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Abstract: We present a novel technique for three-dimensiona (3D)
image processing of complex fields. It consists in inverting the coherent
image formation by filtering the complex spectrum with a realistic 3D
coherent transfer function (CTF) of a high-NA digital holographic micro-
scope. By combining scattering theory and signal processing, the method
is demonstrated to yield the reconstruction of a scattering object field.
Experimental reconstructions in phase and amplitude are presented under
non-design imaging conditions. The suggested technique is best suited
for an implementation in high-resolution diffraction tomography based on
sample or illumination rotation.
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1. Introduction

High-resolution three-dimensional (3D) reconstruction of weakly scattering objectsis of great
interest for biomedical research. Diffraction tomography has been demonstrated to yield 3D re-
fractive index (RI) distributions of biological samples[1]. For the use of such techniquesin the
field of virology and cancerology, a spatial resolution in the sub-200nm range is required. Con-
sequently, experimental setups must shift to shorter wavelengths, higher numerical apertures
(NA) and steeper illumination and/or sample rotation angles. However, the scaling of resolu-
tion to high-NA systems introduces strong diffraction and aberration sensitivity [2]. The use
of microscope objectives (MO) under non-design conditions, in particular for sample rotation,
introduces additional experimenta aberrations that may further degrade resolution [3, 4]. Un-
fortunately, the theory of diffraction tomography cannot correct for these conditions since it is
based on direct filtering by an ideal Ewald sphere [5].

We present a novel technique that reconstructs the object scattered field using high-NA MO
under non-design imaging conditions. Opposed to classical reconstruction methods like filtered
back projection [6], our approach is based on inverse filtering by a realistic coherent transfer
function (CTF), namely 3D complex deconvolution. We expect this technique to lead to aber-
ration correction and improved resolution [7, 8]. By combining the theory of coherent image
formation [9] and diffraction [5], the deduced theory enables reconstruction of object scattered
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field by inverse 3D CTF filtering. Under sample rotation, experimental evidence of this theory
ispresented. It confirmsthat therealistic 3D CTF can be directly reconstructed from ahologram
acquisition of a complex point source [10, 11]. For this purpose, DHM's feature of digital re-
focusing is exploited [12]. As simulations have shown, digital refocusing bears the capacity of
optical sectioning [13]. By regularizing the complex filter function, phase degradation by noise
amplification is suppressed as anticipated from intensity deconvolution [14]. The effectiveness
and importance of the proposed method is demonstrated with experimental applications.

Independent of the non-design imaging condition, our method serves to reconstruct the scat-
tered complex object function from a single hologram acquisition. One reconstruction does not
feature tomography but rather optical sectioning of one rotation angle measurement. However,
the reconstruction can be applied to various complex field acquisitions, which can be ultimately
used for super-resolved diffraction tomography.

2. Description of method

The proposed method consists of three major inventions. First, for inverse filtering the three-
dimensional deconvolution of complex fields is formalized by complex noise filtering. Sec-
ondly, based on single hologram reconstruction, an experimental filter function is defined.
Third, in a rigorous approach, the filtered field is used to retrieve the scattered object func-
tion.

2.1. Regularized 3D deconvolution of complex fields

For a coherently illuminated imaging system, the 3D image formation of the complex field U
is expressed as the convolution of the complex object function, called o, and the complex point
spread function (APSF), called h [9]:

U () = / / /_ Z o(F1)h(F2 — F1)dxady diza, 1)

where T = (X,Y,z) denotes the location vector in the object space r; and the image space 1 as
shown in Fig. 1(a). Equation (1) can be recast into reciprocal space by a 3D Fourier transfor-

(a) object plane back focal plane  hologram & image plane (b) Ewald’s sphere
o(x,y,z,) Ok, k k) Ux',y',2')  AUx,y,z,)
=6(x,y,z,) J

i oy
DL

|
<—f]—>‘<—f1—>‘ <—fz—>‘<—fz—>

Fig. 1. Optical transfer of a point source in real and reciprocal space. In scheme (a), a
practical Abbeimaging system with holographic reconstruction. In scheme (b), full Ewald’s
sphere under Born approximation in the reciprocal object plane according to Eq. (11).

mation .% defined as;

F{U(F2)} = / / / (72) expli2ne(K - F2)|dxodlyaCizo. )

The reciprocal space based on the free-space (index of refraction n = 1) norm of wavenumber
k with wavelength A, relates to the spatial frequency v and wave vector k = (ky, ky,k;) by
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Komy 2

k= k| =2mv == (©)
According to the convolution theorem, applying Eq. (2) to Eq. (1) resultsin:
F{U(r2)} = F{o} F{h}. 4
e — N N~

G(k) ok) oK)

Conventionally, the 3D Fourier transforms of U, o, and h are caled G, the complex image
spectrum, O, the complex object spectrum, and, c, the coherent transfer function (CTF), as
summarized in Eq. (4). The latter is bandpass limited through h, with the maximal lateral wave
vector,

kxy,c = ksine, (5)

and the maximal longitudinal wave vector
kzc =k(1—cosa), (6)

scaled by k from Eq. (3). The angle o indicates the half-angle of the maximum cone of light
that can enter into the MO (cf. Fig. 1) and is given by its NA = njsina (n; is the immersion’s
index of refraction). Through Eqg. (4), the complex image formation can be easily inverted:

o(f) = / / / O(K) expl—i2m (K - F1)]dkedk,ck, = 91{ (j((k',‘))} %
The 3D inverse filtering can be directly performed by dividing the two complex fields G and
c. As known from intensity deconvolution [15], the inverse filtering method in the complex
domain suffers from noise amplification for small values of the denominator G(k) /c(k), partic-
ularly at high spatial frequencies.

As stated by Eq. (4), the recorded spectrum G(K) is physically band limited by the CTF,
thusit can be low-pass filtered with the maximal frequency kyyc of Eq. (5) in order to suppress
noise [8]. However, small amplitude transmission values within the band pass of the 3D CTF
may still amplify noise. The noise amplification results in peak transmission values in the de-
convolved spectrum, which add very high modulationsin phase. Thus, phase information could
be degraded through amplitude noise. To reduce noise degradation effectively we propose a
threshold in the 3D CTF of Eq. (7), such as:

N if lc|>7
k) —{ 1-expli-agld]] if fe/<t ° ®)
For modulus of ¢ smaller than t, the CTF's amplitude is set to unity, so that its noise ampli-
fication is eliminated while its phase value still acts for the deconvolution. By controlling t,
truncated inverse complex filtering (7 << 1) or pure phase filtering (t=1) can be achieved.
Therefore, the deconvolution result depends on the parameter t. Compared to standard regu-
larization 3D intensity deconvolution [14], the threshold acts as a regularization parameter in
amplitude domain while the complex valued domain is unaffected. The influence of this param-
eter isdiscussed in section 3.

Note that thresholding based regularization is comparable to other schemes, like gradient
based total variation regularization [16]. However, the presented method does not assume spar-
sity, as known from compressive sensing approaches. Instead, it is based on the inversion of the
coherent image formation of Eq. (1).
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2.2. 3D field reconstruction of 2D hologram

Typically, the 3D image of aspecimen isacquired from a series of 2D images by refocusing the
MO at different planes [14]. In the proposed technique, however, the complex fields are pro-
vided by digital holographic microscopy (DHM) in transmission configuration [17] as shown

inFig. 2(a).

Fig. 2. Experimental configuration. (a) Optical setup: LD, laser diode; BS, beam split-
ter; M, mirror; DL, delay line; SF, spatia filter; ND, neutral density filter; L, lens; TL,
tube lens; CL, condenser lens, MO, microscope objective; RS, rotatable specimen. (b) RS
with complex point sourcein MO design and non-design conditions. Insert: SEM image of
nano-metric aperture (& ~75nm) in auminum film at 150000x magnification. (¢) RSwith
objects (see section 3) in experimental conditions with incident light Rg aong optical axis.

Thus, the amplitude A(T2) aswell asthe phase ®(T>) of the hologram ¥ can be reconstructed
by convolution [12]:

U (F2) = A(T2) 'eXD [id(r2)]

_exp(ikd 9
- F:d/)‘ ZZ / \P X27y2 exp |:d22).« [( )2+(y/2_y2)]2 dX/Zdy/27 ( )
where T, is a spatial coordinate in the hologram plane, and d is the hologram reconstruction
distance as shown in Fig. 1(a). Using digital refocusing, a pseudo 3D field can be retrieved by
varying the reconstruction distance d,, = d + M?z; scaled by the MO’s longitudinal magnifica-
tion of M2 = (f,/f1)2. Note that opposed to MO refocusing, the physical importance of digital
refocusing is related to the camera's distance from the system’s image plane.

2.3. Experimental pseudo 3D APSF

The coherent imaging system can be experimentally characterized by a complex point source,
shown in Fig. 2(b). It consists of an isolated nano-metric aperture (& ~75nm) in athin opaque
coating (thickness=100nm) on a conventional coverslip [11]. The aperture was fabricated in
the Center of MicroNano-Technology (CMI) clean room facilities by focused ion beam (FIB)
milling in the evaporated aluminum film (thickness=100nm). For a single point object o(T1) =
6(r1), theimage field Ug(T2) isthe APSF h(F,). This approximation yields aperture diameters
@ << dmin (dmin: limit of resolution), and its imaged amplitude and phase have been shown to
be characteristic [10, 18].
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The coverdlip is mounted on a custom diffraction tomography microscope [19] based on
sampl e rotation and transmission DHM as shown in Fig. 2(a). The setup operatesat A = 680nm
and is equipped with adry MO for long working distance of nominal NA = 0.7 and magnifi-
cation M = 100x. The sample rotation by 6, as depicted in Fig. 2, introduces non-desigh MO
conditions of imaging [4], consecutively discussed in section 3.1. The optical path difference
between corresponding rays in design and non-design systems can be caused by use of a cov-
erdip with a thickness or refractive index differing from that of the design system, the use of
a non-design immersion oil n;, the defocus of the object in a mismatched mounting medium
nm [3]. Consequently, a system’s defocus must be avoided through sample preparation, as dis-
cussed in section 3. Since a dry MO is used with matched coverslips, we expect the tilt to
introduce the main experimental aberration, apart from MO intrinsic aberrations.

In order to demonstrate the importance of the proposed technique to diffraction tomography
by sample rotation, experimental holograms are recorded for tilt positions aswell. The digitally
reconstructed pseudo 3D APSF are shown for two positions in Figs. 3(a)—3(b), without tilt and
for 6 = 15°.

e, ——

Fig. 3. Measurement of complex point source in MO design and MO non-design imaging
conditions (cf. Fig. 2). The experimental APSF sections in (&) yield design MO imaging
conditions (6 = 0°), whereas sectionsin (b) yield non-design conditions (6 = 15°). Theleft
side images show |h| central sections and the right images arg[h], respectively. Colorbar,
Scalebars: 2um.

In MO design conditions, the complex field in Fig. 3(a) indicates a typical point spread
function pattern [10]. In amplitude, the diffraction pattern is similar to the Airy diffraction
pattern, derived from the Bessel function of first kind J;. The phase part oscillates at J;’s roots
with spacing A /NA from —r to 7 [7]. Nonetheless, the axial sectionsin Fig. 3(a) are proneto a
spherical like aberration due to intrinsic aberrations [2]. The lateral sections show a good axial
symmetry, hence the absence of strong coma or astigma like aberrations.

In the case of 6 = 15°, the field in Fig. 3(b) features asymmetries of the diffraction pat-
tern in amplitude and phase. The aberration can be especially well observed in alateral phase
distortion. Likewise, the asymmetric aberration is also expressed in the axial direction of the
APSF. The introduction of coma-like aberration [2] is due to the tilted coverdip system. Just
like above mentioned non-design conditions [ 3], thetilt resultsin optical path differencesin the
experimental system, which act as an additional aberration function [20].

The dependence of the APSF' samplitude As and phase @5 on the samplerotation (cf. Fig. 2)
is defined by

#145314 - $15.00 USD Received 4 Apr 2011; revised 29 Jun 2011; accepted 30 Jun 2011; published 8 Jul 2011
(C) 2011 OSA 1 August 2011/ Vol. 2, No. 8/ BIOMEDICAL OPTICS EXPRESS 2221



N, (T2) = AT (F2)-exp 105, (72)] (10
with the illumination wavevector k% = (Kox; Koy, ko) in the laboratory reference frame, mean-
ing relativeto the optical axis. In the demonstrated case of samplerotation, k}, = (0,0,1) relative
to theoptical axisdoesnot change. However, theillumination relative to the sample does change
and the incident field vector can be expressed as ko = (0,sin6,cos6) in the sample frame of
reference, according to Fig. 2(b).

The complex point source technique allows registering the scattered h background illumi-
nation free. As a result, the SNR is advantageous and the required h can be directly used for
Eg. (2). The amplitude and phase of the recorded field A 5% (rf2) and @ 5% (r2) then correspond

to the scattered components AE;)RO (F) and cI)EsS%O (T2).

Eventually, it is the design of the complex point source (cf. Fig. 2) that guaranties a high
accuracy of the APSF with respect to realistic imaging. The complex point source is directly
located on a conventional coverslip, also used for object imaging. Thus, the APSF acquisition
does not require any modifications of the imaging system, is stable, and most importantly, it is
representative for object imaging under the same conditions. Even, for defocused objects, the
experimental APSF can be estimated by flipping the complex point source and immersion it
with approximated defocus.

2.4. Experimental 3D CTF

If the incident iIIuminatign field on the scatterer is in direction Ko and the scattered field is
measured in direction of k, the first-order Born approximation states that the 3D CTF is given
by the cap of an Ewald sphere defined for

K =k —ko, (12)
as schematically shown in Fig. 1(b) for DHM [21]. NA limitsthe sphere, so that only part of the
diffracted light can be transmitted. The experimental DHM’s 3D CTF can be directly calcul ated
by applying Eg. (2) to Eq. (10) and isdepicted in Fig. 4.

From this reconstruction, the NA can be directly measured through the subtended half-angle
o according to the cut-off frequencies of Egs. (5) and (6). The experimental CTF includes
experimental conditions, i. e. aberrations, as well. By comparing Fig. 4(a) and Fig. 4(b) the
impact of illumination becomes apparent. Due to the sample rotation, the MO can accept higher
frequencies from one side of the aperture, while frequencies from the opposed side are cut off.
Asaresult, the CTF isdisplaced along the Ewald’s sphere [22]. Note that this displacement isa
combination of translation and rotation if the rotational center is not coincident with the sample
geometrical center.

Thus, the 3D CTF can be written as afunction of K:

o(k—Ko) =AY (k—Ko) - xp 165 (K—Ko)| (12)

where a hat indicates the Fourier component in amplitude A and phase ® as summarized in
Fi% 5@). Similarly to the 3D CTF reconstruction, the three-dimensional complex spectrum
G(k —kp) is calculated from experimental configurations shown in Fig. 2(c).

2.5. Scattered field retrieval

In the case of transmission microscopy, the APSF in Eq. (1) is not directly convolved with the
complex object function o. According to diffractiorl theory [5], thetotal field o can be expressed
asthe sum of the incident field ol in direction of ko and the scattered field 0%,
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0.05

Fig. 4. Experimental 3D CTF in different imaging conditions. The experimental CTF in (a)
obtained for MO design imaging conditions (6 = 0°), whereas the CTF depicted in (b) is
obtained for non-design conditions (6 = 15°), according to Fig. 2. The upper row shows
the top view on the CTF and bottom row shows the side view through the CTF for ky = 0,
respectively. Colorbars.

05, (T2) = 0 (T1) + 0 (7). (13)
where
o (11) = A (1) - exp |10 () (14)

with the scattered field amplitude A®(F1) and phase @ (F1). On substituting from Eq. (13)
0 0
into Eq. (1) and using Eqg. (7) we see that the complex deconvolution satisfies

G(K—Ko)—Z{[[f=. oﬁ'; (F)hg, (T2 — F1)dxadyadzs }

ok _Fo) (15)

Z{o) (1)} =

The subtracted convolution term in the numerator of Eq. (15) can be identified as c(I_i —
Ko)7 {0 (1)}, the reference field of an empty field of view [23]. Suppose that the field in-
0

cident on the scatterer isa rrlonochromatic plane wave of constant amplitude A(), propagating
in the direction specified by kg. The time-independent part of the incident field is then given by
the expression

of('o) (f1) = A1) . exp [iEorl} : (16)
and Egs. (15) and (16) yield
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transmission, (b) transmission,
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ke I
transfer object P B

function A é)f spectrum A“{i
s > k :
k., 0 !

X

Fig. 5. Scheme of reciprocal space. Inimage (&), a1D coherent transfer function as given by
the complex Poi nt source [see Eq. (12)]. In image (b), image’s spectrum with background
illumination kg # 0.

G(k —ko) —AD S (k —ko)
c(k—ko)
On the other hand, according to Egs. (13), (14), and (16) the image spectrum may be expressed

7o (m)} = : (17)

R, A(s) (R = Ro) + A(') if R = Ro
]_ AG) (k -

(18)

as shown in Fig. 5(b).
Hence, substituting Egs. (18) and (10) into Eq. (17), yields:

A (k—Ko) - exp [i@(E —Ro)]
55

F{V(r)} = - . (19)

o A (K —Ko) - exp [iqag(R_Ro)} '

Finally, the means of A®) can be normalized to AE;), to equalize their spectral dynamic ranges.
Preferably, in order to avoid any degradation of the image spectrum by direct subtraction,

o§> (F1) can dternatively be calculated by:
0

¥_K Ak —kp) -exp |[id(k — kg
ﬁ{oés)(?l)} = G(k kO)(i) = &7 T ( )A ?{ _,( ,\)} Er——
0 g, () +0 (M)} AP (K—Ko) - exp [idbs (K~ Ko) | +ADS(K— ko)
(20)
In summary, the scattered field 0(®) can be obtained for any illumination by Eq. (15) if an
experimental reference field is provided. Alternatively, under the assumption of plane wave
illumination, it can be calculated by Egs. (19) or (20). The latter is used for processing in
section 3.
We compare this result to the Fourier diffraction theorem [5] of scattering potential F (F1):

i .
F{R, (1)} = ;kzﬁ{ué?(xl,yl,zl — 7%)Vexp [ Fikz*] . (21)

It states that the scattered field U;*), recorded at plane z*, is filtered by an ideal Ewald half

0
spherek; = | /(nmk)2 — k2 —kZ (nm: refractive index of mounting medium), and propagated by
the latest term as known by the filtered back propagation algorithm of conventional diffraction
tomography [6]. In our case, dividing by the 3D CTF, the spectrum is inversely filtered by an
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"experimental’ Ewald sphere. Moreover, the field propagation is intrinsically included through
the z-dependent pre-factor in the reconstruction of Egs. (9) and (10). Therefore, the product of
theright sidein Eq. (21) may be approximated as

TR, (M)} = iﬂﬁ{oé:) (f)}- (22)

The main difference consistsin thefilter function. A multiplicative filter in Eq. (21) cannot cor-
rect for realistic imaging conditions, such as aberrations or MO diffraction. It merely actsas a
low passfilter in the shape of an Ewald sphere. By contrast, Eq. (22) impliesthe object function
oﬁ ), which is compensated for realistic imaging conditions. In order to achieve that correction,

flelds must be divided [8]. A priori, the experimental CTF is more apt for this division since
it intrinsically corrects for MO diffraction, apodization, aberrations and non-design imaging
conditions, as discussed in section 3.1.

The function F (K) is the 3D Fourier transform of the scattering potential F(F1) derived by
the inhomogeneous Helmholz equation of the medium n(r;), where:
n(ry) = [n2 — Fue(fy) /K272, (29)
and n(ry) isthe complex refractive index. Thereal part of Eq. (23) is associated with refraction
while itsimaginary part isrelated to absorption.

If one were to measure the scattered field in the far zone for all possible directions of inci-
dence and al possible directions of scattering one could determine all the Fourier components
F (K) of the scattering potential within the full Ewald limiting sphere of 2k = 47 /. One could
synthesize all Fourier components to obtain the approximation

()= 73 ///K » R) exp [iKry| dicli,dk,, (24)

called the low-pass filtered approximation of the scattering potential [5] that gives rise to
diffraction tomography. Opposed to this full approach, the approximation of the partial low-
pass filtered scattering potential F in only one direction of ko gives rise to optical sectioning, as
discussed in section 3.3.

3. Applications

In this section, general imaging aspects of the proposed method and their impact on phase signal
is evaluated. Moreover, the extraction of a scattered object field is practically demonstrated to
result in optical sectioning.

3.1. Coherent imaging inversion

First, the general impact of complex deconvolution on the coherent imaging inversion under
non-design conditions is discussed. For this purpose, experimental images of non-absorbing
mono-dispersed polystyrene microspheres (nsph = 1.59, @ ~ 5.8um) in water (Nm p,0 = 1.33)
are recorded at atilt angle of 6 = 15°, shown in Fig 6(a) for raw data and in Fig. 6(b) after
deconvolution.

If complex deconvolution is successful, then anumber of improvementsin the complex field
should be noted, accordingly indicated in Fig. 6 by regions of interests (ROI):

Background extinction: The transparent sample images are recorded with the incident light
oW indi rection of ko. According to Eq. (20), aDC valueis added to the APSF to compen-
sate for o)) well seen by reduced background haze in the amplitude (cf. Fig. 6 ROI-1).

#145314 - $15.00 USD Received 4 Apr 2011; revised 29 Jun 2011; accepted 30 Jun 2011; published 8 Jul 2011
(C) 2011 OSA 1 August 2011/ Vol. 2, No. 8/ BIOMEDICAL OPTICS EXPRESS 2225



(@)

main
[a.ul] ’

1 +11 ¢
w 4
ol . |

insert |
[rad]

Fig. 6. Complex fields of polystyrene microspheres in water at a tilt angle of 6 = 15°,
according to Fig. 2. The main images show the raw amplitude (a) and the deconvolved
amplitude (b) with background ROI-1 and object ROI-2 with circle @~ 5.8um. Theinserts
in ROI-3 show the phase parts, respectively. Colorbar, Scalebar: 4um.

Similarly, the removed background resultsin full 2zz-dynamic range of phase oscillation
(cf. Fig. 6 ROI-3). Finaly, the object ROI-2 in Fig. 6 displays improved contrast since
the objects’ edges are sharpened by the complex deconvolution.

Diffraction pattern suppression: A second motivation consists in correcting the diffraction
pattern of the MO’s APSF. This correction isin particular required for high-NA imaging
systems since the APSF diffraction pattern may result in incorrect tomographic recon-
struction in the near resolution limit range. The diffraction pattern can be observed to be
well suppressed by comparing ROI-1 in Fig. 6. As aresult, the diffraction pattern of the
refractive index mismatched sphere [24, 25] becomes apparent in ROI-2 of Fig. 6.

Complex aberration correction: Aberrations are intrinsic to MO, especially for high-NA
objectives [2]. Additionally, experimental MO non-design conditions may introduce
symmetric aberrations [3]. Those conditions include non-design refraction index of n;,
mismatch of n; and np,, defocus of object in ny,, and non-design coverdlip thickness or
refraction index. Also, axialy asymmetric aberrations are introduced by the sample ro-
tation [4, 20]. This aberration can be recognized as the asymmetric deformation of the
diffraction pattern in the raw images (cf. Fig. 6 ROI-1 and ROI-3). As a conseguence, the
raw object in Fig. 6 ROI-2 is deformed, too. However, after deconvolution in ROI-1 of
Fig. 6 the asymmetric diffraction pattern is removed. In the same manner, the phase oscil-
lation becomes equally spaced after deconvolution as shown in Fig. 6 ROI-3. Eventually,
the object can be reconstructed in a deformation-free manner in Fig. 6 ROI-2.

Note that even with an accurate APSF and an effective deconvolution agorithm, deconvolved
images can suffer from a variety of defects and artifacts described in detail in reference [15].

3.2.  The impact of phase deconvolution

The source of most artifacts is due to noise amplification as mentioned in section 2.1. The
suggested 3D deconvolution of complex fields has the capacity to tune between complex and
phase deconvolution according Eq. (8). Thus, noise amplification can be excluded for 7 = 1
while the phase part still leads to image correction according to the previous section. As seen
by Eg. (19), the phase deconvolution effectively acts as a subtraction of the diffraction pattern
in phase. Strictly speaking, the recorded phase is not the phase difference between object and
reference beam, but also includes the MO'’s diffraction due to frequency cutoff. The coherent
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system is seen to exhibit rather pronounced coherent imaging edges, known as 'ringing’ [26].
For biological samples [27], the diffraction influence in phase may be of great importance for
the interpretation of phase signal.

Consequently, we investigate the complex deconvolution’s influence on biological samples
phase signal. The samplesare human red blood cells (RBC) that have been fixed by ethanol 95%
and are suspended in a physiological solution (Ny sl = 1.334 a A = 682nm). This preparation
method allows fixing the RBC directly on the coverdlip surface to avoid defocus aberrations,
and a space invariant APSF may be assumed within the field of view [28]. The experimental
APSF used for processing was acquired under identical object imaging conditions, i.e. sametilt
positions with identical coverslips as shownin Fig. 2. The experimental APSF can therefore be
accurately accessed. A comparison between the raw phase images and the phase deconvolved
images is shown for two RBCsin Figs. 7(a) and 7(c).
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Fig. 7. Human RBCs in phase. Images (a) and (c) show the phase images of two RBCs
at 6 = 0. Unprocessed images are labeled 'RAW’ and the label 'PROCESSED’ indicates
the deconvolved phase for T = 1. The profilesin (b) and (d) compare the according height
differences of images above, at central sections (indicated by flashes). The error bars in-
dicate the level of phase noise (= 0.1rad). Images (d)—f) show the top view on RBC (c),

processed with different 7 (expressed in units of AE;) ). Colorbars, Scalebars: 4um.
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Fig. 8. Inclined human RBCs in phase at various tilt angles 6. Images (a)—(f) are unpro-
cessed and images (g)—(1) are pure phase deconvolved T = 1. According to Fig. 2, the axis
of rotation ’x’ isindicated. Colorbar, Scalebars: 4um.

The influence of the phase deconvolution can be seen directly by comparing these topo-
graphic images. Based on their shapes, RBCs are classified in different stages [27]. The raw
image in Fig. 7(c) resembles a trophozoite stage while its phase deconvolved image reveals a
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ring structure. Similarly, the processed RBC in Fig. 7(a) reveals a trophozoite stage. A more
detailed comparison is given by its central height profilesin Figs. 7(b) and 7(d), calculated by
assuming a constant refractive index of nggc = 1.39. It shows that the deconvolved phase pro-
file follows basically the raw trend. However, similar to coherent imaging ringing, edges are
less prone of oscillations after phase deconvolution, in particular on the RBC's edges. Thusthe
impact of the complex deconvolution isto de-blur the phase signal .

However, the recovered phase signal is highly sensitive to noise, as demonstrated in
Figs. 7(d)—7(f). Decreasing value of t, implies a decreased SNR through amplitude noise am-
plification. As a consequence, random phasers can be introduced that degrade the phase signal.
Figures 7(e) and 7(f) show that signal degradation affects most prominently RBC's central and
border regions. For a pure retrieval of phase that is unaffected by noise amplification, 7 should
not be smaller than -1dB.

In Fig. 8, measurements under non-design imaging conditions are presented. The RBC's raw
phase measurements become strongly deformed with increasing coverdlip tilt [cf. Figs. 8(a)—
8(f)]. This observation is in accordance with section 2.3 where strong coma-like aberrations
are observed. Consequently, APSFs acquired under same non-design conditions, i.e. samettilt,
can be used to effectively correct for coma aberration within the depth of field. Accordingly
processed RBC measurements successfully recover the ring stage, even at steeper tilting angles,
as demonstrated in Figs. 8(g)—8(l). Note that the phase signal is increased for steeper 6 since
projection surface along y-axis decreases, as well observed in Figs. 8(g)—8(1).

3.3, Scattered object field retrieval and optical sectioning

From the intensity deconvolution point of view, pseudo 3D microscopy can be achieved by re-
duction of out-of-focus haze [ 14], which meansthat the spread of objectsinthe z-directionisre-
duced. Recently, this potential has also been demonstrated for digitally refocused 3D fields[13]
and compressive holography [16]. Optical sectioning effects are therefore intrinsic to 3D com-
plex deconvolution if T << 1 and amplitude information is not discarded. From the inverse
filtering point of view, the z-confinement arises from the filtering by the 3D CTF as shown
in Fig. 4. To demonstrate that scattered object field retrieval features this effect, complex de-
convolution was performed on the RBC sample of the previous section 3.2 with T determined
by CTF's noise level. For optimal amplitude contrast, the value of t was calculated by a his-
togram based method, Otsu's rule, well known in intensity deconvolution [29]. The resulting
T ~ —3dB, lies beneath the pure phase deconvolution criterion of -1dB, but it allows effective
diffraction pattern suppression. Therefore, high amplitude contrast compromises phase signal.
The results are shown in Fig. 9.

Theraw 3D field |U| in Fig. 9(a) shows the object spread along the axial direction according
to Eqg. (9). As expected, the reconstruction features no axial confinement and the RBCs cannot
be recognized.

On the other hand, the scattered object field [o()| after truncated inverse filtering according
to Eq. (20) is depicted in Fig. 9(b). It shows that the background field and out-of-focus haze
are successfully removed. The RBCs' edges can be identified as strong scattering objects and
the scattered field can be recognized to match in size and position the anticipated RBC values.
Although the image quality is affected by artifacts in axial elongation [30], its axial dimen-
sions match well. However, the refractive index mismatched cell membrane (njipig > 1.4) and
mounting medium (Nm s = 1.334 at A = 682nm) result in strong scattering well visible in the
Xz sections.

Finally, the fields related to refraction, |n|, can be reconstructed in Fig. 9(c) according to
Eq. (23). In particular, the refraction due to the strong scattered field around the RBCs allows
a good three-dimensional localization of the RBCs edges. Moreover, the higher refraction
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Fig. 9. 3D rendered images of two human RBC at 6 = 0. Images (a), shows |U| in 3D-
space in the middle row. Bottom and top rows show the sections through central RBC
positions (indicated by flashes). Accordingly, thefield [0(®)| isrepresented in (b), and |n| in
(c) (uncalibrated levels), respectively. The RBCs' positions are compared to an oval area of
6um x 2.5um, based on measurements from section 3.2. Colorbars.

index due to its hemoglobin content is well visible in the xz sections. Note that these data
are reconstructed from only one hologram for a single incident angle ko and therefore missing
angles in Eq. (24) affect the reconstruction as seen by the lateral artifacts. However, if the 3D
inverse filtering technique is combined with a multi-angle acquisition, it holds the potential of
guantitative 3D refraction index reconstruction.

4. Concluding remarks

In this paper, we have described theory, experimental aspects as well as applications of anovel
method of 3D imaging using realistic 3D CTF inverse filtering of complex fields.

Our theory connects three-dimensional coherent image formation and diffraction theory and
resultsin amodel for object scattering reconstruction by inverse filtering. This approach is ex-
perimentally complimented by the ability to characterize the DHM setup with background free
APSF thanks to the use of a complex point source. The physical importance of the realistic
3D CTF isdemonstrated with experimental data. The technique features effective correction of
background illumination, diffraction pattern, aberrations and non-ideal experimental imaging
conditions. Moreover, the regularization of the three-dimensional deconvolution of complex
fields is shown to yield reconstruction in the complex domain. Depending on the threshold,
phase de-blurring or optical sectioning is demonstrated with RBC measurements. Most essen-
tially, the capability of scattered field extraction is experimentally presented.

In conclusion, the demonstrated technique bears the potential to reconstruct object scattering
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functions under realistic high-NA imaging conditions which play a key role in high resolution
diffraction tomography.
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