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Abstract

The Escherichia coli B strain BL21(DE3) has had a profound impact on biotechnology through its use in the production of
recombinant proteins. Little is understood, however, regarding the physiology of this important E. coli strain. We show here
that BL21(DE3) totally lacks activity of the four [NiFe]-hydrogenases, the three molybdenum- and selenium-containing
formate dehydrogenases and molybdenum-dependent nitrate reductase. Nevertheless, all of the structural genes necessary
for the synthesis of the respective anaerobic metalloenzymes are present in the genome. However, the genes encoding the
high-affinity molybdate transport system and the molybdenum-responsive transcriptional regulator ModE are absent from
the genome. Moreover, BL21(DE3) has a nonsense mutation in the gene encoding the global oxygen-responsive
transcriptional regulator FNR. The activities of the two hydrogen-oxidizing hydrogenases, therefore, could be restored to
BL21(DE3) by supplementing the growth medium with high concentrations of Ni2+ (Ni2+-transport is FNR-dependent) or by
introducing a wild-type copy of the fnr gene. Only combined addition of plasmid-encoded fnr and high concentrations of
MoO4

22 ions could restore hydrogen production to BL21(DE3); however, to only 25–30% of a K-12 wildtype. We could show
that limited hydrogen production from the enzyme complex responsible for formate-dependent hydrogen evolution was
due solely to reduced activity of the formate dehydrogenase (FDH-H), not the hydrogenase component. The activity of the
FNR-dependent formate dehydrogenase, FDH-N, could not be restored, even when the fnr gene and MoO4

22 were
supplied; however, nitrate reductase activity could be recovered by combined addition of MoO4

22 and the fnr gene. This
suggested that a further component specific for biosynthesis or activity of formate dehydrogenases H and N was missing.
Re-introduction of the gene encoding ModE could only partially restore the activities of both enzymes. Taken together
these results demonstrate that BL21(DE3) has major defects in anaerobic metabolism, metal ion transport and
metalloprotein biosynthesis.
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Introduction

Escherichia coli is a facultative anaerobic enterobacterium that

can grow both in the presence and in the absence of oxygen.

When oxygen becomes limiting, E. coli can use nitrate or several

alternative electron acceptors but if no exogenous electron

acceptors are present it can resort to fermentation [1]. One of

the key players in activating anaerobic gene expression is the

global transcriptional regulator FNR (fumarate-nitrate regulator).

FNR regulates, directly or indirectly, the expression of a very large

number of genes and operons [2] whose products ensure that the

optimal electron acceptor is utilized to allow maximum energy

conservation. Many of the genes whose expression is induced by

FNR encode complex metalloproteins, which have different metal

cofactors in their active sites. Biosynthesis of these metal cofactors

often requires the concerted action of a large number of accessory

proteins. During nitrate respiration, for example, the FNR- and

nitrate-dependent formate dehydrogenase (FDH) N and nitrate

reductase (NAR) respiratory pathway is induced. Both enzymes

have an array of iron-sulfur cluster, as well as the bis-

molybdopterin guanidine dinucleotide (bis-MGD) cofactor [3].

Additionally, FDH-N requires co-translational insertion of seleno-

cysteine in the polypeptide chain [4]. On the other hand, during

fermentative growth E. coli has an active hydrogen metabolism and

each of the three hydrogenases synthesized under these conditions

has a [NiFe] cofactor. This cofactor must also be carefully

assembled and inserted into the apo-enzyme [5]. Metals such as

molybdenum and nickel must also be transported into the cell to

allow synthesis of the appropriate metalloenzymes to occur. FNR

exerts global control over many aspects of metalloprotein

biosynthesis in E. coli and this is summarized in Fig. 1.

Hydrogenases catalyze the reversible oxidation of hydrogen and

E. coli encodes four [NiFe]-hydrogenases (Hyd) in its genome, only

three of which have been characterized [5]. All three enzymes are

membrane-associated. Hyd-1 and Hyd-2 have their active site

oriented toward the periplasm. Both enzymes contribute to

generation of a proton gradient by oxidizing hydrogen on the

periplasmic side of the cytoplasmic membrane and delivering the

electrons from hydrogen oxidation directly into the respiratory

chain. Hyd-3, together with the second molybdoselenoenzyme

FDH-H, forms the hydrogen-evolving formate hydrogenlyase

(FHL) complex, which has its active site localized towards the
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cytoplasm [6]. The substrate of the FHL complex is formate,

which is generated during fermentation of sugar substrates such as

glucose by the anaerobically inducible pyruvate formate-lyase

(PflB) [1]. Formate is disproportionated into carbon dioxide and

hydrogen by the FHL complex, thus off-setting acidification of the

cytoplasm during fermentation.

The [NiFe]-cofactor in K-12 strains of E. coli such as MC4100

or MG1655 is common to all three hydrogenase enzymes. Thus,

the majority of the accessory enzymes, referred to as Hyp proteins,

required to synthesize this cofactor govern the biosynthesis of each

hydrogenase [5,7]. The Hyp proteins are involved in the synthesis

of the non-proteinogenic ligands cyanide (CN2) and carbon

monoxide (CO), which are coordinated to the iron atom in the

[NiFe]-cofactor (for a review see [7]). The two CN2 ligands are

derived from carbamoylphosphate (CP) [8,9] while the source of

the CO ligand is unclear. After synthesis and insertion of the

modified iron atom into the large subunit precursor, nickel is then

inserted through the action of HypA, HypB and SlyD [10]. The

nickel required for biosynthesis of the active site is delivered by a

specific ATP-binding cassette (ABC) transporter encoded by the

FNR-regulated nik operon [11]. Lesions in the genes encoding the

HypA and HypB enzymes, the nickel transporter, or indeed the

global oxygen-responsive transcriptional regulator FNR can be

phenotypically complemented by the addition of excess nickel ions

to the medium [12].

Together with FDH-H, which is encoded by the fdhF gene [13],

and FDH-N there is a third molybdenum- and selenium-

containing formate dehydrogenase in E. coli, which is referred to

as FDH-O (for a review see [14]). FDH-O is synthesized at low

levels, preferentially in the presence of oxygen or nitrate [4,15,16].

Selenocysteine insertion in all three FDH enzymes occurs co-

translationally with a sequence of reactions requiring the SelA,

SelB and SelD proteins together with a specific tRNASec encoded

by selC [17]. Post-translational insertion of molybdenum in the

form of the bis-molybdopterin guanidine dinucleotide (bis-MGD)

cofactor [18] into the active site is also required for the activity of

all three FDHs, and consequently hydrogen-evolving FHL

complex activity.

While hydrogenase research in E. coli has focused on K-12

strains, comparatively little is known about hydrogen metabolism

of B strains of E. coli. Research in the 1940’s by Delbrück focused

on E. coli B strains to study T phage function [19]. The commonly

Figure 1. An overview of anaerobic hydrogen metabolism and nitrate respiration metabolism in E. coli. The metabolism of pyruvate
under anaerobic conditions is shown in the upper portion of the Figure. The cellular locations of the three main [NiFe]-hydrogenases, the three
molybdoselenium formate dehydrogenases and the principle nitrate reductase are shown, as are the transport systems for nickel and molybdate. The
metal ion requirement and regulation with respect to the global regulator FNR are also indicated by arrows.
doi:10.1371/journal.pone.0022830.g001
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used BL21(DE3) strain was derived from an early isolate of E. coli

B and was developed for T7 RNA polymerase-based gene

expression after early isolation of a derivative carrying the DE3

prophage in its lambda attachment site [20,21]. The DE3

prophage was introduced by P1 transduction from strain Bc258

and this was isolated as a non-reverting Gal2 derivative of Bc251,

which had been obtained by UV treatment [22]. This UV

treatment resulted in the loss of some genes important to

metalloprotein biosynthesis, as described in this study.

Meanwhile BL21(DE3) has become established worldwide as a

host for recombinant protein over-production. Despite this fact, it

is surprising to note that the biology of BL21(DE3) is poorly

characterized. Clearly, the strain does not have a wildtype

phenotype because it has been shown that BL21(DE3) is unable

to produce hydrogen gas [23], and indeed completely lacks

hydrogenase activity, which we demonstrate in this study. This is

despite BL21(DE3) having an apparently full complement of

hydrogenase structural genes in its genome [24]. The genetic and

metabolic reasons underlying this lack of hydrogen production are

unclear. Here we demonstrate that the reasons for this metabolic

deficiency of BL21(DE3) result from a lack of the global oxygen-

responsive transcription factor FNR [11,12,25,26], as well as

severe deficiences in metalloprotein biosynthesis. This means that

not only hydrogen metabolism but also nitrate respiration is

compromised in the strain. These features have important

implications for the use of BL21(DE3) and its derivatives in

recombinant protein production, particularly for proteins of

unknown function.

Results

BL21(DE3) is devoid of hydrogen metabolism
Only three of the four [NiFe]-hydrogenases (Hyd-1, Hyd-2 and

Hyd-3) in E. coli K-12 strains are synthesized under standard

laboratory conditions [6,27]. Total hydrogenase enzyme activity in

K-12 wildtype strains such as MC4100 or BW25113 can be

readily determined by measuring hydrogen-dependent reduction

of the artificial electron acceptor benzyl viologen (BV) [6,27]. After

anaerobic growth in buffered rich medium with glucose (TGYEP,

pH 6.5) crude extracts derived from either strain had a total

hydrogenase specific activity in the range of 3 U mg of protein21

(Table 1). A crude extract derived from strain DHP-F2 (DhypF),

which is unable to synthesize the HypF carbamoyltransferase

essential for biosynthesis of the [NiFe]-cofactor of all three

enzymes [28], lacked hydrogenase activity. Extracts of BL21(DE3)

grown anaerobically in TGYEP were also devoid of hydrogen-

dependent BV oxidoreductase activity (Table 1).

The activity of the FHL complex can be determined in whole

cells by measuring hydrogen evolution [29]. While the FHL activity

of MC4100 after fermentative growth with glucose attained levels of

28 mU mg of protein21, BL21(DE3) failed to show any FHL

activity, even after supplementation of the growth medium with

formate, which is obligately required for the induction of the FHL

complex [30]. DHP-F2 (DhypF) also lacked FHL activity, as

anticipated and provided a negative control (Table 1).

Bioinformatic analysis of the genes associated with
hydrogen metabolism in the genome of BL21(DE3)

Initially, a total of 86 candidate genes that are known to have

either a direct or indirect influence on hydrogenase activity in E.

coli MC4100 or its sequenced counterpart MG1655 were chosen

for comparison with the corresponding gene products in

BL21(DE3). The deduced amino acid sequences of all 86 genes

were examined to identify amino acid exchanges or deletions.

Silent mutations that did not alter the amino acid sequence were

ignored. Of the 86 candidate proteins examined with direct

relevance to hydrogen metabolism only 42 proteins exhibited

altogether 78 amino acid exchanges (missense mutations in the

corresponding genes) and in 5 instances the corresponding genes

were missing from the genome of BL21(DE3) completely (Table

S1). Of this total carrying amino acid exchanges (or a nonsense

mutation in the case of fnr), CarB, HypF, FNR, NikA, NikE, and

NikD are the only putative candidates that could have a

pleiotropic effect on hydrogenase activity resulting in a hydrog-

enase-negative phenotype.

The activities of Hyd-1 and Hyd-2 in BL21(DE3) can be
restored by nickel ion supplementation

The nik operon codes for a specific ATP-binding cassette (ABC)

transporter comprising a periplasmic binding protein NikA, the

membrane components NikB and NikC, as well as the ATP-

binding components NikD and NikE [31]. Defects in nickel-ion

transport or HypA and HypB function, which are required for

active hydrogenase biosynthesis can be phenotypically suppressed

by addition of high concentrations of nickel ions to the growth

medium [11,32,33] whereby non-specific Ni2+ ion uptake is

mediated by the magnesium transport system [34]. The

membrane components NikB and NikC showed no amino acid

exchanges in BL21(DE3) compared to MG1655; however, the

periplasmic binding protein NikA, as well as the ATP-binding

components NikD and NikE had amino acid exchanges, with

NikE having alterations in a total of six amino acids (see Table S1).

In order to test first of all whether addition of high concentrations

of Ni2+ ions to the growth medium could restore hydrogenase

activity to BL21(DE3) we analysed hydrogen-dependent BV

reduction (henceforth referred to as total hydrogenase activity) in

crude extracts derived from BL21(DE3) grown anaerobically in

the presence of 0.5 mM NiCl2. Only very low total hydrogenase

activity could be determined and no hydrogen-evolving FHL

activity could be measured (Table 1). Analysis of the activities of

Hyd-1 and Hyd-2 after non-denaturing gel-electrophoretic

separation of proteins in crude extracts of BL21(DE3) grown in

the presence or absence of 0.5 mM NiCl2 (Fig. 2) revealed that

while no activity could be visualised in BL21(DE3) grown without

Ni2+ ion supplementation, addition of Ni2+ restored weak activities

corresponding to Hyd-1 and Hyd-2; addition of formate, which

was previously observed to result in increased Hyd-1 activity [6],

had no effect on the activity band pattern (Fig. 2). This result

suggested that nickel transport was indeed affected in BL21(DE3);

however, addition of nickel at high concentrations could

circumvent this phenotypic defect only partially.

To determine whether the mutations in nikA, nikD or nikE were

responsible for the phenotypic defect in Ni2+, plasmids pJW3441,

pJW3444 and pJW3445 (Keio collection; [35]), encoding NikA,

NikD and NikE, respectively, were transformed into BL21(DE3)

and total hydrogenase enzyme activity in crude extracts was

determined (data not shown). None of the plasmids could restore

hydrogenase activity, nor could activity bands corresponding to

Hyd-1 or Hyd-2 be detected after native-PAGE (data not shown).

It could be shown in complementation studies using the

corresponding specific in-frame knockout mutants of nikA, nikD

and nikE in the MG1655 derivative BW25113 (Keio collection;

[35]) that their phenotype was hydrogenase-negative, that addition

of 0.5 mM NiCl2 could restore hydrogenase activity to each

mutant and that introduction of the respective plasmids encoding

the nikA, nikD or nikE genes restored functional Hyd-1 and Hyd-2

either totally or partially (Fig. S1). This result demonstrates that

Metalloenzyme Deficiencies of BL21(DE3)
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the amino acid exchanges alone were not responsible for the

defective nickel transport phenotype.

Despite missense mutations in the respective genes
carbamoylphosphate synthetase and HypF are functional
in BL21(DE3)

CarB is the large subunit of the carbamoylphosphate synthetase

providing carbamoylphosphate as the substrate for the cyanide

ligand in the hydrogenase large subunits [36]. A defect in CarB

function can be phenotypically suppressed by the addition of

citrulline to the medium [36]. Although addition of citrulline did not

restore hydrogenase activity to BL21(DE3) (Fig. 2), the fact that Ni2+

supplementation could partially restore hydrogenase function

indicated that carbamoylphosphate synthetase must be functional

in the bacterium and thus the two amino acid exchanges in CarB

did not prevent enzyme function. Moreover, although addition of

the hypF gene from MC4100 [37] did not restore active Hyd-1 or

Hyd-2 (Fig. 2), by the same argument as brought above, the HypF of

BL21(DE3) must nevertheless be functional.

HypF of BL21(DE3) shows 5 amino acid exchanges compared

to MG1655 and 4 of these are also found in the HypF protein of E.

coli O157:H7 (R51L/Y62H/K214N/S565P); however this protein

retains its function [38]. As Hyd-1 and Hyd-2 activities can be

restored in BL21(DE3) through supplementation of nickel ions

without further addition of plasmid-encoded HypF it can be

assumed that the 5th amino acid exchange (D258E) has no

influence on Hyd activities.

The ability to recover Hyd-2 enzyme activity by adding Ni2+

(see above) also obviated the missense mutations in the hybD and

hybF genes (Table S1) as possible reasons why Hyd-2 was inactive

in BL21(DE3). This was further confirmed by the fact that

introduction of these genes from MG1655 failed to restore Hyd-2

activity to BL21(DE3) extracts (data not shown).

BL21(DE3) is a fnr mutant
Expression of the nik operon is dependent on the global

transcriptional regulator FNR [12]. Furthermore, FNR also

positively regulates the expression of the hyp operon [39,40].

Analysis of the DNA sequence of the fnr gene in BL21(DE3)

revealed a nonsense mutation (CRT transition) at codon 141,

which resulted in an amber (UAG) stop codon [21]. Notably,

many E. coli B strains carry this mutation [21,24]. Western blot

analysis of a crude extract derived from BL21(DE3) confirmed that

full length FNR could not be detected (Fig. 3A).

We isolated a spontaneous fnr mutant (PB1000, Table 1) of

MC4100 that carried a 3550 bp deletion from insH-4 to the fnr

gene and analysed the hydrogenase activity of this mutant. Total

hydrogenase activity in extracts of PB1000 was reduced by .95%

compared with the wildtype MC4100, FHL activity was reduced

Table 1. Total Hydrogenase, hydrogen evolving formate hydrogen lyase activity and formate dehydrogenase-H (FDH-H).

Strain/Condition1
Specific Hydrogenase Activity
in U mg protein21 ± SD

Specific Hydrogen
evolving Activity in
mU mg protein21 ± SD

Specific FDH-H Activity in U
mg protein21 ± SD

MC4100 3.0160.59 28620 0.4260.08

CP971 (DhycAI) 0.1460.08 ,0.01 ,0.01

CP971 (DhycAI)/p31hycA-I 8.1260.40 1961 0.0560.01

DHP-F2 (DhypF) ,0.01 ,0.01 0.0460.01

BL21(DE3) 0.0260.01 (0.00460.003) 0.760.1 (,0.01) ,0.01 (,0.01)

BL21(DE3)/500 mM NiCl2 0.0160.002 ,0.01 ,0.01

BL21(DE3)/15 mM formate ,0.01 ,0.01 ,0.01

BL21(DE3)/500 mM NiCl2/15 mM formate 0.0160.01 (0.0260.01) ,0.01 (362) ,0.01 (,0.01)

BL21(DE3)/pCH21 (fnr+) 0.0560.02 (2.2260.44) 0.260.1 (863) ,0.01 (0.0460.02)

BL21(DE3)/p1fnr 0.0460.003 (2.8460.69) 0.860.8 (762) ,0.01 (0.0760.01)

BL21(DE3)/p10fnr 0.0360.02 (0.0260.01) 0.160.1 (0.360.3) ,0.01 (,0.01)

BL21(DE3)/p13fnr 0.0360.02 (0.0360.02) ,0.01 (0.661) ,0.01 (,0.01)

BL21(DE3)/p31hycA-I ,0.01 0.660.4 ,0.01

BL21(DE3)/p31hycA-I/p1fnr n. d.2 (260.5) n. d.

BL21(DE3)/p7modE 0.0260.01 (0.0560.003) ,0.01 (0.560.6) ,0.01 (,0.01)

BL21(DE3)/p7modE/500 mM NiCl2/15 mM formate 0.0160.003 ,0.01 ,0.01

BL21(DE3)/p7modE/p13fnr 0.0360.003 (1.1660.66) ,0.01 (662) ,0.01 (0.0360.03)

BL21(DE3)/p7modE/p13fnr/500 mM NiCl2/15 mM formate (3.7161.92) (1563) (0.0860.01)

PB1000 0.1360.21 563 ,0.01

PB1000/500 mM NiCl2/15 mM formate 2.7061.06 16611 0.0360.03

PB1000/pCH21 5.4461.73 20611 0.1260.01

PB1000/p1fnr 6.1661.30 3466 0.5060.06

PB1000/p10fnr 0.2960.16 1265 ,0.01

PB1000/p13fnr 2.1561.04 (2.5961.20) 2668 (2162) 0.1160.10 (0.1060.04)

1Cells were grown in TGYEP pH 6.5. Values in parenthesis were obtained when cells were grown in the presence of 1 mM sodium molybdate.
2n. d. – not determined.
doi:10.1371/journal.pone.0022830.t001
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Figure 2. Hydrogenase 1 and 2 activity-staining after native-PAGE. Aliquots (25 mg of protein) of crude extracts derived from MC4100 (wild
type), PB1000 (Dfnr) and BL21(DE3) after anaerobic growth in TGYEP with or without supplementation of 500 mM nickel(II)-chloride (Ni), 15 mM
formate (F) or 0.3 mM citrulline addition of plasmid-coded fnr (p1fnr, pCH21) and hypF (pAF1) were applied to 7.5% (w/v) native-PAGE. On the right
hand the migration positions of Hyd-1 and Hyd-2 are given. The band designated with an asterisk is due to a side-reaction of FDH-O/FDH-N and this
activity is hydrogenase-independent.
doi:10.1371/journal.pone.0022830.g002

Figure 3. Western blot analysis of anaerobic enzymes in BL21(DE3). 25 mg Polypeptides in crude extracts derived from MC4100, PB1000
(Dfnr), BL21(DE3) with and without supplementation of 500 mM nickel(II)-chloride (Ni), 15 mM formate (F), 1 mM sodium-molybdate (MoO) or
addition of plasmid encoded fnr (p1fnr, p10fnr, p13fnr, pCH21) and modE (p7modE) after anaerobic growth in TGYEP, pH 6.5 were separated by 10%
(w/v) SDS-PAGE and transferred to nitrocellulose membranes. The samples were treated with antiserum raised against A: FNR, B: Hyd-2 (the upper
arrows represents precursor and the lower arrow mature form of the Hyd-2 large subunit), C: PflB (the arrows mark the two different migrating forms
typical for active protein after contact with oxygen), D: HycG (the Hyd-3 small subunit). The lane indicating the negative control contains PB1000
(Dfnr), DHP-F2 (DhypF), RM220 (DpflAB) and CP971 (DhycAI), from top to bottom, respectively. The asterisks signify unidentified cross-reacting species.
On the right hand are given the sizes of the respective molecular mass marker (Prestained PageRuler, Fermentas).
doi:10.1371/journal.pone.0022830.g003
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by 80% (Table 1) and the activity bands corresponding to Hyd-1

and Hyd-2 were barely detectable (Fig. 2). Introduction of the fnr

gene on plasmid p1fnr into PB1000 restored total hydrogenase

and FHL activities to wild type levels (Table 1). Transformation of

BL21(DE3) with p1fnr resulted in a total hydrogenase specific

activity of only 0.04 U mg21 (compared with 3 U mg21 for

MC4100), while FHL activity was not restored at all by the

plasmid. Although total hydrogenase activity was low, this activity

nevertheless clearly represented fully active Hyd-1 and Hyd-2

under these growth conditions because activity-stained gels

revealed active Hyd-1 and Hyd-2, which were restored to levels

similar to those observed in K-12 wild type levels by p1fnr (Fig. 2).

Because a nik operon mutation cannot be complemented by

expression of the fnr gene [12] this allowed us to conclude that the

missense mutations in the nikA, nikD and nikE genes of BL21(DE3)

do not affect the function of the respective gene products.

The fnr gene on plasmid pCH21 is derived from MG1655 and

includes the complete fnr regulatory region [41], while the fnr gene

in p1fnr has a foreshortened and incomplete regulatory region

with the consequence that there is 3 to 4-fold less FNR protein in

MC4100 compared with MG1655 [42]. Transformation of

BL21(DE3) with pCH21 also failed to restore hydrogen gas

production or high level hydrogenase activity to the strain

(Table 1). Surprisingly, however, although Hyd-2 enzyme activity

could be visualised in crude extracts of BL21(DE3) transformed

with pCH21 (Fig. 2), Hyd-1 was absent. Transformation of

PB1000 with the same pCH21 restored total hydrogenase activity

to wild type levels (Table 1 and Fig. 2). To ensure that plasmid-

encoded FNR was synthesized in BL21(DE3), crude extracts of the

transformed strain were analysed by Western blotting using anti-

FNR antibodies. Plasmids p1fnr and pCH21 both resulted in high-

level overproduction of the FNR protein (Fig. 3A). It was noted

that the BL21(DE3) cells carrying pCH21 grew more slowly

(m= 0.56 h21) than the plasmid-free strain, or BL21(DE3)

transformed with pBR322 (m= 0.77 h21). In contrast, PB1000

(m= 0.57 h21) grew better when transformed with pCH21

(m= 0.72 h21). This might suggest that, because Hyd-1 synthesis

is optimal in the stationary phase [43,44], lack of induction of hya

operon expression might account for this discrepancy.

Plasmids that had lower expression of the fnr gene compared

with p1fnr or pCH21 were analysed to determine if too much

FNR had a deleterious effect on expression of particular

hydrogenase-related genes. The fnr gene from MC4100 was

cloned without its regulatory region into a medium-copy vector

(pBluescript SK+), delivering p10fnr, or into a low-copy vector

(pACYC184), delivering p13fnr. The level of FNR protein

synthesized in BL21(DE3) transformed with these two plasmids

was similar to the wild type MC4100 or slightly less in the case of

p13fnr (Fig. 3A). Total hydrogenase activity in the BL21(DE3)

strain transformed with either of these plasmids was also very low

and had a similar level of activity as observed with p1fnr or

pCH21 (Table 1). Hyd-1 and Hyd-2 were barely detectable after

activity-staining following native PAGE (data not shown). Thus,

something else was limiting biosynthesis of active hydrogenases in

BL21(DE3) and the effect was not caused by over-expression of fnr.

The presence of mature, processed large subunits of the

hydrogenases can be used as an indicator as to whether the

[NiFe]-cofactor maturation machinery is functional [7]. As

expression of the hyp operon is FNR-dependent [39], we examined

by Western blot analysis with antibodies raised against Hyd-2

whether transformation of BL21(DE3) with all four plasmids

encoding FNR restored processing of the Hyd-2 large subunit

precursor to the strain (Fig. 3B). The result confirmed that the fnr

genes encoded on p10fnr and p13fnr were expressed and that the

amount of FNR clearly did not limit Hyp protein synthesis or

hydrogenase maturation activity because BL21(DE3) transformed

with each plasmid showed clear processing of the Hyd-2 large

subunit precursor.

Lack of FNR and nickel transport does not explain why
BL21(DE3) is devoid of FHL complex activity

The total hydrogenase activity in MC4100 grown under glucose

fermentation conditions is 3.0 U mg21, with the bulk of this

activity being due to Hyd-3 activity, as can be seen from the

activity in extracts of the DhycAI mutant, CP971, which has an

activity of 0.14 U mg21 (Table 1). Hyd-2 activity contributes less

than 5% to the total hydrogenase activity and Hyd-1 activity

contributes below 1% to the total under these conditions. This

suggests that in BL21(DE3) only partial Hyd-1 and Hyd-2

activities were restored in the presence of fnr plasmids and Hyd-

3 was inactive.

Exogenously added formate and nickel can phenotypically

suppress the effect of fnr mutations on Hyd-3 and consequently

FHL activity [6]. This is because FNR regulates PflB synthesis and

consequently in a fnr mutant intracellular formate levels are

reduced [45]. Western blot analysis of PflB levels in extracts of

BL21(DE3) revealed that the protein was significantly reduced

(Fig. 3C). Exogenous formate increased the level of PflB in the cell

extracts and this is presumably due to build up of pyruvate, which

induces focApflB operon expression [46]. All four plasmids

encoding FNR also restored high-level PflB synthesis to

BL21(DE3) (Fig. 3C).

Hydrogen gas production and total hydrogenase activity could

be restored to near wild-type levels in PB1000 (Dfnr) by

supplementation of formate and Ni2+ to the growth medium

(Table 1). In contrast, however, formate and Ni2+ supplementation

alone could not restore Hyd-3 or FHL activity to BL21(DE3)

(Table 1). Taken together, these findings indicate that, although

BL21(DE3) has reduced levels of intracellular formate due to

reduced PflB synthesis, this is not the only reason why an active

FHL complex could not be synthesized.

Five of the hyc genes carry missense mutations (Table S1). To

rule out that these limit Hyd-3 activity we cloned the complete hyc

operon from the genome of MC4100 and introduced this on

plasmid p31hycA-I into BL21(DE3) and determined total

hydrogenase and FHL activities (Table 1). Although p31hycA-I

complemented the DhycA-I mutation in CP971, when transformed

into BL21(DE3) the plasmid failed to restore either Hyd-3 activity

or hydrogen gas production (Table 1). Indeed, simultaneously

introducing the fnr gene on p1fnr also failed to restore either

activity. This result indicates that something else limits develop-

ment of both FHL and Hyd-3 activity in BL21(DE3).

Molybdenum uptake and metabolism are compromised
in BL21(DE3)

As well as the requirement of [NiFe]-cofactor biosynthesis for

hydrogen evolution there is also a necessity for co-translational

selenocysteine incorporation and molybdenum cofactor biosyn-

thesis for the FDH-H component of the FHL complex [47].

Further, the FdhD and FdhE proteins have been proposed to have

chaperone-like functions and they are required for generation of

functional FDH in E. coli [48].

Examination of the genome of BL21(DE3) revealed that five

genes (modABC, modE and modF) are absent. The DE3 prophage

insertion site is located directly in the region of the mod genes and it

has been proposed that the deletion is due to an UV treatment in

another strain and subsequent recombinant transfer by P1
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transduction [21]. The ModABC proteins form the basis of the

ABC transport system for the molybdate anion, while ModE is a

molybdenum-responsive transcriptional regulator that represses

expression of the modABC operon and activates expression of genes

and operons whose products are either components of molyb-

doenzymes or are functional together with molybdoenzymes [49].

Initial experiments were conducted in which excess molybdate

was added to cultures, whereby the molybdate anion can be taken

up non-specifically by the sulphate transport system [50].

Molybdate had no effect on total hydrogenase activity when

added alone or in combination with nickel and formate (Table 1).

Total hydrogenase activity was, however, restored to levels

approximating those of wild type K-12 strains when molybdate

was added to BL21(DE3) transformed with pCH21 or p1fnr.

These same cells also produced hydrogen at a level approximately

25% of the K-12 wildtype (Table 1).

Western Blot analyses revealed that although low amounts of HycG,

the small subunit of Hyd-3, were detected in extracts of BL21(DE3)

without addition of metal ions, HycG levels were significantly increased

in BL21(DE3) transformed with p1fnr, but only when 1 mM

molybdate was included in the growth medium (Fig. 3D).

Activity of the molybdenum cofactor-dependent FDH-H enzyme

was partially recovered after growth of BL21(DE3) transformed with

pCH21 or p1fnr, but only when 1 mM molybdate was included in

the growth medium, which is consistent with the requirement of

molybdate for active enzyme synthesis (Table 1). Nevertheless, this

activity attained levels of at best only 10% of the activity determined

in K-12 strains. This suggests that the amount of active FDH-H limits

the activity of the H2-evolving FHL complex. Introduction of the fdhF

gene on a plasmid had no effect on the FDH-H enzyme activity (data

not shown), suggesting that maturation of the enzyme is what hinders

a higher activity being attained.

ModE is a Mo-dependent transcriptional activator of genes and

operons encoding many molybdenum cofactor-dependent en-

zymes [51–53]. Introduction of the modE gene on a multicopy

plasmid into BL21(DE3) already containing the fnr gene on the

low-copy number plasmid p13fnr, together with the addition of

molybdate to the growth medium restored total hydrogenase

activity to 30% of the K-12 wildtype and FHL activity to 20% of

the K-12 wildtype level. This result demonstrates clearly that

ModE regulates Hyd-3 biosynthesis [52] because omission of the

p7modE plasmid resulted in recovery of neither high hydrogenase

activity nor H2 production (Table 1). Finally, supplementation of

the growth medium of BL21(DE3) transformed with p7modE and

p13fnr with molybdate, nickel and formate resulted in H2

production that was roughly 50% that of the K-12 strains

(Table 1). Moreover, FDH-H polypeptide could be detected in

extracts of this strain, indicating that selenocysteine incorporation

[54] was functional in BL21(DE3); further addition of selenite or

selenate to the growth medium failed to increase formate

dehydrogenase enzyme activity further, suggesting that transport

of the anion was not limiting (data not shown).

BL21(DE3) derivatives from other sources also have a
hydrogenase-negative phenotype

To ensure that the phenotypes identified here to be associated

with BL21(DE3) are not restricted to a strain from a particular

source, we analyzed the ability of two BL21(DE3) derivatives from

other sources for their ability to generate hydrogen. The Rosetta

strain of BL21(DE3) (Novagen) has optimized codon usage for

heterologous protein overproduction, while C41(DE3) was isolated

specifically for the recombinant overproduction of membrane

proteins [55] and is a derivative of the BL21(DE3) strain originally

used by Studier and Moffatt [14]. Both BL21(DE3) were

transformed with plasmid pCH21 carrying the fnr gene and were

grown in the presence and absence of 1 mM molybdate.

Hydrogen was only produced by the strains when the additional

copies of the fnr gene were introduced and molybdate was present

in the growth medium (Table S2), indicating that other

BL21(DE3) derivatives share the metabolic defects identified for

BL21(DE3) obtained from Novagen.

BL21(DE3) cannot respire with nitrate
Three further bis-MGD-containing enzymes present in E. coli

and which influence anaerobic growth are nitrate reductase

(NAR), and FDH-N and FDH-O, the latter two are also

selenoenzymes [14]. FDH-N and NAR are inducible in the

presence of nitrate and allow the bacterium to respire anaerobi-

cally with nitrate as electron acceptor [56]. FDH-O is phyloge-

netically related to FDH-N; however, the enzyme is synthesized at

a low level both aerobically as well an anaerobically in the

presence of nitrate [57,58].

Crude extracts of BL21(DE3) grown anaerobically in rich

medium in the presence of nitrate exhibited neither FDH-N nor

NAR enzyme activity (Table 2). In contrast, extracts derived from

the K-12 strain MC4100 grown under the same conditions had

high activities of both enzymes. After transformation of

BL21(DE3) with pCH21 or p1fnr neither enzyme activity could

be detected. Addition of sodium molybdate to these cultures

restored NAR activity but, surprisingly, not the activity of FDH-N

(Table 2). Western blots revealed that the large subunit of the

NAR enzyme (NarG) was only detected in the presence of

multicopy fnr and molybdate (Fig. 4A).

A low activity of the nitrate-inducible FDH-N, attaining levels of

10% of K-12 strains, was only measurable in the presence of

plasmids encoding FNR and ModE and when molybdate was

added to the growth medium (Table 2). FDH-N activity could not

be restored to this strain by introducing functional selB, selD, fdhD

or fdhE genes on plasmids (Table 2 and data not shown). No

condition could be identified that resulted in high FDH-N enzyme

activity, which clearly would limit growth of BL21(DE3) by nitrate

respiration using formate as electron donor. Although a FDH-N

activity of 10% of the K-12 wild MC4100 could be recorded when

the fnr and modE genes were introduced into BL21(DE3) and

molybdate was added to the growth medium (Table 2), the large

subunit of FDH-N was below the threshold of detection by

Western blotting (Fig. 4B).

The activity of FDH-O can be visualized after native-PAGE using

formate as a substrate and nitroblue tetrazolium (NBT) as an artificial

electron acceptor [59]. No activity of this enzyme could be detected in

extracts of BL21(DE3) grown anaerobically (Fig. 5). Bioinformatic

analysis of the genes encoding fdoGHI revealed that no missense

mutations were present (Table S1), indicating that this could not be

the reason for the lack of enzyme activity. However, supplementation

of the growth medium with molybdate restored FDH-O enzyme

activity. Addition of the fnr gene into BL21(DE3) on a plasmid had no

effect, which is in accord with the fdoGHI operon not being FNR-

dependent [15]. The restoration of FDH-O activity also confirmed

that the sel and fdhD and fdhE gene products of BL21(DE3) have

sufficient activity to allow synthesis of active FDH-O.

Discussion

Although BL21(DE3) is an fnr mutant this is not the sole

explanation for complete lack of hydrogen metabolism in the

strain. For example, while the spontaneously isolated fnr deletion

mutant, PB1000, of the K-12 strain MC4100 described in this

study has significantly reduced hydrogenase activity, nevertheless,
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a low activity was still measurable. In contrast, no hydrogenase

activity whatsoever in extracts or whole cells of BL21(DE3) could

be detected, despite a full complement of structural genes being

present in the genome [24]. Analysis of the deduced structural

gene products revealed that, while Hyd-1 lacks amino acid

exchanges, components of Hyd-2 carry some substitutions. In

particular, however, a considerably higher number of mutations in

Hyd-3 components could be identified. Nevertheless, all of these

amino acid substitutions could be ruled out as the reasons for the

lack of hydrogenase activity. Rather, in the cases of Hyd-1 and

Hyd-2, the lack of FNR caused restricted nickel import with the

consequence that the biosynthesis of the active site of these

enzymes could not be completed. In the case of Hyd-3 neither

nickel nor FNR augmentation was enough to restore enzyme

activity. This proved to be, at least in part, due to impaired

molybdenum transport activity as well as due to the lack of the

modE gene. ModE is a molybdenum-responsive transcriptional

regulator that was identified to be required, along with FHLA and

formate, to allow maximal expression of the fdhF gene and the hyc

operon [52,60]. The observed partial dependence on molybdate

and ModE for FHL biosynthesis could be verified in this study.

Nevertheless, although Hyd-3 activity could be restored to levels

equivalent to K-12 wildtype strains grown under the same

conditions, it was not possible to restore the hydrogen evolution

activity of the FHL complex to wildtype levels. This proved to be

due to a limitation in the activity of FDH-H, which could only be

recovered to maximally 10–15% of that measured for MC4100.

Analysis of FDH-N, which, along with nitrate reductase, is

induced in the presence of nitrate and allows E. coli to grow by

nitrate respiration, was also completely inactive in extracts of

Table 2. Specific activities of Nitrate reductase and Formate dehydrogenase N (FDH-N).

Strain/Condition1
Specific Nitrate reductase activity in U mg
protein21 ± standard deviation

Specific FDH-N Activity in U mg protein21 ±
standard deviation

MC4100 0.6060.28 0.3960.12

BL21(DE3) 0.0160.02 (,0.01) ,0.01 (,0.01)

BL21(DE3)/pCH21 (fnr+) ,0.01 (0.5460.17) ,0.01 (,0.01)

BL21(DE3)/p1fnr 0.0260.02 (0.4060.23) ,0.01 (,0.01)

BL21(DE3)/p10fnr ,0.01 (0.0860.08) ,0.01 (0.0160.01)

BL21(DE3)/p13fnr ,0.01 (0.1160.08) ,0.01 (,0.01)

BL21(DE3)/p7modE ,0.01 (,0.01) ,0.01 (0.0560.04)

BL21(DE3)/p7modE/p13fnr ,0.01 (,0.01) ,0.01 (0.0460.03)

BL21(DE3)/pJW3563 (selB+)/p1fnr 0.0260.01 (0.1160.24) ,0.01 (0.0160.002)

BL21(DE3)/pJW1753 (selD+)/p1fnr 0.0360.01 (0.1360.12) ,0.01 (,0.01)

PB1000 0.0160.01 0.0460.02

PB1000/pCH21 0.5960.15 0.1960.03

PB1000/p1fnr 0.4760.15 0.2460.05

PB1000/p10fnr 0.0260.02 0.1660.09

PB1000/p13fnr 0.1660.06 (0.1360.01) 0.1560.08 (0.1660.06)

1Cells were grown in TGYEP pH 6.5 supplemented with 100 mM KNO3. Values in parenthesis were obtained when cells were grown in the presence of 1 mM sodium
molybdate.

doi:10.1371/journal.pone.0022830.t002

Figure 4. Western blot analysis of the large subunits of NAR and FDH-N. Crude extracts (25 mg protein) of MC4100, FM460 (DselC), PB1000
and BL21(DE3) bearing plasmids p13fnr (fnr+), pCH21 (fnr+), p7modE (modE+) or supplemented with 500 mM nickel(II)-chloride (Ni), 15 mM formate (F)
or 1 mM molybdate (MoO), when indicated were separated on 10% (w/v) SDS-PAGE after anaerobic growth in TGYEP, pH 6.5 with 100 mM
potassium-nitrate. and treated with antiserum raised against A: Nar or B: FdnG.
doi:10.1371/journal.pone.0022830.g004
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BL21(DE3) unless a combination of FNR, ModE and molybdate

was supplied to the strain. Nevertheless, like FDH-H, which was

also induced under these conditions, the activity reached

maximally 15% of K-12 wild type. That nitrate reductase activity

was induced to K-12 wildtype levels by the introduction of fnr on a

plasmid, along with supplementation of the growth medium with

molybdate, indicated that the limitation in the activities of both

FDH selenomolybdoenzymes was not in bis-MGD biosynthesis or

insertion or in gene expression of the corresponding structural

genes. Moreover, the fact that the third FDH-O could be actively

synthesized simply by adding only molybdate confirmed that

selenocysteine biosynthesis and insertion is not compromised in

BL21(DE3); it should be noted, however, that the amounts of the

FDH-O enzyme in MC4100 extracts are considerably lower than

those of the other two FDHs [58,61]. Biosynthesis of both FDH-H

and FDH-N requires the private chaperones FdhD and FdhE

[48,62,63]. Although the corresponding genes are present in the

genome of BL21(DE3) both have single amino acid deletions,

which could influence the efficiency with which both enzymes

function. Additionally, both enzymes are iron-sulfur proteins and

interact with components of the iron-sulfur biosynthetic machinery

[64]. It is therefore theoretically possible that insufficient supply of

iron could compromise the activities of these proteins. Notably,

however, the gene encoding the IscR regulator and the iron-sulfur

cluster insertion protein IscA do not carry any mutations when

compared with their MG1655 counterparts (Table S1). Neverthe-

less, a further in-depth study will be required to determine whether

the iron-sulfur biogenesis machinery is fully functional in

BL21(DE3).

As well as having defects in nickel enzyme biosynthesis through

the lack of FNR, molybdenum acquisition is also compromised, as

is cobalt uptake through the nonsense mutation in the btuB gene

[21]. Clearly, the extent to which maturation of other metallo-

proteins with further metal requirements is compromised in

BL21(DE3) was outside the scope of this study. Nevertheless, this is

an important issue to address in future metalloproteomic analyses

using BL21(DE3). Moreover, it should be emphasized that all

derivatives of the BL21(DE3) strain analyzed in this study lack a

functional fnr gene, are deleted in the genes encoding molybdenum

transport function and as we could demonstrate here have a

similar hydrogenase-negative phenotype to the Novogen strain of

BL21(DE3).

The results of metalloproteomic studies have estimated that at

least 40% of all proteins in all organisms are metalloproteins [65].

This is likely to be a conservative estimate because through the

development of new high-throughput tandem mass and induc-

tively coupled plasma mass spectrometry techniques combined

with classical protein purification new, previously undiscovered

metalloenzymes, (including new nickel- and molybdenum-con-

taining enzymes) with as yet unknown functions, are being

discovered [66]. The inevitable transfer of the genes encoding

these novel metalloproteins into recombinant expression hosts,

such as BL21(DE3), for large-scale protein production necessitates

an appreciation of the limits of an expression system, particularly

when trying to identify new protein functions with previously

uncharacterized metal ion cofactors.

The influence of the fnr mutation on growth and metabolism of

BL21(DE3) also should not be underestimated. Large-scale

transcriptome studies have shown that FNR controls, directly or

indirectly, the expression of at least one third of all the genes in the

E. coli K-12 genome and this includes a large contingent of

‘aerobic’ genes [67,68]. Moreover, although BL21(DE3) is usually

cultured for recombinant protein production in rich medium in

the presence of air, it is very difficult, even in shake flasks, to supply

E. coli with sufficient oxygen when growing in rich medium to

maintain aerobiosis and cultures inevitably become oxygen-limited

very quickly [69].

E. coli B was isolated, probably as a commensal of the human

intestinal tract, in the early part of the 20th century [22]. Hydrogen

generation by commensal or pathogenic strains could pose an

evolutionary disadvantage in the host. For example, neither

Yersinia pestis, Shigella flexneri nor S. dysenteriae produce hydrogen gas

[70]; all three are pathogens. Moreover, the human pathogenic

strain Salmonella enterica does not release hydrogen gas, because the

uptake hydrogenase is extremely efficient [71]. On the other hand,

hydrogen oxidation possibly provides a growth advantage for

pathogenic bacteria. It has been shown for Helicobacter pylori that in

the presence of hydrogen, growth and colonization of the stomach

was improved [72] while Campylobacter spp. are also able to oxidize

hydrogen [73]. E. coli strain BL21(DE3) is not listed as a

pathogenic strain; however, being closely related to pathogenic

strains like O157:H7 it is not surprising that evolutionary

hydrogen gas production was perhaps counter-selected as can be

deduced from the accumulation of amino acid exchanges within

the FHL complex. The loss of FNR apparently occurred before E.

coli B strains entered the laboratory [22]. We noted that when the

fnr gene was reintroduced into BL21(DE3) anaerobic growth

slowed, which contrasts with what is normally observed with K-12

strains [74]. The reasons for the better growth of BL21(DE3)

lacking FNR are intriguing and worthy of further elucidation. The

recent demonstration [75] that synthesis of the other global redox-

sensing regulator ArcA [76][22] is possibly limiting in BL21(DE3)

might also impact significantly on these metabolic deficiences.

Methods

Strains and growth conditions
All strains and plasmids used in this study are listed in Table 3.

Aerobic growth was carried out in LB medium [77] in shaking

cultures at 37uC. For growth on agar plates media were solidified

by inclusion of 1.5% (w/v) agar. For qualitative hydrogen gas

production 10 ml of LB medium with 0.8% (w/v) glucose with

Durham tubes were used as described [78]. Anaerobic growths to

determine hydrogenase activity were done in 100 ml of TGYEP,

Figure 5. The activity of FDH-O in BL21(DE3) is restored with
high concentrations of molybdate. Crude extracts (25 mg of
protein) of the various strains indicated were separated in non-
denaturing PAGE and stained specifically for FDH-O activity as
described in the methods section. The arrow indicates the position of
the active FDH-O enzyme.
doi:10.1371/journal.pone.0022830.g005
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pH 6.5 as described [79] and for growth curves the optical density

at 600 nm was measured in a NOVOStar plate-reader (BMG

Labtech, Germany) in sealed 96-well microtiter plates at 37uC.

Anaerobic growth in microtiter plates was verified by native-

PAGE with subsequent staining for hydrogenase activity [27].

When needed, kanamycin, chloramphenicol or ampicillin was

added to the medium to final concentrations of 50, 12.5 and

100 mg ml21, respectively. Where indicated, addition of nickel(II)-

chloride was done to a final concentration of 500 mM, of sodium

molybdate (MoO4
22) to 1 mM, of formate to 15 mM and of

KNO3 to 100 mM.

Genetic manipulations and plasmid construction
Transformation of plasmids and recombinant DNA work was

done as described [80]. Construction of the reference strain CP938

(BW25113 DhycA-I) was done as described in [81] with the strain

BW25113 carrying plasmid pKD46. PCR with Phusion DNA

polymerase (Finnzymes, Germany) was conducted using the

chloramphenicol resistance cassette from plasmid pKD4 as

template and the oligonucleotides hycA_59 59-GCT TAA AGC

TGG CAT CTC TGT TAA ACG GGT AAC CTG ACA CCA

TGG TCC ATA TGA ATA TCC TCC-39 and hycI_39 59-CCC ATC

AAG AAC ATC CCT GTC CTG ATT CCT TAA TGA AAA

AGC GAT TGT GTA GGC TGG AGC T-39 (Metabion, Germany).

The replacement of the hyc operon with the chloramphenicol-

resistance cassette was verified by PCR amplification with

oligonucleotides outside of the operon (hyp_K 59-CTC GGA

TCC TGT CAC CAT GAC ACT GTG GA-39 and hycI_K 59-

CAG CGC ATC GGG CAA TTT AG-39). The hyc-operon

deletion allele was then transduced by phage P1kc transduction

[77] into MC4100 resulting in strain CP971.

Three different plasmids containing the fnr gene from MC4100

were isolated or constructed for complementation of the fnr

mutations in PB1000 and BL21(DE3). The fnr gene present on

pCH21 [41] was also used for complementation analyses. Plasmid

p1fnr was isolated from a gene library derived from MC4100

genomic DNA [82] by complementing the fnr mutation in PB1000

and screening for restoration of hydrogen-dependent reduction of

benzyl viologen activity [83]. The DNA insert in plasmid p1fnr

encompassed the insH-4, ynaJ, uspE and fnr genes (4.3 kb insert).

Amplification of the fnr gene from MC4100 genomic DNA was

done with Phusion DNA polymerase and oligonucleotides

Table 3. Strains and plasmids used in this study.

Strains Genotype Reference

MC4100 F- araD139 D(argF-lac)U169 ptsF25 deoC1 relA1 flbB5301 rspL150- [89]

DHP-F2 MC4100 DhypF [28]

JW1753 BW25113 DselD National BioResource Project (NBRP) – E. coli at
National Institute of Genetics (NIG)

JW3563 BW25113 DselB NBRP-E.coli at NIG

BL21(DE3) F2 ompT gal dcm lon hsdSB(rB
2 mB

2) l(DE3 [lacI lacUV5-T7 gene 1 ind1 sam7 nin5]) Novagen, USA

Rosetta(DE3) pLysS F2 ompT hsdSB (rB
2 mB

2) gal dcm l(DE3 [lacI lacUV5-T7 gene 1 ind1 sam7 nin5])
pLysSRARE

Novagen, USA

C41(DE3) F2 ompT gal dcm hsdSB (rB
2 mB

2) l(DE3), Like BL21(DE3) but with an
uncharacterized mutation affecting membrane protein synthesis

[55]

CP938 BW25113 DhycA-I::Kan This work

CP971 MC4100 DhycA-I::Kan This work

PB1000 MC4100 DpurT DpurU DinsH4-fnr This work

FM460 MC4100 D(selC)400::Kan [58]

RM220 MC4100 DpflB-pflA [90]

Plasmids

pAF1 CmR, hypF [37]

pJW3563 ASKA Clone(-) selB [35]

pJW1753 ASKA Clone(-) selD [35]

pJW3441 ASKA Clone(-) nikA [35]

pJW2444 ASKA Clone(-) nikD [35]

pJW3445 ASKA Clone(-) nikE [35]

pCH21 ApR, CmR, fnr [41]

pBR322 cloning vector [91]

p1fnr genomic E. coli SauIIIA fragments in pBR322, containing fnr [37], This work

p10fnr pBluescript SK(+) containing fnr in HindIII and BamHI site; AmpR This work

p13fnr pACYC184 containing fnr in HindIII and BamHI site; CmR This work

pACYCM pACYC184 with A1845T exchange in tetA; CmR This work

p31hycAI 8365 bp MluI insert from hycAI into pACYCM; withershins tetA; CmR This work

p7modE pBluescript SK(+) containing modE in BamHI and EcoRI site; AmpR This work

p2modE pACYC184 containing modE from p7modE in BamHI and EcoRV site; CmR This work

doi:10.1371/journal.pone.0022830.t003
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Fnr_HindIII_FW 59-GTG AAG CTT ATG ATC CCG GAA AAG

CGA ATT A-39 and Fnr_BamHI_RW 59-GTG GGA TCC TCA

GGC AAC GTT ACG CGT ATG-39. The resulting 765 bp DNA

fragment was digested with HindIII and BanHI and ligated into

pre-digested pBluescript SK(+) and pACYC184 vectors resulting in

plasmids p10fnr and p13fnr, respectively. The cloning of the modE

gene from MC4100 was performed in a similar manner except that

the oligonucleotides modE_FW_BamHI 59-CGC GGA TCC ATG

CAG GCC GAA ATC CTT C-39 and modE_RW_EcoRI 59-CGC

GAA TTC TTA GCA CAG CGT GGC GAT AAT C-39 were used.

The resulting 807 bp DNA fragment was digested with BamHI and

EcoRI and ligated into BamHI-HindIII-digested pBluescript SK(+)

resulting in p7modeE. The modE gene was subcloned into

pACYC184 via BamHI and EcoRV digestion resulting in the

plasmid p2modE. The DNA sequences of the cloned genes were

verified (Seqlab). The cloning of the hycA-I operon was done by

direct digestion of genomic DNA from strain MC4100 with MluI,

which resulted in an approximate 8500 bp DNA fragment that was

excised from an agarose gel and ligated into a modified pACYC184

vector (pACYCM). To generate pACYCM, the tetA gene of

pACYC184 was modified to include a MluI restriction site by

exchanging A1845T with the oligonucleotides pACY-

C184_A1845T_FW 59-CTA TCG ACT ACG CGT TCA TGG

CGA CCA CAC-39 and pACYC184_A1845T_RW 59-GTG TGG

TCG CCA TGA ACG CGT AGT CGA TAG-39 using the

QuickChange site-directed mutagenesis procedure (Stratagene).

The orientation of the insert in p31hycA-I with respect to the tetA

gene was verified by PCR and partial DNA sequence analysis. The

functionality of the insert was tested by transforming p31hycA-I into

strain CP971 (DhycA-I), which restored hydrogen gas production.

Determination of enzyme activities
Dye overlay methods for colony screening were applied as has

been described for formate dehydrogenase activity [83] with

0.5 mM benzyl viologen and a hydrogen atmosphere for

hydrogenase activity or 2.5 mM benzyl viologen and 250 mM

formate for formate dehydrogenase activity after anaerobic growth

on agar plates in GasPak anaerobic jars (Oxoid, UK).

Anaerobic cultures were harvested at an OD600 nm of approx-

imately 0.8. Cells from cultures were harvested by centrifugation at

40006g for 10 min at 4uC. The cell pellet was resuspended in 1%

(v/v) of the culture volume of 50 mM MOPS buffer pH 7.0 and

lysed on ice by sonication (30 W power for 5 min with 0.5 s pulses).

Unbroken cells and cell debris were removed by centrifugation for

15 min at 10,0006 g and 4uC and the supernatant was carefully

decanted and used as the crude cell extract. Total enzyme activities

were measured using 1 cm path-length anaerobic cuvettes in an

Uvicon 900 dual-wavelength spectrophotometer according to [27]

except that the buffer used was 50 mM MOPS buffer, pH 7.0 with

4 mM benzyl viologen. To determine hydrogenase activity the gas

phase of the cuvettes was replaced with 100% hydrogen gas and the

detection wavelength used was 578 nm and an EM, 578 value of

8,600 M21 cm21 was assumed for reduced benzyl viologen.

Formate dehydrogenase H (FDH-H) activity was measured under

the same conditions except that the cuvettes were flushed with

nitrogen. The reaction was started by the addition 30 mM sodium

formate. Nitrate reductase (NAR) enzyme activity was measured

using 0.4 mM benzyl viologen reduced to an OD600 of 2 with

freshly prepared 10 mM sodium dithionite solution. The reaction

was started by the addition of 9 mM sodium nitrate as described

[84] with an EM,600 nm value of 7,400 M21 cm21 assumed for

reduced benzyl viologen. Formate dehydrogenase N (FDH-N)

activity was measured using final concentrations of 75 mM 2,6-

dichlorophenolindophenol (DCPIP) and 288 mM phenazine meth-

osulfate (PMS) and the reaction was started by the addition of

40 mM formate [84]. An EM, 600 nm of 20,000 M21 cm21 for

oxidised DCPIP was assumed. The specific activity of the FHL

complex, measured as hydrogen evolution, was assayed in whole

cells as described [29]. One unit of activity was defined as the

oxidation of 1 mmol of the respective substrate per min. All activities

were determined from 3 independent cultures. Protein concentra-

tion was determined [85] with bovine serum albumin as standard.

Polyacrylamide gel electrophoresis and in-gel
hydrogenase activity-staining

For Western blot analysis, aliquots of 50 mg protein from crude

extracts were separated in 10 or 12.5% (w/v) SDS-polyacrylamide

gels (SDS-PAGE) [86] and transferred to nitrocellulose mem-

branes as described [87]. Antibodies raised against FNR (1:3000; a

kind gift from G. Unden, Mainz, Germany), PflB (1:3000), Hyd-2

(1:20,000; a kind gift of F. Sargent, Dundee, Scotland), HycG

(1:3000; [88]), NAR (1:3000) and FDH-N (1:3000) were used.

Secondary antibody conjugated to horseradish peroxidase was

obtained from Bio-Rad. Visualisation was done by the enhanced

chemiluminescent reaction (Stratagene). Detection of hydrogenase

enzyme activity after non-denaturing PAGE (native-PAGE) was

performed as described [27]. Gels for hydrogenase activity-

staining were loaded with 25 mg protein per lane. In-gel activity

of FDH-O was determined using 50 mM sodium formate and

978 mM nitroblue tetrazolium (NBT) as described [59].

Bioinformatic analysis of BL21(DE3) and MG1655 genome
The global alignment of the analysed gene products against all

translated potential open reading frames (ORF) in BL21(DE3) was

based on an ad hoc implementation of the Needleman-Wunsch

algorithm. The scoring function used in this implementation was

chosen in such a way that it resulted in a similarity score being equal

to the length of the protein in MG1655, if the translated potential

ORF in BL21(DE3) matched the protein exactly. This indicated the

existence of the respective gene product in BL21(DE3). If for a given

protein in MG1655 no exact match was detected in any translated

potential ORF in BL21(DE3), the maximal similarity score out of all

calculated global alignments was chosen.

Supporting Information

Figure S1 Partial complementation of nickel transport-
and hydrogenase maturation-defective mutants. Shown is

an activity-stained gel after non-denaturing PAGE analysis of

extracts derived from the indicated strains, which were grown

anaerobically as described in the methods section of the main text.

The locations of Hyd-1 and Hyd-2 are indicated as is a hydrogen-

independent activity band (*) frequently observed under these

growth conditions. D, original mutant without addition; Ni,

growth in the presence of 0.5 mM NiCl2; growth of the mutant

after transformation with a plasmid carrying the gene that is

deleted from the chromosome in the respective mutant (See

Table 3 of main text). Strains JW3441 (nikA), JW2444 (nikD),

JW3445 (nikE), JW2961 (hybD) and JW5493 (hybF) were described

in [35].

(TIF)

Table S1 Amino acid exchanges in BL21(DE3) gene
products compared to MG1655 with a function in
hydrogen metabolism. * see [92]

(DOCX)

Table S2 Phenotypic analysis of hydrogen metabolism
in different of BL21(DE3) derivatives. 1 Cells were grown in
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TGYEP pH 6.5. Values in parenthesis were obtained after growth

of cells in the presence of 1 mM sodium molybdate. 2 The mean

and standard deviation of three independent experiments are

shown. 3 Gas production was measured qualitatively with inverted

Durham tubes.

(DOCX)
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32. Hube M, Blokesch M, Böck A (2002) Network of hydrogenase maturation in
Escherichia coli: role of accessory proteins HypA and HybF. J Bacteriol 184:

3879–3885.

33. Waugh R, Boxer D (1986) Pleiotropic hydrogenase mutants of Escherichia coli

K12: growth in the presence of nickel can restore hydrogenase activity.

Biochimie 68: 157–166.

34. Hausinger RP (1987) Nickel utilization by microorganisms. Microbiol Rev 51:

22–42.

35. Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, et al.
(2005) Complete set of ORF clones of Escherichia coli ASKA library (a complete

set of E. coli K-12 ORF archive): unique resources for biological research. DNA
Res 12: 291–299.
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