transcription

(Chahrour et al. 2008). In addition to DNA methylation, modifi-

cations of N-terminal histone tails are known to influence chro-

matin structure by serving as docking stations for transcriptional

modulators (Bannister et al. 2001; Lindroth et al. 2004; Wysocka

et al. 2005; Vermeulen et al. 2007). The tri-methyl at histone H3

lysine 4 (H3K4me3) deposited by the Set1/Tritorax group proteins

marks promoter regions of active genes (Santos-Rosa et al. 2002),

whereas the tri-methyl H3K27 (H3K27me3) mark deposited and

read by the Polycomb group proteins is known to be involved in

developmentally regulated gene repression (Czermin et al. 2002;

Muller et al. 2002). Even though DNA methylation and histone

modifications influence gene regulation by different molecular

entities, it is clear that they act in a highly orchestrated way. For
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example, methylation of H3K4 inhibits the binding of DNA

methyltransferase DNMT3L, which is thought to associate with

DNMT3A and DNMT3B to promote de novo DNA methylation

(Ooi et al. 2007; Hu et al. 2009). In contrast, the Polycomb group

protein EZH2 has been shown to interact with both DNMT1 and

DNMT3 to deliver DNA methylation at the sites of its recruitment

(Vire et al. 2006). Surprisingly, studies carried out in different

models demonstrated that DNA methylation and H3K27me3

probably take part in different regulatory pathways as they usually

mark different gene populations (Tanay et al. 2007; Fouse et al.

2008; Komashko et al. 2008; Kondo et al. 2008; Rush et al. 2009).

DNA methylation is not essential for pluripotency as ES cells can

proliferate but not differentiate in the absence of DNMT1 (Chen

et al. 2003; Jackson et al. 2004; Tsumura et al. 2006). A number of

recent studies provided valuable insights into the dynamics of

DNA methylation within the context of cellular differentiation

(Meissner et al. 2008; Laurent et al. 2010). Nevertheless, our un-

derstanding of how DNA methylation contributes to normal em-

bryonic development has remained far from complete. Not much

is known about the DNA methylome in nonmammalian verte-

brate species, and a key question is how DNA methylation affects

developmental gene regulation in early vertebrate embryogenesis.

To address this issue, we carried out a DNA methylome survey

of Xenopus tropicalis embryos and studied how DNA methylation

relates to H3K4me3 and H3K27me3 marks and influences em-

bryonic transcription. We observe relatively high levels of DNA

methylation on promoters and gene bodies of actively expressed

genes, whereas the actual transcriptional start sites (TSS) bearing

the active H3K4me3 mark are hypomethylated. Likewise, we find

DNA methylation absent from broad H3K27me3 domains,

indicating that Polycomb-mediated repression and DNA methyl-

ation-dependent repression do not cooperate during early em-

bryogenesis. Comparison with human ES cell data demonstrates

that these patterns of DNA methylation and histone modifica-

tions, including high promoter-proximal methylation on active

genes, are conserved. Injection and transgenesis experiments show

an early embryonic uncoupling of DNA methylation and re-

pression of transcription initiation. These data indicate that DNA

methylation and transcription are compatible during early de-

velopment, whereas repression is restored during organogenesis

and differentiation. This type of regulation bypasses the need for

active reprogramming of the methylome during the dynamic early

phase of development.

Results

DNA methylation profiles of X. tropicalis embryos

Genomic DNA isolated from blastula and gastrula (Nieuwkoop-

Faber stages 9 and 12.5) embryos was purified by affinity capture

(MethylCap) using the methyl-CpG-binding domain (MBD) of

human MECP2 protein (Cross et al. 1994; Kangaspeska et al. 2008;

Brinkman et al. 2010; Martens et al. 2010). MethylCap has been

benchmarked as a robust, accurate, and effective approach to map

DNA methylation (Bock et al. 2010). Subsequent to binding to

MBD-beads, methylated DNA fragments were retrieved by two

elution steps (500 and 700 mM NaCl) and subjected to massive

parallel sequencing. The resulting reads were aligned to the X.

tropicalis genome (Joint Genome Institute genome assembly ver-

sion 4.1). Visualization of DNA methylation profiles in the UCSC

Genome Browser (Kent et al. 2002) revealed a dense methylation

landscape, similar between both developmental stages and salt

elutions (Fig. 1A). Enriched regions (peaks) were identified using

MACS (Model-based Analysis of ChIP-Seq data) (Zhang et al. 2008),

resulting in between 72,000 and 104,000 methylated regions for

each of the four tracks (Supplemental Tables S1–S5). These num-

bers are comparable to those observed in human cells with a sim-

ilar enrichment and sequencing approach (Serre et al. 2009). The

identified DNA methylation peaks are enriched for CpG di-

nucleotides when compared to the genome average, whereas their

GC content is only marginally higher than that of the Xenopus

genome (Fig. 1B).

The methylation status of these genomic regions was verified

and validated. Randomly selected MethylCap peak regions were

verified by quantitative PCR (experimental FDR # 0.067) (Sup-

plemental Fig. S1). Two validation approaches were employed.

First, the results obtained with a different enrichment strategy,

using a methyl-CpG-specific antibody (MeDIP) (Weber et al. 2005;

Mohn et al. 2009), were highly congruous (stage 9, R2 =0.7859;

stage 12.5, R2 = 0.8356) (Supplemental Fig. S2). Second, a number

of randomly selected DNA methylation peaks were subjected to

bisulfite sequencing for further validation (Fig. 1C; Supplemental

Fig. S2B,C). As shown previously (Bock et al. 2010; Brinkman et al.

2010), genomic regions identified by MethylCap-sequencing can

be validated using MeDIP and bisulfite sequencing.

In the 500 mM MethylCap fraction, we observed a modest

increase in the number of peaks corresponding to the gastrula

stage, whereas the number of regions identified in the 700 mM

fraction is similar between the two stages examined (Supplemental

Table S1). Also, the analysis revealed a small number of sequences

that were recovered from the MBD affinity purification but did not

contain any CpG dinucleotides. These outliers were all simple se-

quences featuring repeats of the CA dinucleotide, which can be

found methylated in mammalian cells and, in particular, embry-

onic stem cells (Ramsahoye et al. 2000; Lister et al. 2009; Laurent

et al. 2010). To identify the genomic locations of DNA methylation

peaks, their genomic distribution was determined relative to gene

position (Supplemental Fig. S3). No differences were observed in

the overall distribution of DNA methylation between the de-

velopmental stages or salt elutions. Approximately 50% of the

peaks are located in gene-distant regions (>5000 bp upstream of

the gene start), while the remaining half is distributed over six

locations: 59 far (500–5000 bp to 59 end), 59 near (1–500 bp to 59

end), exon, intron, 39 near, and 39 far (Supplemental Fig. S3). When

normalized for the genomic coverage of these locations, exons

appear slightly enriched for DNA methylation. DNA methylation

of exons has been described and proposed to serve as a splicing and

RNA elongation regulatory mechanism (Choi et al. 2009; Laurent

et al. 2010). The data demonstrate that the X. tropicalis genome is

methylated in both intergenic and intragenic regions in late blas-

tula and gastrula stages.

Methylation of repetitive elements

The distribution profiles of DNA methylation unveiled that ;50%

of the genomic DNA methylation lies within the gene-distant re-

gions (Supplemental Fig. S3A). DNA methylation of repetitive se-

quences is a common phenomenon observed in plants, fungi, and

mammals (Selker 2004; Schulz et al. 2006; Zilberman et al. 2007).

Almost 35% of the Xenopus genome corresponds to transposable

elements, mostly DNA transposons (72% of all transposable ele-

ments), which constitute 25% of the genome (Hellsten et al.

2010). To gain insight into the nature of DNA methylation in

these gene-distant regions and repetitive DNA, the repetitive DNA
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Figure 1. (A) Genome Browser view of sequenced DNA methylation tracks: late blastula (stage 9) and late gastrula (stage 12.5) tracks of both salt
elutions (500 mM and 600 mM/700 mM). The X. tropicalis genome is robustly methylated in both intergenic and intragenic regions during blastula and
gastrula stages. (B) Boxplots showing the distribution of the CpG observed/expected ratio (CpG O/E) and the GC content (GC%) of DNA methylation
peaks. Peaks of DNA methylation are enriched for CpG dinucleotides, whereas their GC content is similar to the genome average. JGI 4.1 refers to the
genome assembly used (Joint Genome Institute genome assembly version 4.1). (C ) Bisulfite sequencing of randomly selected MethylCap peaks (see also
Supplemental Fig. S2B). (Right) Embryonic stages and MethylCap salt elutions of the DNA methylation tracks; (black boxes) PCR amplicons; (below)
bisulfite sequencing profiles of the amplicons. (Black circles) Methylated CpGs; (white circles) unmethylated ones.
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methylation content was mapped to the genome by assigning non-

unique sequence reads randomly to matching sequences. DNA

methylation in three different repeat collections was analyzed: (1)

The UCSC RepeatMasker collection of interspersed repeats and

low-complexity DNA sequences (http://www.repeatmasker.org);

(2) Simple Repeats identified by the Tandem repeats finder pro-

gram (Benson 1999); and (3) Microsatellite DNA, a subset of the

Simple Repeats track representing sequences of 15 or more di-

nucleotide and trinucleotide repeats. DNA methylation is enriched

over the repeating elements included in the Simple Repeats and

RepeatMasker groups to a varying extent, with one of the blastula-

stage fractions showing less DNA methylation compared to the

other fractions (Fig. 2A). The Microsatellite Repeat group is de-

pleted of DNA methylation, in line with the absence of CpG di-

nucleotides in these microsatellites. To investigate in more detail

the methylation status of specific repeats, the UCSC RepeatMasker

track was intersected with a merged DNA methylation peak file.

Repeats displaying >80% overlap with DNA methylation peaks

were called ‘‘methylated’’ and were used for subsequent analysis.

Within the RepeatMasker group, different types of repeating el-

ements show a differing extent of DNA methylation as shown by

the percentage of methylated repeats (Fig. 2B; Supplemental Ta-

ble S6). For example, >70% of the 1723 and Harbinger DNA

transposons (Kay and Dawid 1983; Kay et al. 1984; Jurka et al.

2007) are robustly methylated. The methylation status of

RepeatMasker elements (Fig. 2B) positively correlates with CpG

density, which is not surprising knowing that MethylCap is an

affinity-based technique that selects CpG-dense methylated se-

quences. However, some repeat groups such as Sat1 with low CpG

density are frequently found in methylated portions of the ge-

nome. Among elements with similar CpG density, the Gypsy

retrotransposon and the 1723 DNA transposons are two to three

times more frequently methylated than the OCR DNA trans-

posons. The results demonstrate strong methylation of specific

repetitive DNA elements.

DNA methylation and gene regulation

Mammalian genes frequently contain methylation-free patches

of CpG dinucleotides called ‘‘CpG islands’’ (CpGis) in their

promoter regions (Cooper et al. 1983; Gardiner-Garden and

Frommer 1987). To investigate whether 59 ends of Xenopus genes

are also enriched for CpGis, and to determine their methylation

status, the overlap between these features was determined. As

a first step, CpGis were called using a sliding-window approach

with the relatively stringent CpGi criteria proposed by Takai and

Jones (2002): Length > 500 bp, G+C content > 55%, CpG ob-

served over expected (O/E) > 0.65. This results in 24,283 CpGis.

All DNA methylation peaks of blastula and gastrula stages

merged together were intersected with the CpGis and the 59 ends

of two gene collections (Fig. 3A): the FilteredModels (FM) gene

collection generated by the Joint Genome Institute ( JGI) and the

XTEV_VV gene models, which are the subset of experimentally

validated (Xenopus tropicalis experimentally validated) gene

models that have an H3K4me3 peak at the 59 end in gastrula-

stage embryos, in addition to evidence of expression (Akkers

et al. 2009). The intersections show that relatively few 59 ends of

the actively expressed XTEV_VV gene models overlap with

methylated CpGis. Interestingly, as many as 10,943 (45%) of

CpGis in the Xenopus genome are methylated; however, this

overlap constitutes only 8% of the 141,246 MethylCap peaks

(Fig. 3A).

To examine the relationship between CpGis, DNA methyla-

tion, and expression, we integrated our data with published pro-

files of histone H3 methylation, RNA polymerase II (RNAPII)

occupancy, and poly(A)+ RNA (RNA-seq) (Akkers et al. 2009), the

number of sequence reads corresponding to these data was de-

termined for all CpGis, and k-means clustering was performed (Fig.

3B). RNAPII is found at promoters, introns, and exons of expressed

genes, whereas RNA-seq reads are only found at exons of expressed

genes. Histone H3 lysine 4 trimethylation (H3K4me3) is enriched

at the 59 ends of active genes. Clusters 1 and 3 correspond to

methylated CpGis with different methylation profiles between

stages. A few of these are located in introns of actively transcribed

genes (RNAPII-positive, RNA-seq-negative), but the majority are

located outside gene bodies or in inactive genes. The second (2)

cluster apparently represents CpGis that are colocated with exons

of genes expressed during gastrulation (presence of both RNA-seq

and RNAPII ChIP-seq reads) and that are strongly methylated.

Clusters 4 and 5 feature CpGi promoters that are characterized by

a lack of DNA methylation and enrichment for H3K4me3 and

RNAPII. These promoters are expressed as indicated by the en-

richment of RNA-seq and RNAPII ChIP-seq reads. The majority of

CpGis in the sixth (6) cluster are not associated with active tran-

scription units, nor are they enriched for either histone modifi-

cation or RNAPII. These data demonstrate a strong anticorrela-

tion between DNA methylation and H3K4me3-enriched CpGi core

promoters, consistent with mechanisms that link H3K4 trimethy-

lation to unmethylated CpGis by recruitment of CFP1 (Thomson

et al. 2010). In contrast, CpGis in exons or introns of expressed

genes are mostly methylated. CpGis enriched for H3K27me3 do

not form a separate cluster but are found among CpGis that are also

enriched for H3K4me3 and RNAPII (Clusters 4 and 5).

These results were obtained with a collection of 24,283

CpGis that meet the criteria proposed by Takai and Jones (2002).

For comparison, two more inclusive CpGi collections were ex-

amined: (1) CpGis determined according to criteria proposed by

Gardiner-Garden and Frommer (1987) and (2) The UCSC Genome

Browser CpGis. These collections differ in number, CpG density,

GC content, and overlap with transcription start sites (Supple-

mental Fig. S4). The Takai-Jones CpGi collection shows the

highest enrichment for both 59 ends of genes and TSS-seq tran-

scription start sites (van Heeringen et al. 2011). K-means cluster-

ing performed on all three CpGi collections demonstrates that

similar clusters of DNA methylation, histone modifications,

RNAPII, and RNA are found independently of the CpG island

collection used (Supplemental Fig. S5).

To extend our analysis to non-CpGi promoters, the distri-

bution of DNA methylation around transcription start sites (TSS)

of genes was examined (XTEV_VV gene models). The genes were

divided into two groups depending on the presence or absence of

a CpGi at the TSS. Both CpGi and non-CpGi promoters are

similar with respect to a general lack of DNA methylation at the

TSS, regardless of whether the Takai-Jones CpGi (Fig. 3C) or the

Gardiner-Garden CpGi definition is used (data not shown). We

then wanted to interrogate the relationship of promoter DNA

methylation and gene expression. The promoters (TSS-1 kb) were

grouped depending on the number of RNAPII reads located in

the gene body normalized for gene length. All the genes marked

by RNAPII reads were divided into three equally sized expression

bins (high, medium, low RNAPII recruitment). Nonexpressed

genes (‘‘no’’) were defined as a subgroup of XTEV gene models

with a verified 59 end (H3K4me3 peak) but no evidence for ex-

pression as judged by RNA-seq. Average values of the four tracks
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were plotted to show the distribution of DNA methylation in

promoter regions (Fig. 3D). Promoters (1 kb upstream) belonging

to nonexpressed genes are enriched for DNA methylation;

however, there is no inverse correlation between gene expression

and promoter methylation; the genes from the high expression

bin actually have more DNA methylation in their promoter

regions than the weakly expressed genes (Fig. 3D). Furthermore,

;10% of promoters from all four expression bins show a signifi-

cant ($500 bp) direct overlap with DNA methylation peaks (Fig.

3E). A similar observation has been made in mouse ES cells, in

which promoter DNA methylation is compatible with expression

(Fouse et al. 2008).

Figure 2. DNA methylation of repetitive elements. (A) Distribution profiles of DNA methylation over three distinct repeat tracks demonstrate an
enrichment of repetitive elements for DNA methylation. Microsatellite DNA lacks CpG dinucleotides and therefore is not methylated. However, the
RepeatMasker track is depleted for CpG dinucleotides but enriched for DNA methylation, while in the case of the Simple Repeats track DNA, methylation
positively correlates with CpG density. (B) Extent of overlap between repeat types and DNA methylation (merged MethylCap peaks). (Top panel) Per-
centage of methylated genomic copies. (Bottom panel) CpG density of different repeat types. There is an overall correlation of DNA methylation and CpG
density. However, some repeats such as Sat1 are highly methylated in spite of their low CpG density.
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To investigate in more detail the relationship of DNA meth-

ylation and transcription, DNA methylation reads from all four

tracks were mapped to H3K4me3 peaks and their surrounding re-

gions. Consistent with the k-means clustering (Fig. 3B) and the

genomic intersections (Fig. 3A), there is strongly reduced DNA

methylation inside H3K4me3-positive regions; however, these re-

gions are flanked by above-average DNA methylation (Fig. 4A,B).

This finding is consistent with reports that the N terminus of

histone H3 must remain unmethylated to provide a binding site

for DNA methyltransferases (Ooi et al. 2007; Hu et al. 2009), and

that DNA must be unmethylated for H3K4me3 to be deposited

(Hashimshony et al. 2003). Nevertheless, a few genes have an

H3K4me3 peak, RNAPII enrichment, and a DNA methylation peak

overlapping with their TSS (Supplemental Table S7). To test

whether these core promoters are, indeed, fully methylated, bi-

sulfite sequencing was performed on two of these loci (Supple-

mental Fig. S7). Bisulfite sequencing indicated that the expressed

bet1 and c20orf151 transcription start sites are, indeed, fully

methylated, rendering it less likely that mixed cell populations are

the explanation of this phenomenon. While these expressed-

methylated core promoter examples should be regarded as rare

exceptions, as many as 3722 genes display DNA methylation

within 1000 bp upstream of their TSS, 865 of which are expressed

(Supplemental Fig. S6; Supplemental Table S8). Together, these

Figure 3. DNA methylation and transcriptional regulation. (A) Venn diagrams showing a direct overlap of merged DNA methylation peaks (141,246
regions, all four peak sets combined), the 59 ends of genes (left: 8625 XTEV_VV gene models; right: 27,916 Joint Genome Institute, JGI, FilteredModels),
and genomic CpGis (24,283 Takai-Jones CpGis). DNA methylation is largely absent from 59 ends of genes. A large portion of the genomic CpGis are
methylated (overlap between CpGis and MethylCap peaks). (B) K-means clustering of DNA methylation, histone methylation, and active transcription
within CpGis. Clusters 1 and 3 correspond to methylated CpGis with different methylation profiles. Cluster 2 represents exons of genes expressed during
gastrulation. Clusters 4 and 5 consist of active CpGi promoters. Cluster 6 corresponds to CpGis that are neither associated with active transcription units
nor enriched for either histone modification or RNAPII. (C ) Distribution of DNA methylation over CpG and non-CpGi promoters. Both CpG and non-CpG
promoters show a dip in DNA methylation around the TSS. To define CpGi and non-CpGi promoter subsets, the TSS regions of XTEV_VV gene models were
intersected with Takai-Jones CpGis. (D) Boxplots showing the abundance of DNA methylation within promoter regions of genes with distinct expression
intensities. (E) Percentage of promoters (region 1 kb upstream of TSS) overlapping ($500 bp) with peaks of DNA methylation.
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results do not strongly support a dominant repressive role of DNA

methylation during blastula and gastrula stages (Fig. 3D,E; Sup-

plemental Figs. S6, S7).

To identify differentially methylated regions (DMRs) between

blastula and gastrula stages, Fisher’s exact test was applied to de-

termine statistical significance of differences in peak read counts

between the two stages (multiple testing q-value cutoff 0.05) fol-

lowed by filtering for DMRs with a substantial (greater than four-

fold) difference in read counts between the two stages. This

resulted in 3549 DMRs, 3197 of which are more strongly methyl-

ated at stage 9, whereas 352 DMRs are more strongly methylated at

stage 12.5 (Supplemental Tables S9, S10). Out of 3197 DMRs dis-

playing higher DNA methylation at stage 9, only 187 show a direct

overlap with promoter regions (Supplemental Table S9). Similarly,

only 12 promoter regions intersect the DMRs that are more

abundantly methylated at stage 12.5 (Supplemental Table S10).

However, neither of these gene groups represents specific Gene

Ontology categories, nor does their differential DNA methylation

status correlate with expression data (data not shown).

The H3K27me3 mark is deposited after the onset of embry-

onic transcription and is mostly associated with spatial restriction

of transcription (Akkers et al. 2009). In contrast to the H3K4me3

Figure 4. DNA methylation and H3K4me3/H3K27me3 are mutually exclusive on the majority of genomic locations. (A) Distribution of DNA meth-
ylation over boundaries of H3K4me3 peaks. DNA methylation is excluded from the bulk of genomic H3K4me3 sites even though above average DNA
methylation can be observed on sequences flanking the H3K4me3 peaks. (B) Genomic example of the exclusion of DNA methylation and H3K4me3. (C )
Broad H3K27me3 domains are mostly DNA methylation-free, even though smaller H3K27me3 peaks can be methylated. (D) hoxb cluster as an example of
the mutual exclusion of H3K27me3 and DNA methylation. (E) H3K4me3 and H3K27me3 peaks are enriched for CpG dinucleotides but depleted of DNA
methylation.
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peaks, which are more uniform in size and generally mark gene

promoter regions, H3K27me3 peaks range from ;2 kb to >100 kb

and can spread through gene clusters. Therefore, H3K27me3-

enriched regions were divided into four groups depending on the

peak size, and DNA methylation profiles were determined for each

of these groups (Fig. 4C; Supplemental Fig. S8). Whereas DNA

methylation is absent from large H3K27me3 domains, smaller

H3K27me3-marked regions (#2 kb), which are often located close

to the borders of larger H3K27me3 domains, are enriched for DNA

methylation, as illustrated by the hoxb gene cluster (Fig. 4C,D). The

absence of DNA methylation from H3K4me3 and H3K27me3

peaks is not due to the low CpG density of these regions as both

features are CpG-rich (Fig. 4E). In conclusion, DNA methylation is

generally not found at the TSS of expressed genes that are enriched

for histone H3K4 trimethylation, however many genes with

proximal promoter methylation are robustly expressed. Also, DNA

methylation is excluded from large H3K27me3-decorated regions.

Conservation of gene regulation in human ES cells
and Xenopus embryos

The dynamics of histone and DNA methylation in pluripotency

and differentiation has been under extensive investigation over

the last couple of years (Boyer et al. 2005; Lee et al. 2006; Mikkelsen

et al. 2007; Fouse et al. 2008; Mohn et al. 2008). Lister et al. (2009)

generated methylome maps corresponding to human embryonic

stem (ES) cells and fetal fibroblasts and identified two groups of

genes with distinct transcriptional activity and epigenetic makeup

in the two cell types. To investigate if these patterns of gene reg-

ulation are conserved in Xenopus, orthologs of these two groups

were identified, and reads corresponding to DNA methylation,

H3K27me3, H3K4me3, and RNAPII were mapped from�20 to +20

kb relative to their TSS. Strikingly, the differences observed be-

tween the two groups of genes in human ES cells are by and large

also observed between the orthologous groups of genes in Xenopus

embryos. The first group of orthologs, which are more highly

expressed in H1 ES cells (H1-exp), was found to be more highly

expressed in Xenopus embryos than the second group, which are

orthologs of genes with stronger transcriptional activity in fibro-

blasts (Fib-exp) (Fig. 5A). Moreover, the H1-exp genes have a higher

DNA methylation content (�10 kb to +10 kb, P-value = 0.002,

Wilcoxon rank test) and much less H3K27me3 than the Fib-exp

genes (Fig. 5A), consistent with their epigenetic makeup in ES cells

(Lister et al. 2009). In contrast, both gene groups feature a similar

enrichment for H3K4me3 around their TSS. These results were

analyzed in more detail by hierarchical clustering of DNA meth-

ylation and histone methylation around the TSS for both groups of

genes (Fig. 5B; Supplemental Fig. S9). We find that, although the

average patterns are conserved between human ES cells and Xen-

opus embryos (Fig. 5A), several subgroups of genes can be identified

(Fig. 5B). This may reflect differences in developmental stage or

divergent gene regulation. However, even within distinct groups

there is an overall positive correlation of DNA methylation and

transcription and a strong anticorrelation of H3K27me3 and DNA

methylation. These results confirm that the methylated genes are

generally more highly expressed, whereas the H3K27me3-deco-

rated genes are generally methylation-free and show no or much

lower expression. Moreover, there is a strong mutual exclusion of

DNA methylation and H3K27me3 around the TSS (Figs. 4D, 5B),

consistent with the hypothesis that the two epigenetic marks

represent two independent pathways; of these, H3K27me3 is more

tightly correlated with transcriptional repression than DNA

methylation. H3K27me3-enriched genes are often expressed in

a spatially regulated fashion in embryos (Akkers et al. 2009);

however, DNA methylation is not enriched over spatially regulated

genes (data not shown). These observations raise the question how

effective DNA methylation in promoter-proximal regions is in

transcriptional repression.

Transcription from methylated promoters in early embryos

To directly assess the ability of DNA methylation to repress tran-

scription initiation in early embryos, we injected unmethylated

and SssI-methylated promoter reporter constructs into oocytes and

embryos. The oocyte is known to repress methylated DNA very

effectively (Kass et al. 1997; Jones et al. 1998). We used a plasmid

containing the hsp70 promoter driving the expression of the CAT

reporter gene, the expression of which was determined by quan-

titative RT-PCR. In the oocyte, the unmethylated plasmid was

highly transcribed, whereas the transcript from the methylated

template was only present at background levels (Fig. 6A), con-

firming that DNA methylation acts as a potent signal for tran-

scriptional repression in the oocyte. Strikingly, when we measured

the expression from these templates in the embryo, we observed

significant transcription from the fully methylated hsp70 pro-

moter (Fig. 6A). A similar effect was observed for the Xenopus his-

tone H2B promoter (Supplemental Fig. S10A). Both methylated

and unmethylated templates can be recovered from oocytes and

embryos with equal efficiency and with the same methylation

status they had before injection (Fig. 6A; Supplemental Figs. S10B,

S11).

The injected promoter-reporter templates are largely main-

tained in an episomal state without efficient DNA replication

(Marini and Benbow 1991). Therefore, we hypothesized that the

lack of DNA methylation-dependent repression in early embryos

could be due to the lack of genomic integration. Moreover, in the

absence of genomic integration, the distribution of the plasmids in

the embryo is mosaic and cannot be properly assayed in late em-

bryonic stages. To further test our findings, fully methylated or

unmethylated constructs containing a luciferase reporter placed

under the control of the CMV promoter were integrated into the

Xenopus genome by transgenesis. The activity of the CMV pro-

moter was measured in F0 transgenic embryos (n = 260; three in-

dependent experiments with 20 or more transgenic embryos per

sample) by quantitative RT-PCR for both methylated and unme-

thylated transgenes, and the results were normalized to their in-

tegrated copy numbers. The methylated transgenes were expressed

in both blastula and gastrula embryos, whereas the expression was

significantly reduced at the neurula stage and below the detection

threshold at the tailbud stage (Fig. 6B). Similar results were ob-

tained with transgenic embryos obtained with a different trans-

genesis method (SceI nuclease-mediated transgenesis instead of

REMI transgenesis) (Supplemental Fig. S12A). Bisulfite sequencing

of the stably integrated transgenes showed that the DNA methyl-

ation status of methylated and unmethylated transgenes does not

change during the experiment (Supplemental Fig. S12B).

These results led us to examine the expression and activity of

methyl-CpG-binding domain (MBD) proteins. In addition, to

measure the ability of MBD proteins to bind to methylated DNA,

an assay was used in which an in vitro methylated or unmethy-

lated, concatamerized DNA probe was immobilized on magnetic

beads and incubated with oocyte and embryo extracts (Supple-

mental Fig. S13A). The MBD proteins MECP2 and MBD3 are

expressed in blastula and gastrula embryos (Stancheva et al. 2003;
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Iwano et al. 2004); however, both their expression and their ability

to bind methylated DNA are very low in embryos compared to

oocytes (Supplemental Fig. S13B; data not shown). To test whether

repression could be restored by overexpression of MBD proteins,

synthetic MECP2 mRNA was injected into fertilized eggs, and the

effect on promoter activity was determined. Even though overex-

pressed MECP2 is able to bind methylated DNA in the early em-

bryos, comparable to the endogenous activity of MECP2 in the

oocyte, no transcriptional repression of the injected reporter

plasmid was observed (Supplemental Fig. S14). To further test this

issue, we examined whether such repression can be restored if the

MECP2 repression domain is targeted to the promoter by a heter-

ologous DNA-binding domain. For that purpose, the hsp70 pro-

moter with five Gal4-binding sites was injected into oocytes and

embryos together with a synthetic RNA coding for the fusion of the

yeast Gal4 DNA-binding domain and the MECP2 transcription

repression domain (Gal4–TRD) (Jones et al. 1998; Kaludov and

Wolffe 2000). The Gal4–TRD fusion represses transcription very

efficiently in oocytes; however, in gastrula embryos, Gal4–TRD did

not repress transcription even though it was expressed at the same

level as that obtained in oocytes (Fig. 6C; Supplemental Fig. S15).

These results demonstrate that the strong MECP2-mediated re-

pression observed in the oocyte is ineffective in the early embryo;

transcriptional repression is largely uncoupled from DNA meth-

ylation in early embryos, but not in oocytes or late embryos.

Discussion
In this study, we describe the methylome of X. tropicalis and its

implications in embryonic gene regulation. Using high-throughput

Figure 5. Conserved patterns of epigenetic regulation in human ES cells and Xenopus embryos. (A) Distribution of RNAPII, H3K4me3, H3K27me3, and
DNA methylation (average values of all four tracks) around TSSs corresponding to Xenopus orthologs of two gene groups differing in their expression status
among fetal fibroblasts (Fib) and ES cells (H1). The genes with higher expression in ES cells (H1-exp) are also more highly expressed in Xenopus embryos
and show increased DNA methylation both upstream of and downstream from the TSS. These orthologs also have a significantly higher DNA methylation
in the region spanning 10 kb upstream of the TSS (P-value = 0.031, Wilcoxon rank test), the region 10 kb downstream from the TSS (P-value = 0.0026), and
the total region from �10 kb to +10 kb relative to the TSS (P-value = 0.0023). (B) Hierarchical clustering performed on Xenopus orthologs of H1-exp and
Fib-exp genes shows an inverse relationship between DNA methylation and H3K27me3. It also shows a high level of DNA methylation on promoters of
robustly expressed H1-exp orthologs.
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genomic sequencing combined with DNA methylation affinity

capture, we generated genomic DNA methylation maps of late-

blastula and gastrula stages. The genome of X. tropicalis is heavily

methylated at both intergenic and intragenic regions throughout

gastrulation. Interestingly, a significant portion (45%) of genomic

CpGis is methylated. A strong anticorrelation exists between DNA

methylation and histone H3K4 trimethylation, in accordance with

earlier reports (Ooi et al. 2007; Hu et al. 2009). Similarly, we find

Figure 6. Methylated promoters in early Xenopus embryos are able to initiate transcription. (A) Unlike Xenopus oocytes, gastrula embryos fail to repress
transcription from the injected hsp70 methylated (SssI) promoter. Levels of injected plasmid DNA recovered from embryos were similar for all samples. (B)
Effects of DNA methylation on stably integrated transgenes. A fully methylated CMV-luciferase transgene is robustly expressed compared to its unme-
thylated counterpart during blastula and gastrula stages. Strong DNA methylation-dependent repression observed in the oocyte is restored gradually at
neurula and tailbud stages. The results represent three independent experiments and were normalized for the number of transgene insertions. (C ) When
targeted to the injected hsp70 promoter by the heterologous Gal4 DNA-binding domain in oocytes, the transcription repression domain of MECP2 shuts
down reporter construct transcription. Such an effect is not observed in gastrula embryos where the Gal4-TRD fusion is expressed at equivalent levels (see
Supplemental Fig. S15). Error bars represent the SEM of three experiments.
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DNA methylation absent from large H3K27me3 domains. Finally,

we detect cases of compatibility between DNA methylation and

active transcription and a conserved pattern of epigenetic regula-

tion in Xenopus blastula and gastrula embryos and mammalian ES

cells. Functional assays performed in oocytes and embryos show

a temporal relief of DNA methylation-dependent repression dur-

ing gastrulation.

Using previously published epigenetic profiles of human ES

cells (Lister et al. 2009), we found that Xenopus embryos and ES

cells use the same type of epigenetic regulation on two distinct

gene groups; one of them being more highly expressed in ES cells

and the other being more highly expressed in fibroblasts. In-

terestingly, the genes with higher DNA methylation content were

more active than genes enriched in H3K27me3, suggesting that

Polycomb-mediated repression is more tightly correlated to gene

silencing in both early embryos and ES cells. These findings are

compatible with the fact that ES cells tolerate loss of both main-

tenance and de novo DNA methyltransferases. ES cells deficient for

DNMT1 were able to proliferate and initiate differentiation (Jackson

et al. 2004). Similarly, DNMT3A/3B depletion does not influence

ES cell self-renewal but, rather, causes a failure in differentiation.

Strikingly, a triple knockout (Dnmt1�/� Dnmt3a�/� Dnmt3b�/�) in

ES cells demonstrated that in the absence of DNA methyl-

transferases, ES cells remain viable and preserve their genome in-

tegrity (Tsumura et al. 2006). A similar observation has been made

in Dnmt1-depleted Xenopus tissue explants that were cultured for

up to 48 h without signs of apoptosis (Stancheva et al. 2001).

However, this is clearly not the case with other cell types such as

mouse fibroblasts, where DNMT1 knockdown causes cell death

(Jackson-Grusby et al. 2001). Similar to the case of DNA methyla-

tion, loss of Polycomb proteins Eed and Ring1b does not influence

the self-renewal properties of ES cells. However, a loss of Polycomb

destabilizes ES cells due to expression of lineage-specific markers

(Leeb and Wutz 2007; Chamberlain et al. 2008; Leeb et al. 2010).

Taken together, these findings suggest that transcriptional re-

pression is not essential for pluripotency.

Moreover, ES cells do not repress methylated promoters very

strongly. When ES cells differentiate to terminally differentiated

neurons, methylation of CpG-poor promoters in ES cells is com-

patible with transcription as assayed by RNA Pol II occupancy

(Mohn et al. 2008). Commitment to a lineage leads to an activation

of a number of promoters of which only some lose DNA methyl-

ation. Genome-wide mapping of DNA methylation to promoter

regions demonstrated that promoters in mouse ES cells are heavily

methylated, including active promoters regulating pluripotency

genes (Fouse et al. 2008). Actually, ;75% of methylated genes

bound by either NANOG or POU5F1 (also known as Oct4) were

expressed compared to 93% of expressed, unmethylated POU5FI/

NANOG bound targets (Fouse et al. 2008).

In Xenopus oocytes, non–promoter DNA methylation is

transmissible in cis over hundreds of base pairs to repress tran-

scription (Kass et al. 1997), but at what locations DNA methylation

can repress transcription is not known for embryonic or somatic

cells. In blastula- and gastrula-stage embryos, we observe a com-

patibility of DNA methylation and active transcription in Xenopus

embryos. A significant portion of actively expressed genes was

found to have high methylation within 1 kb of the transcription

start site. Even though DNA methylation is generally absent from

the TSS of expressed genes, probably due to the deposition of the

H3K4me3 mark, we also identified a small number of expressed

genes having a fully methylated 59 end. Consistent with earlier

reports (Kass et al. 1997; Jones et al. 1998), we find that Xenopus

oocytes repress methylated DNA very efficiently, but we observe

a severely reduced potential for DNA methylation-dependent re-

pression during gastrulation. Moreover, the MECP2 transcription

repression domain, which in oocytes acts as a potent gene re-

pressor when targeted to the promoter (Jones et al. 1998), was not

able to shut down reporter transcription in the gastrulating em-

bryo, possibly due to the absence of co-repressors such as the Sin3

complex (Jones et al. 1998; Nan et al. 1998; Wade et al. 1999; Fuks

et al. 2003). A recent global study performed in mouse neurons

demonstrated the ability of MECP2 to interact with both the Sin3

complex and the transcriptional coactivator CREB1 (Chahrour

et al. 2008). It is possible that such a differential recruitment of

transcriptional repressors and activators is occurring in a de-

velopmental stage- or context-dependent fashion. It is important

to note that the readout of DNA methylation is highly diverse.

Although none of the tested promoters are dominantly repressed

by DNA methylation in early embryos, some promoters are

unaffected by DNA methylation, whereas other promoters are,

though transcribed, less active when methylated. The effects may

not only be determined by methyl CpG-binding proteins, but also

by sequence-specific DNA-binding proteins, some of which are

inhibited when their binding site is methylated (for review, see

Bogdanović and Veenstra 2009).

Interestingly, Xenopus embryos and mammalian ES cells dis-

play similarities in terms of requirements for DNA methyl-

transferase function. Recent studies in Xenopus embryos showed

that the strong phenotypes observed upon ablation of DNMT1

(Stancheva and Meehan 2000) are not caused by perturbations in

DNA methylation but, rather, by the loss of transcriptional re-

pressor function of the DNMT1 protein, independent of its cata-

lytic activity as a DNA methyltransferase (Dunican et al. 2008). The

phenotype caused by the loss of DNMT1 was rescued by a catalyt-

ically inactive form of human DNMT1 (hDNMT1C1226Y) ( Jair et al.

2006; Dunican et al. 2008), suggesting that the DNA methyl-

transferase function is not required for pluripotency. All of these

observations are compatible with the general inability of DNA

methylation to dominantly repress transcription initiation in early

development and differentiation. Even though Xenopus embryos

and mammalian ES cells show similarities in epigenetic profiles,

differences in chromatin structure between mammalian ES cells

and Xenopus embryos have also been documented. Bivalent do-

mains marked by both H3K4me3 and H3K27me3 are a reported

hallmark of the chromatin state of mammalian ES cells (Azuara

et al. 2006; Bernstein et al. 2006). It has been proposed that biva-

lently marked genes are resolved upon differentiation (Bernstein

et al. 2006; Stock et al. 2007; Landeira et al. 2010). However, in X.

tropicalis embryos, H3K27me3 deposition follows H3K4me3 de-

position in time and is linked to spatial restriction of gene ex-

pression (Akkers et al. 2009). Furthermore, classical bivalency with

the two opposing histone marks decorating the same nucleosomal

population is not the predominant configuration in Xenopus em-

bryos. Also, a recent study demonstrated that artificial CpG clus-

ters, when integrated into the genome of mouse ES cells, are suf-

ficient to deposit H3K4me3 via the recruitment of CFP1 (Thomson

et al. 2010). cxxc1 (cfp1) is a highly conserved protein that is

expressed during Xenopus development (data not shown). However,

we identify a number of genomic CpG islands without H3K4me3

methylation. This could be due to differences in H3K4me3 de-

position between Xenopus and mouse or due to different functions

of CpGis in these two organisms. In contrast to mammals, Xenopus

lacks a global demethylation program after fertilization and phe-

nomena such as imprinting and X-inactivation (Yamada et al. 1999;

DNA methylation during early development
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Veenstra and Wolffe 2001). Development starts with a global

transcriptional repression that in Xenopus is relieved at the mid-

blastula transition (MBT) by a change in the cytoplasm-to-nucleus

ratio (Newport and Kirschner 1982a,b). The MBT is characterized

by changes in subcellular localization of transcription factors and

regulation of various activating mechanisms (Veenstra 2002).

Around the MBT the active H3K4me3 mark gets deposited on the

TSS of active genes (Akkers et al. 2009). At this stage, methylated

genes can be expressed, and the Polycomb H3K27me3 mark is

largely absent. At late blastula and early gastrula stages, H3K27me3

is deposited on key developmental regulator genes to establish

spatial domains of gene expression. Our transgenesis experiments

demonstrate that it is only during organogenesis and terminal

differentiation that DNA methylation-dependent repression is

restored. Early embryogenesis may require a more relaxed in-

terpretation of DNA methylation, which allows distinct tran-

scriptional programs to operate without large changes in DNA

methylation. Only later, during organogenesis and differentiation,

is DNA methylation-dependent repression restored, locking cells

in their fate by stable long-term repression.

Methods

Xenopus procedures
X. tropicalis embryos were collected after natural mating, which
was induced by injection of females with human chorionic go-
nadotrophin (HCG). The embryos were then incubated in 3%
cysteine to release the jelly coat. The staging was done according to
Nieuwkoop and Faber (http://www.xenbase.org).

X. laevis oocytes and embryos were injected with 0.25–0.5 ng
of hsp70 promoter templates. In the case of the Gal4-MRD RNA
coinjection, an additional 0.2 ng of the RNA was injected. RNA
injection into the oocytes was done 16 h prior to template in-
jection, allowing the protein to be expressed at sufficient levels.
Both the template plasmid and the synthetic RNA were coinjected
at the same time in the embryos, and the embryos were left to
develop until the gastrula stages.

X. laevis transgenesis was carried out essentially as described
(Kroll and Amaya 1996); however, the sperm nuclei were not
digested with restriction enzymes. Briefly, Xenopus high-speed
egg extract (EXT) and sperm head nuclei were purified and stored
at�80°C in aliquots until use. The pGL3-CMV plasmid or methyl
pGL3-CMV was linearized with AlwNI, purified, and incubated
along with linear pEGFP-N1 (100 ng each per experiment) and
sperm nuclei for 5 min. EXT (10 mL) and 20 mL of Sperm dilution
buffer (SDB = 250 mM sucrose, 75 mM KCl, 0.5 mM spermidine,
0.2 mM spermine) were mixed and incubated for 5 min at 65°C,
then centrifuged at 16,000g for 3 min to remove precipitate. The
soluble fraction (6 mL) was diluted to 22 mL with SDB plus 10 mM
MgCl2. This activating solution was added to the nuclei/sperm
mix and incubated for 15 min at room temperature. The nuclei
were gently added to 170 mL of SDB and used for microinjection at
a rate of 0.586 mL/min using a microliter syringe pump (Harvard
Apparatus).

Nucleic acid isolation and PCR

Genomic DNA was isolated using phenol–chloroform and pre-
cipitated with ethanol. Total RNA was extracted with TRIzol
(Invitrogen) and RNAeasy (QIAGEN) columns. cDNA isolated from
10–20 gastrula embryos was synthesized using a Superscript III kit
(Invitrogen). Quantitative RT-PCR reactions were carried out on 1:50
dilutions of cDNA using the iQ SYBR Green Supermix (Bio-Rad).

Plasmid DNA was isolated from all the samples and subjected to
PCR to control for the potential differences that might have
occurred during embryo injections

MethylCap-seq

Genomic DNA was sheared by sonication to ;500-bp fragments.
Methylated DNA was affinity-purified using H6-GST-MBD fusion
protein (Diagenode) following the manufacturer’s protocol with
one modification. The DNA was eluted in several steps with in-
creasing NaCl concentrations: twice with 200 mM NaCl, once with
300 mM NaCl (washing steps 1–3), 500 mM and 700 mM (elutions
1 and 2). Sequencing samples were prepared using the manufac-
turer’s protocols (Illumina). The DNA ends were repaired, and the
adapters were ligated. The library was size-selected (300 bp) and
amplified by PCR. The sequencing was carried out on a Genome
Analyzer (Ilumina). MeDIP reactions were performed with 1 mg of
sonicated DNA and following the MeDIP kit (Diagenode) protocol.
DNA methylation reads were aligned to the X. tropicalis genome
(JGI version 4.1) using either ELAND (GAPipeline version 1.0;
Illumina) or MAQ (version 0.7.1) (Li et al. 2008) programs. The
reads were extended to 300 bp after mapping. MAQ aligned reads
were used for the analysis of repetitive DNA, while the rest of the
data corresponds to uniquely mapped ELAND reads.

DNA methylation peaks

Genomic regions enriched for DNA methylation were identified by
MACS (Model-based Analysis of ChIP-Seq data) (Zhang et al. 2008).
The genomic distribution of DNA methylation peaks was calcu-
lated by PinkThing software (http://pinkthing.cmbi.ru.nl), using
Ensembl gene models. The genomic intersections were performed
by either the Galaxy bioinformatics tool (Blankenberg et al. 2007;
Taylor et al. 2007) or the UCSC Table Browser. To validate peak
finding settings experimentally, quantitative PCR reactions were
carried out on 1:50 dilutions of MethylCap/MeDIP material using
the iQ SYBR Green Supermix (Bio-Rad). All PCRs were performed
on the MyIQ single-color real-time PCR detection system (Bio-
Rad). For primer sequences, see the Supplemental Data.

CpG island identification

The locations of CpGis in the Xenopus genome were determined
using a sliding-window operation applying either the Takai-Jones
or Gardiner-Garden criteria for CpGis. The Takai-Jones CpGi cri-
teria were as follows: Length $ 500 bp, % GC $ 55%, CpG ob-
served/expected ratio $ 0.65. The Gardiner-Garden criteria were as
follows: Length $ 200 bp, % GC $ 50%, CpG observed/expected
ratio $ 0.6. After merging overlapping regions, a total of 259,903
CpGis were identified in the X. tropicalis genome (JGI version 4.1)
by applying the Gardiner-Garden criteria. The Takai-Jones criteria
produced a subset of 24,283 CpGis. The merged features do not
always meet the criteria mentioned above for the total length of
their sequence. This is the counterintuitive result of merging ad-
jacent islands. Each 200-bp or 500-bp window contributing to the
merged CpGi feature does meet these criteria, and therefore each
CpGi feature contains one or more qualifying CpGis.

Data analysis

To generate average profiles, the mean number of DNA methyla-
tion reads was calculated for 100-bp bins surrounding the feature
of interest (TSS, H3K4me3 and H3K27me3 peak borders, repetitive
DNA elements). The y-axis is represented as the mean number of
reads per base pair. K-means clustering (k = 6, default settings for
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TMEV 4.5) was performed using the TM4 software suite (http://
www.tm4.org). The results are represented as log2 values of the
number of mapped reads. To compare the results with human data
sets (Lister et al. 2009), X. tropicalis orthologs of genes expressed in
ES (H1-exp) cells and fetal fibroblasts (Fib-exp) were identified
using BioMart (http://www.biomart.org). Reads corresponding to
DNA methylation, H3K4me3, H3K27me3, RNAPII, and RNA-seq
were mapped to these two groups of genes and their surrounding
regions (TSS 6 20 kb). Gene orientation was taken into account.
Hierarchical clustering was performed by the TM4 software suite
(http://www.tm4.org). The values represent the log2 numbers of
mapped reads. Boxplots were generated in R using default settings.
The boxes show the interquartile range (IQR) around the median;
the whiskers extend from the minimum value to the maximum
value unless the distance to the first and third quartiles is more
than 1.5 times the IQR.

Constructs

The constructs used in this study have been described (Landsberger
et al. 1995; Jones et al. 1998; Veenstra et al. 1999; Kaludov and
Wolffe 2000; Carro et al. 2004). The mRNA from the Gal4-MRD
and xMECP2pSP64polyA vectors was transcribed using an in vitro
synthesis kit (mMessage mMachine Kit; Ambion). Promoter tem-
plates were in vitro methylated by overnight incubation with the
bacterial SssI methylase using a standard manufacturer’s protocol
(Invitrogen). HpaII restriction followed by agarose gel electro-
phoresis was subsequently performed to control the extent of the
in vitro methylation reaction.

Data access
The data have been deposited in the NCBI Gene Expression Omni-

bus (GEO) (Edgar and Barrett 2006) and are accessible through GEO

Series accession number GSE23913 (http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE23913). Visualization tracks are available

at the authors’ website (http://www.ncmls.nl/gertjanveenstra/

resources.htm).

Acknowledgments
This work was funded by grants of the Netherlands Organization of
Scientific Research (NWO-ALW VIDI grant 864.03.002) and the
U.S. National Institutes of Health (grant R01 HD054356) to
G.J.C.V. We thank the Spanish and Andalusian Governments for
grants to J.L.G.-S. (BFU2010-14839, Proyecto de Excelencia CVI-
3488 and CSD2007-00008). We thank A. Salcedo and G.W. van der
Heijden for helpful suggestions and critical reading of the manu-
script, R.C. Akkers and E.M. Jansen-Megens for MethylCap-seq
assistance, and Ron Engels for help with frogs and animal care. We
also thank Juan Ramón Martı́nez Morales for letting O.B. perform
some experiments in his laboratory.

References

Akkers RC, van Heeringen SJ, Jacobi UG, Janssen-Megens EM, Francxois KJ,
Stunnenberg HG, Veenstra GJ. 2009. A hierarchy of H3K4me3 and
H3K27me3 acquisition in spatial gene regulation in Xenopus embryos.
Dev Cell 17: 425–434.

Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. 1999.
Rett syndrome is caused by mutations in X-linked MECP2, encoding
methyl-CpG-binding protein 2. Nat Genet 23: 185–188.

Azuara V, Perry P, Sauer S, Spivakov M, Jorgensen HF, John RM, Gouti M,
Casanova M, Warnes G, Merkenschlager M, et al. 2006. Chromatin
signatures of pluripotent cell lines. Nat Cell Biol 8: 532–538.

Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC,
Kouzarides T. 2001. Selective recognition of methylated lysine 9 on
histone H3 by the HP1 chromo domain. Nature 410: 120–124.

Benson G. 1999. Tandem repeats finder: a program to analyze DNA
sequences. Nucleic Acids Res 27: 573–580.

Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B,
Meissner A, Wernig M, Plath K, et al. 2006. A bivalent chromatin
structure marks key developmental genes in embryonic stem cells. Cell
125: 315–326.

Bird AP. 1986. CpG-rich islands and the function of DNA methylation.
Nature 321: 209–213.

Bird A. 2002. DNA methylation patterns and epigenetic memory. Genes Dev
16: 6–21.

Blankenberg D, Taylor J, Schenck I, He J, Zhang Y, Ghent M, Veeraraghavan
N, Albert I, Miller W, Makova KD, et al. 2007. A framework for
collaborative analysis of ENCODE data: Making large-scale analyses
biologist-friendly. Genome Res 17: 960–964.

Bock C, Tomazou EM, Brinkman AB, Muller F, Simmer F, Gu H, Jager N,
Gnirke A, Stunnenberg HG, Meissner A. 2010. Quantitative comparison
of genome-wide DNA methylation mapping technologies. Nat
Biotechnol 28: 1106–1114.
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