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Abstract

One of the two X chromosomes in female mammalian cells is subject to inactivation (XCI) initiated by the Xist gene. In this
study, we examined in rodents (voles and rat) the conservation of the microsatellite region DXPas34, the Tsix gene
(antisense counterpart of Xist), and enhancer Xite that have been shown to flank Xist and regulate XCI in mouse. We have
found that mouse regions of the Tsix gene major promoter and minisatellite repeat DXPas34 are conserved among rodents.
We have also shown that in voles and rat the region homologous to the mouse Tsix major promoter, initiates antisense to
Xist transcription and terminates around the Xist gene start site as is observed with mouse Tsix. A conservation of Tsix
expression pattern in voles, rat and mice suggests a crucial role of the antisense transcription in regulation of Xist and XIC in
rodents. Most surprisingly, we have found that voles lack the regions homologous to the regulatory element Xite, which is
instead replaced with the Slc7a3 gene that is unassociated with the X-inactivation centre in any other eutherians studied.
Furthermore, we have not identified any transcription that could have the same functions as murine Xite in voles. Overall,
our data show that not all the functional elements surrounding Xist in mice are well conserved even within rodents, thereby
suggesting that the regulation of XCI may be at least partially taxon-specific.
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Introduction

X chromosome inactivation (XCI) is a developmentally

regulated process, which results in heterochromatization and

transcriptional silencing of one of the two X chromosomes in

eutherian females [1]. Imprinted XCI occurs on the paternal X

chromosome (Xp) in the preimplantation embryo of some

eutherians (for example, rodents) and is further maintained in

the placenta [2,3]. Random XCI takes place on either the

maternal or paternal X chromosomes after Xp is reactivated in the

cells giving rise to the embryo proper.

A complex X-linked locus termed the X-inactivation centre

(Xic) governs both imprinted and random XCI (reviewed in [4]). It

has been shown that the initiation of XCI and propagation of

silencing are mainly provided by the Xist gene which produces a

17 kb nuclear RNA associated with the inactive X chromosome

[5–8]. This is the only functional element of the Xic that has been

identified in all eutherians studied [9–11]. The studies of the Xic in

mice have detected multiple elements in surrounding Xist with

roles at different stages of XCI. Two non-coding nuclear RNA

genes Enox (Jpx) and Ftx are localized 59 to Xist [12,13]. Both genes

are positive regulators of Xist [14,15]. The microsatellite region

DXPas34, the Tsix gene (the antisense counterpart to Xist),

regulatory element Xite, and a 37 kb bipartite counting element

have been mapped 39 to Xist (reviewed in [16,17]). As is

demonstrated, these elements in mice regulate Xist expression

during imprinted and random XCIs and are involved in the

mechanisms underlying the counting of X chromosome number

per diploid set of autosomes and the choice of the X chromosome

to be inactivated during random XCI. However, these regulatory

elements have not been definitely identified in other eutherians.

In this study, we intended to find any conserved elements

surrounding Xist in rodents (mouse, rat, and common voles).

Mouse and rat represent Muridae rodents. These two species

diverged from a common ancestor 2 million years ago [18,19].

Voles are Arvicolidae rodents, which diverged from Muridae

lineage 15–25 million years ago. We have earlier identified and

described the nucleotide sequences of Xist in four common vole

species [20]. In this work, we have extended our analysis of vole

Xic further downstream of Xist and compared the region 39 to Xist

in vole, mouse, and rat. We have also determined all transcription

upstream, downstream, and across Xist in vole, as such

transcription has been suggested to regulate Xist expression and

be involved in counting and choice function of Xic [21].
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We have found that the vole sequences downstream of Xist have

homology to the minisatellite DXPas34 region and the Tsix major

promoter of mouse Xic. We have demonstrated that this putative

Tsix promoter identified in voles is a site of origin for transcription

antisense to Xist, displaying a very similar expression pattern to

mouse Tsix. Conservation of the Tsix major promoter sequences

and the pattern of Tsix expression between vole, mouse and rat

suggest a crucial role for antisense transcription in the regulation of

Xist expression and XIC in rodents. However, we have found that

the region containing the Tsix minor promoter and the regulatory

element Xite in mice is replaced with the Slc7a3 gene and its

surrounding sequence in voles. This allows us to suggest that both

the nucleotide sequences of these elements and the transcription

associated with them are not absolutely necessary for XCI even in

rodents.

Results

Comparative Study of the Sequences 39 to Xist in Voles,
Mouse and Rat

We have earlier identified and described the nucleotide

sequences of Xist in four common vole species [20]. In this study,

we have extended our analysis further downstream of Xist, as it is

known that this region in mouse comprises the DXPas34, Tsix, and

Xite regulatory elements, which act at different steps of XCI

(reviewed in [16,17]). Several clones were isolated from phage

genomic libraries for each vole species, and the sequence contig

extending over 24 kb downstream of the vole Xist built (Fig. 1).

Comparative sequence analysis shows that sequences 39 to Xist of

the four vole species display an overall similarity.

Then we compared the mouse and rat Xic sequences 39 to Xist up

to the Tsx gene from the UCSC Genome Bioinformatics database

and found that this region of the two rodent species displayed a high

similarity. In the rat sequence, we have identified all the regulatory

elements mapped in the mouse Xic region (Fig. S2).

Comparison of the vole sequence 39 to Xist with the corres-

ponding mouse and rat regions detected homology to the mouse

minisatellite DXPas34 region, the major promoter of mouse Tsix,

and some sequences surrounding these elements (Fig. 1, Fig. S3).

We have not found any significant homology to the mouse minor

Tsix promoter and the associated exon or Xite within the vole

region studied. Surprisingly, we located the vole ortholog of the

mouse Slc7a3 gene in close proximity (5 kb) to the putative vole

Tsix major promoter (Fig. 1, Fig. S3). Then we examined in more

detail all the similarities and differences found in the region 39 to

Xist between vole and two other rodent species.

DXPas34
DXPas34 in mice has been described as a block of minisatellite

repeats with a monomer of 34 bp [22]. The repeats are CpG-rich,

and each monomer contains a binding site for the CTCF protein,

known to be involved in XCI regulation [23–25]. However, our

more comprehensive analysis of mouse DXPas34 using the

Tandem Repeat Finder program revealed three blocks of repeats

composed of monomers of 34, 31, and 30 bp (Mus-34, Mus-31,

and Mus-30) respectively (Fig. 2A). Two blocks of repeats

composed of the 31- and 32-bp monomers (Rn-31 and Rn-32)

have been found in rat (Fig. 2A). Three blocks of tandem repeats

were detected in the four studied vole species. The first block

comprises the monomers with an average length of 70 bp (Mc-70);

the second, of 48 bp (Mc-48); and the third, of 34 bp (Mc-34)

(Fig. 2A). The vole species differ in the copy number of monomers

in the blocks. The similarity of vole monomers within blocks varies

from 53 to 89 %. We managed to identify a motif that retained a

high degree of conservation in all monomer types of mouse, rat,

and voles (Fig. 2C). This motif may be necessary for binding of a

protein factor involved in XCI regulation.

The CpG dinucleotide content and the number of binding sites

for CTCF factor in the DXPas34 region in rodents displays

considerable variation (Fig. 2A). The corresponding region of rat

appeared the richest in CpG content; however, it contained

considerably smaller number of CTCF binding sites compared

with mouse. The least CpG content and number of CTCF binding

sites was observed in voles (Fig. 2A). Note that this region in M.

arvalis completely lacked CTCF binding sites and almost lacked

CpG dinucleotides. Note also that the M. arvalis X chromosome is

predominantly active in the cells of interspecific hybrids obtained

by reciprocal crosses of this species with the three remaining vole

species [26].

Tsix Major Promoter and Associated Exon
The 100-bp region located upstream of the main Tsix

transcription start site, identified in mouse by RACE experiments

[27] is the most conserved between rodent species (Fig. S3).

Presumably, this region represents a basal Tsix gene promoter,

which contains the sites necessary for initiation and regulation of its

expression. The sequence immediately adjacent to the vole region

similar to the Tsix promoter has a homology to mouse Tsix exon and

contains a CpG island in three vole species (except M. arvalis). As

CpG islands in this region of the mouse female inactive X

chromosome are hypermethylated [28–30], we decided to clarify

the methylation status of CpG dinucleotides in the corresponding

vole region. We digested the genomic DNA isolated from M. arvalis

and M. rossiaemeridionalis with the restriction endonuclease HpaII,

sensitive to methylation, and assayed it by Southern blot

hybridization (Fig. 3). The genomic region was not methylated on

the only active male X and, consequently, its DNA was completely

digested with HpaII. In females, carrying one active and one inactive

X chromosome, in addition to the HpaII-digested fraction, a

fraction inaccessible for digestion with HpaII due to the presence of

methylated DNA on the inactive X, was also detected. Thus, at least

individual CpG dinucleotides in this region of the vole female

inactive X chromosome are hypermethylated.

Pseudo NIF3L1BP1
Immediately adjacent to the major promoter of Tsix, we have

found several regions homologous to the NIF3L1BP1 gene in voles,

mouse, and rat (Fig. 1, Fig. S3). They are likely to represent the

remains of an ancient pseudogene the parts of which have been

separated by an intensive integration of mobile elements. Pseudo

NIF3L1BP1 is the last element common to the vole, mouse, and rat

regions 39 to Xist. In voles, pseudo NIF3L1BP1 is located at the

boundary of the rearrangement that led to Slc7a3 embedding.

Slc7a3
Unlike mouse and rat, Slc7a3 was found in voles at distance 5 kb

from the region similar to the pseudogene NIF3L1BP1 (Fig. 1, Fig.

S3). Slc7a3 is not located within the Xic in any other eutherians

studied. In all other eutherians, the Xic region downstream of Xist is

flanked with the protein-coding genes Tsx, Chic1, and Cdx4. In mice,

Slc7a3 is located 2.4 Mb upstream of the 59 boundary of Xist. We

have found that vole Slc7a3 has the same exon-intronic structure

as mouse Slc7a3 and consists of 13 exons. The presence of the

sequences homologous to promoter and the surrounding of this

gene in mouse, similarity of the exon–intron structure, and absence

of stop codons and frameshifts in the coding region allowed us to

assume that we had identified functional Slc7a3, brought close to

vole Xic as a result of a chromosome rearrangement.

Variability of Xist Gene Surrounding in Rodents
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Having discovered the rearrangement ‘;in the vole Xic region,

we decided to determine the localizations of Xist, Slc7a3, Chic1, and

Cdx4 on the M. rossiaemeridionalis metaphase chromosomes. Despite

Chic1 and Cdx4 having been obviously removed from the close

proximity of Xist in voles, they were nevertheless located within the

same cytogenetic band on the vole X chromosome as Xist and

Slc7a3 (Fig. S4).

Bipartite Counting Element
The bipartite counting element is defined as a 37 kb region 39 to

Xist independent of DXPas34 and Tsix. Deletion of the region in

XY and XO embryonic stem (ES) cells results in aberrant

inactivation of the only X chromosome [31–33], and insertion of

certain sequences from the region into autosomes in XX ES cells

interferes with normal counting process and blocks XCI [34]. In

voles, the distance between 39 of Xist and the nearest protein-

coding gene Slc7a3 is only 15 kb, of which only 4 kb displays

similarity to the sequences of the mouse 37-kb bipartite counting

element. This similarity is detectable across a region of about 3 kb

adjacent to DXPas34 and over 1 kb upstream of the major Tsix

transcription start site (Fig. S3).

Comparison of 39 Xist Region in Rodents and Other
Mammalian Species

We have compared the region 39 to Xist in rodents and

other mammals and found no sequences homologous to Tsix,

Figure 1. Genes, Regulatory Elements and Transcriptional Activity in Vole Xic. (A) Schematic representation of genes and regulatory
elements detected in vole Xic by comparative sequence analysis. Lines above the scheme represent the nucleotide sequences determined for each
vole species. Black lines show the sequences determined previously [20], gray lines, the sequences obtained from this study. The amplicons analyzed
by RT–PCR (1–14) are denoted. (B) Strand-specific RT–PCR across Xist and its adjacent regions in preimplantation blastocysts (blast), 12,5 dpc
placentas (pl) and embryos (em) of M. rossiaemeridionalis. Numbers above correspond to the amplicons shown on the scheme (A). (AS) Antisense
transcript; (S) sense transcript; (gDNA) PCR of genomic DNA; (b-actin) examples of positive control of strand-specific cDNA syntheses with beta-actin
primers. (C) Allele-specific profile of the vole Enox/Jpx, Xist, Tsix and Slc7a3 gene expression in placenta of interspecific vole hybrids. Xp, X
chromosome inherited from father (inactive X in placenta); Xm, X chromosome inherited from mother (active X in placenta).
doi:10.1371/journal.pone.0022771.g001

Variability of Xist Gene Surrounding in Rodents
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DXPas34, and Xite in primates (human and chimpanzee),

ungulates (bovine), and carnivores (dog) (data not shown).

Thus, the sequences homologous to Xic functional elements

found in the mouse 39 to Xist region are detectable only in the

order Rodentia. However, we have identified four areas of

homology between mouse and human 39 to Xist regions (R1 –

R4) (Fig. 4), three of which (R1-R3) have been previously

reported [35]. We found that human R3 and R4 are separated by

species-specific transposable elements, whereas an insertion of

DXPas34 with the 59 region of Tsix occurred between mouse R3

and R4.

Previously, within a transposable element 39 to Xist in human,

several short dispersed regions of similarity to DXPas34 consensus

monomers were identified [36]. Nevertheless, the results of our

comparative analysis show that the homology in human is not

between R3 and R4 (Fig.4). Taken together these facts suggest that

microsatellite repeats and adjacent sequences could have emerged

from a mobile element, but that a transposon with homology to

DXPas34 found in human is probably not the genuine ancestor of

the region.

Overall Transcription Upstream, Downstream, and Across
the Xist Gene in Voles

We analyzed the transcriptional activity at Xist and adjacent

regions using strand-specific RT–PCR.

First, we decided to confirm the transcriptional activity of the

Slc7a3 sequence detected in voles. It has been found that this gene,

as expected, is transcribed antisense to Xist and ubiquitously

expressed in fetal tissues of both males and females (Fig. 1V,

amplicon 14).

We have not identified any transcription in the intergenic region

between 39 end of Slc7a3 and the putative transcription start site of

vole Tsix (Fig. 1B). Thus, we have found in voles neither the

sequences similar to Xite nor the intergenic antisense to Xist

transcription that could have the same functions as Xite in mouse.

Antisense to Xist transcription was detected between the

putative vole Tsix promoter and Xist promoter in the embryo

and placenta of both males and females. Transcription in vole is

identical to the transcription of the mouse Tsix (Fig. 1B).

Xist expression was revealed only in female tissues. It fits the vole

Xist transcription unit reported previously (Fig. 1B).

Figure 2. Organization of DXPas34 Region in Voles, Mouse and Rat. Ma, M. arvalis; Mk, M. kirgisorum; Mr, M. rossiaemeridionalis; Mt, M.
transcaspicus; Mm, M. musculus; Rn, R. norvegicus. Predicted CTCF-binding sites, which were found using two different consensus motifs
SNMGGNGGCRGNV and GCMGCGAG indicated by red and green arrows, respectively. Lollipops at the bottom represent GpG dinucleotides. Different
kinds of monomers composing DXPas34 of vole (Mc), mouse (Mus) and rat (Rn) are shown as arrays of arrowheaded boxes. (B) Conserved sequence
motif detected in monomers of DXPas34 in vole, mouse and rat. (C) A relationship between vole (Mc), mouse (Mus) and rat (Rn) monomers of
DXPas34.
doi:10.1371/journal.pone.0022771.g002

Variability of Xist Gene Surrounding in Rodents
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Transcription neither sense nor antisense to Xist was detected in

the intergenic region starting 2 kb upstream of the Xist promoter

and continuing up to the GpG island near the Enox (Jpx) gene

regions (Fig. 1V, amplicons 6 to 4). We did however identify

transcription both sense and antisense to Xist transcription in the

region of the vole Enox (Jpx) putative promoter. In mouse, similar

sense–antisense transcription in this region occurs because of the

bidirectional activity of Enox (Jpx) promoter [21].

Allele-Specific Profile of Sense and Antisense
Transcription in the Vole Xic

Differences in the Xic nucleotide sequences between the vole

species allow us to determine the allele-specific profile for Slc7a3,

Tsix, Xist, and Enox (Jpx) expressions. For this purpose, we used

12.5 dpc vole XX placentas obtained by interspecies crosses with

imprinted inactivation of the paternal X chromosome.

The electrophoretic patterns of sequencing reactions for PCR

products of these genes obtained from the genomic DNA of hybrid

placentas displayed double peaks at the polymorphic positions,

thereby confirming the presence of both parental alleles in the

hybrid placentas (Fig. 1C). Sequencing of the PCR products

obtained from the cDNA of hybrid XX placentas demonstrated

that only Xist was expressed from the inactive X chromosome,

whereas the remaining genes Slc7a3, Tsix, and Enox (Jpx) were

expressed from the active X chromosome.

Exon–Intronic Structure and Boundaries of the Vole Tsix
and Enox Genes

To determine the exon–intron structure and transcription

boundaries for Tsix and Enox in voles, we used 59 and 39 RACE

and strand-specific RT–PCR. The RNA for 59 and 39 RACE was

isolated from 12.5 dpc XX and XY embryos and placentas of M.

rossiaemeridionalis and M. arvalis.

Tsix
The 39 RACE primers for Tsix were designed for the regions

2100 and +1500 bp relatively of Xist transcription start site (Table

S2). The PCR products obtained by RACE were subcloned and

sequenced. Analysis of the sequences of 39 RACE products

demonstrated that Tsix transcription in voles terminated at

multiple sites encompassing the Xist transcription start site

(Fig. 5). The most distant Tsix transcription termination site was

detected at position –1279 bp from the Xist transcription start site.

The Tsix gene-specific primers for 59 RACE were designed for

the region +1200 bp relatively to Xist transcription start site. For

M. arvalis and M. rossiaemeridionalis, 59 RACE clones with a length

of 600 bp were obtained (Fig. 5). The first 134 bp in the clones

correspond to the sequence located immediately after the primer.

The next 110 bp correspond to the sequence of Xist exon 1,

located at a distance of 6 kb from the first homologous region. The

remaining 450 bp are identical to the newly determined genomic

sequence localized 12 kb downstream of Xist exon 8. This

fragment is homologous to the mouse exon located downstream

of the major Tsix start site. In addition, we found clones with

regions of continuous 600–800-bp homology to Xist exon 1

detected after the 134-bp region; these homology regions started

1.5 kb downstream of the 59 boundary of the 110-bp fragment.

Presumably, these clones were truncated at the 59 end due to a

premature termination of reverse transcription. To obtain the

complete structure of the Tsix transcript isoform, we carried out

Figure 3. CpG Dinucleotide Methylation at 59 Region of Vole
Tsix. DNA methylation was detected by digestion of genomic DNA with
the methyl-sensitive endonuclease HpaII and subsequent blot-hybrid-
ization. Genomic DNA of adult M. arvalis (Ma) and M. rossiaemeridionalis
(Mr) male (m) and female (f) was isolated from liver. DNAs were
pretreated with the HindIII endonuclease, and then digested with HpaII.
doi:10.1371/journal.pone.0022771.g003

Figure 4. Comparison of 39 to Xist Region in Mouse and Human by Reciprocal Percent Identity Plots. R1 – R4, areas of 39 to Xist
homology in mouse (m) and human (h) marked with red frames. Black frame shows a fragment within human transposable element which has
several short dispersed regions of similarity to monomer of DXPas34 [36]. Arrowheads and arrowheaded rectangles represent different transposable
elements.
doi:10.1371/journal.pone.0022771.g004

Variability of Xist Gene Surrounding in Rodents
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strand-specific RT-PCR using the primer set positioned within Xist

exon 1 sequence identically to the 600–800-bp region and in the

vicinity of the reported Tsix major transcription start site. As a

result, we amplified a 2 kb cDNA fragment. Part of this fragment

with a length of 1.4 kb was identical in its sequence to Xist exon 1,

which corresponded to the 600–800-bp fragments from its 39 end

and to 110-bp fragment from its 59 end; the next 75 bp was

homologous to Xist intron 3; and 400 bp at the 59 end

corresponded to the sequence similar to the mouse exon located

after the major Tsix transcription start site.

Thus, the RACE experiments allowed us to detect four exons

(designated A, B, C, and D) in the vole Tsix gene (Fig. 5). Exon A

(419 bp) is localized 12 kb downstream of the end of Xist exon 8. It

corresponds to the exon found in mouse after the major Tsix start

site reported in [27]. Exon B has a length of 121 bp and is

localized to Xist intron 3. Its sequence is a fragment of B1 element.

Exon C (1.4 kb) is located near the 39 boundary of Xist exon 1.

Several variants of alternative splicing were detected for this exon.

Exon D (3.2 kb) terminates 1279 bp upstream of the Xist

transcription start site and spans 2.9 kb of Xist exon 1. It

corresponds to the terminal exon of mouse Tsix reported in

[27,37].

To detect Tsix transcript in vole tissues, Northern blot

hybridization with strand-specific probe corresponding to exon

A was performed. Three major hybridization signals were

observed (Fig. 6). The first high molecular band appears to

represent unspliced Tsix transcript and to correspond in size to the

whole transcription unit. The second major band is about 5 kb

and presumably represents spliced transcripts containing all the

four vole Tsix exons, total size of which is 5,14 kb. The third band

detected is about 2,2 kb. In summary, the results show that the

Tsix transcript is only partially spliced and its main portion is

present in an unspliced form.

Enox
We performed both 59 and 39 RACE to identify boundaries of

Enox (Jpx) and its antisense counterpart. However, only 39 RACE

for Enox (Jpx) and 59 RACE for its antisense transcript was

successful. Gene-specific primers were designed within region 2 for

39 RACE of Enox (Jpx) and within region 3 for 59 RACE of

transcript antisense to Enox (Jpx) (Fig. 1A, Table S2). All clones

obtained in 39 and 59 RACE were identical to the genomic DNA

sequences located immediately after the primers. The nucleotide

sequences of the 59 and 39 RACE clones were deposited with

Gene Bank (accession numbers [GenBank:JF519003], [GenBank:

JF519004]). We found that vole Enox (Jpx) terminated 840 bp

downstream from the region homologous to the mouse Enox (Jpx)

promoter, while the antisense transcription start site was mapped

within the Enox (Jpx) transcription unit 342 bp before its 39 end.

Thus, in vole, both Enox (Jpx) and its antisense counterpart

represent a single exon transcription unit, which taking into

account RT-PCR data (Fig. 1A,B) spans about 1500–2000 kb.

Transcription Antisense to Xist in Rat
We searched for the mRNA and EST antisense to rat Xist at the

Blat server (http://genome.ucsc.edu/cgi-bin/hgBlat). Two spliced

RNAs were detected (Fig. S5). EST [GenBank:CF978550] has

three exons. The first exon is within the block of tandem repeats

DXPas34 and does not coincide with any known mouse or vole

Figure 5. Exon-Intronic Structure of the Vole Tsix Gene Obtained from RACE Experiments and Strand-Specific RT-PCR. Genomic map
of vole Xist and Tsix are shown; exons of Xist and Tsix are indicated by orange and indigo boxes, respectively. Clones obtained by RACE and RT-PCR
are aligned under the map. Clones, 3a_n of M. arvalis, and 3r_n of M. rossiaemeridionalis, were isolated by 39RACE. Clones, 5a_n of M. arvalis, and 5r_n
M. rossiaemeridionalis, were isolated by 59RACE. Rt1 represents a strand-specific RT-PCR product obtained from M. rossiaemeridionalis placenta using
primers Bt11 – SNTR (Table S2).
doi:10.1371/journal.pone.0022771.g005

Figure 6. Northern Blot Analysis of Tsix Expression in Vole and
Rat 14 dpc Male Embryos. About 5 mg of poly(A)+RNA from each
species was hybridized with the species- and strand- specific probe
corresponding to the exon located after the major Tsix start site in
mouse [27].
doi:10.1371/journal.pone.0022771.g006

Variability of Xist Gene Surrounding in Rodents
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Tsix exons. The second exon coincides with vole exon C and the

third, with the terminal Tsix exon of vole and mouse. This RNA

seems to be a spliced variant of the rat Tsix transcript.

The other RNA, [GenBank:AY539944], comprises ten exons

and contains a native open reading frame encoding a hypothetic

protein LRRGT00193. This cDNA is referred as the gene Lrrrn

[38,39,40], the transcription of which has been detected in the

rat liver. The exons of this gene are localized in the region

homologous to the Xite regulatory element, in Tsix exon

downstream of the major promoter and in Xist introns (Fig.

S5A). Neither vole nor mouse retains the native open reading

frame of the rat Lrrrn gene.

Short unspliced RNA immediately downstream region homol-

ogous to the Enox (Jpx) transcriptional start site was also identified

EST [GenBank:CK839650, GenBank:BE109826].

Using strand-specific mRNA from 14 dpc rat placentas and

embryos, we confirmed the exon-intronic structure of Tsix and the

transcription corresponding to Enox (Jpx) identified by EST

analysis (Fig. S5A). The nucleotide sequences of cDNA obtained

in the experiments are deposited with the Gene Bank under

accession numbers [GenBank:JF519002], [GenBank:JF519001],

[GenBank:JF519000]. We also confirmed by RT-PCR that in

rat Tsix, transcription passed through the Xist gene promoter.

Northern blot hybridization with a strand-specific probe repre-

senting the exon which follows the major Tsix start site revealed in

rat a high molecular weight transcript, presumably corresponding

to unspliced Tsix and two spliced isoforms of ,6 kb and ,1,8 kb

(Fig. 6).

Discussion

Variability of Transcription of Xist Surrounding in Rodents
In this study we identified in vole and rat 59 to Xist transcription

corresponding to the mouse Enox (Jpx) gene. We also found in vole

transcription antisense to Enox (Jpx) which was previously

described in mouse [21]. However, the transcription boundary

and its start site in mouse and vole differ both for Enox (Jpx) and its

antisense transcript. Vole Enox (Jpx) transcript is not spliced and

the transcription unit spans about 2 kb from the initiation site,

while mouse Enox (Jpx) is transcribed through tens of kb and gives

spliced mRNA containing up to 5 exons [12,13]. It should be

noted that vole Enox (Jpx) transcription initiates from the species-

specific CpG-rich region and obviously transcriptional regulation

of the gene differs in vole and mouse. Thus, we can propose that

the regulation of XCI by transcription associated with Enox (Jpx) is

not the same in vole and mouse. It is intriguing that Enox (Jpx)

transcription is more similar in mouse and human [12,13] than in

mouse and vole. Finally, it should be also noted that Enox (Jpx) is

not completely silenced on the inactive X chromosome during

random inactivation and is biallelically expressed in female mice

[13,15]. However, Enox (Jpx) appears to be expressed only on the

active X chromosome in vole during imprinted inactivation. The

difference in Enox (Jpx) expression between vole and mouse could

be ascribed in equal degree both to species-specific features and

different function of the gene during imprinted and random

inactivation. Further studies are needed to clarify these issues.

Our results demonstrate that in both rat and vole there is

expression antisense to Xist which corresponds to mouse Tsix. It

starts from the region homologous to the mouse Tsix major

promoter and ends around Xist transcription start site. The vole

Tsix gene has an expression pattern similar to that of mouse Tsix.

Both vole and rat Tsix transcripts cover the Xist promoter, which,

as has been demonstrated for mouse, is obligatory for Tsix

functioning in XCI [41–43]. Thus, it is most likely that similar to

the mouse Tsix, the vole and rat Tsix is able to regulate Xist

expression. However, this requires additional confirmation.

Similar to mouse the vole and rat Tsix RNA undergoes, at least

in part, alternative splicing. The terminal exons of the Tsix genes

in mouse, rat and vole are identical, whereas the remaining exons

differ between rodent species. It has been shown that many exons

in the noncoding RNA genes of Xic, such as Xist and Enox (Jpx),

originated from mobile elements of various classes [9]. In this

work, we have found another example of how a part of a species-

specific SINE is present in spliced mature RNA of vole Tsix and

represents one of its exons. This example illustrates the idea that

integration of mobile elements into noncoding RNA genes of Xic

continues in contemporary eutherian species and also supports the

assumption that the emergence of exons from mobile elements is a

general way of evolution and rearrangement of genes encoding

large nuclear regulatory RNAs. However, the differences in the

exon–intronic structures of the rodent Tsix genes together with the

data on the absence of the differences in the ratio of spliced and

unspliced Tsix transcripts [37] and the absence of XCI

abnormalities caused by mutations of mouse Tsix splicing sites

[44] confirms the earlier assumption that Tsix splicing is not

necessary for its normal function.

It should be noted that transcription in the region of the Tsix

major promoter is bidirectional in mouse [36], however, we only

identified transcription antisense to Xist in vole. Xite is present and

expressed in mouse [35], but not in vole. Tissue-specific protein-

coding gene Lrrrn is transcribed through Xite, Tsix, and Xist in rat

[38–40], but is not even found in mouse and vole. Thus,

comparative analysis data has shown that many transcripts that

surround the Xist gene in rodents are taxon-specific. The taxon-

specific transcripts either are able to influence XCI (as Xite), or are

not absolutely linked with it (as Lrrrn).

Conservation of the Xic 39 to Xist Elements in Rodents
and Other Eutherians

Comparison of the vole, mouse, and rat sequences has

demonstrated that the most conserved of all the known regulatory

elements downstream of Xist in rodents are the regions of Tsix’s

major promoter and minisatellite repeats. Their conservation and

necessity in rodents suggests that they are absolutely essential for

XCI in this mammalian order. Note that the region of the Tsix

major promoter is the most conserved in rodents. However,

targeted deletions of the Tsix promoter in mice do not impair Tsix

function in random XCI [36].

As the sequences homologous to mouse DXPas34 and Tsix

major promoter are only detected in vole and rat, but not in others

mammals, we could propose that this region emerged de novo in

Rodentia, most likely as a result of the transposition and

subsequent amplification of the same sequences which led to the

formation of minisatellite repeat arrays. Note that transcription

antisense to Xist is also not well conserved in eutherians. The

transcript antisense to XIST is revealed in human, but does not

overlap the XIST promoter [45–47]. Moreover, it is coexpressed

with XIST from the inactive X chromosome in fetal and neonatal

female cells and does not downregulate XIST, suggesting that this

species-specific transcription is not linked with XCI. Thus,

regulation of inactivation by Tsix may have arisen in the evolution

quite recently and apparently is unique to rodents.

As voles lack the regions homologous to the Tsix minor

promoter and Xite, we can assume that they are not absolutely

necessary for XCI in eutherians. Moreover, as Xite sequences are

only detected in mouse and rat, we cannot exclude that this

element has emerged and evolved only in Muridae.
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In all eutherians, for which whole genome sequences were

obtained, Xic 39 to Xist is flanked by the protein-coding genes Tsx,

Chic1 and Cdx4 [9]. There is a speculation that others besides the

known regulatory elements of XCI may lie within the region of

these protein-coding genes (reviewed in [16]). The rearrangement

detected in the vole Xic region demonstrates that the presence of

protein-coding genes Tsx, Chic1, and Cdx4 and the sequences

linked with them downstream of the 39 Xist boundary are not

necessary for XCI. The Xic rearrangement has evolved and, as a

result, as little as 15 kb of the sequences downstream of Xist

characteristic of this region in mouse appear sufficient for normal

imprinted and random XCI regulation in vole.

In this study we found that not all functional elements flanking

Xist in mice were well conserved even within rodents. Non-coding

RNA transcripts in the region surrounding Xist can appear,

disappear, change their promoters, exon-intron structure and

borders. No common conserved elements located 39 to Xist have

been identified in eutherians, suggesting that the XIC functional

elements responsible for ‘counting’, ‘choice’, regulation of Xist and

XCI may be at least partially taxon-specific.

Methods

Ethics statement
The study was carried out according to "The Guidelines for

Manipulations with Experimental Animals." The study was

approved by the Ethical Committee of the Institute of Cytology

and Genetics, Novosibirsk, permit number: (order of the

Presidium of the Russian Academy of Sciences of April 02, 1980

no. 12000–496).

Screening of phage genomic libraries of common voles
from the genus Microtus

The phage genomic libraries of a male Microtus arvalis, female M.

rossiaemeridionalis, female M. kirgisorum, and female M. transcaspicus in

the l DASH II (Stratigene) vector [20] were screened. The

amplified sequences downstream the exon 8 of M. rossiaemeridionalis

Xist and the protein-coding regions of the mouse genes Cdx4,

Chic1, Slc16a2, and Slc7a3 were used as probes for screening. The

manipulations with the libraries were performed according to the

Stratigene recommendations. Hybridization was conducted on

Colony/Plaque Screen NEN Life Science Product membranes

according to the manufacturer’s instructions.

DNA sequencing and analysis
The recombinant DNA sequences from phage clones were

subcloned into plasmid vectors and sequenced using both the

universal and specific primers. The sequencing reactions were

carried out using a Big Dye Terminator v. 3.1 kit. The reaction

products were analyzed in ABI Prism automated sequencers. The

DNA sequences localized 39 to Xist were determined in both

strands for each of the four vole species and joined with the earlier

obtained sequences containing the vole genes Enox (Jpx) and Xist

which were deposited with the GENE BANK under accession

numbers [GenBank:AJ310129] (M. arvalis), [GenBank:AJ310130]

(M. rossiaemeridionalis), [GenBank:AY090554] (M. kirgisorum), and

[GenBank:AJ310127] (M. transcaspicus).

Comparative sequence analysis was conducted using the

following software packages: BLAST [48], http://www.ncbi.nlm.

nih.gov/] for searching for homologous sequences; Tandem

Repeat Finder 4 [49] for identifying tandem repeats; RepeatMas-

ker [50] (http://www repeatmasker org) for detecting mobile

elements; Fasta [51] and CLUSTALX [52] for aligning two and

more sequences (the programs and data are available at http://

genome.ucsc.edu/, http://www.ensembl.org/, and http://bio.cse.

psu.edu/); and PipMaker [53] for conducting genomic analysis of

extended loci.

The following sequences of mouse, rat, bovine, dog, chimpanzee,

and human, extracted from the corresponding databases of

sequenced genomes at the UCSC Genome Bioinformatics Site

(http://genome.ucsc.edu/), were also used in the comparative

analysis: mouse Feb 2006 (mm8) assembly range = chrX:

99509137–100404904; rat June 2003 (rn3) assembly ran-

ge = chrX:91358074–91899712; dog May 2005 (canFam2) assem-

bly canFam1_dna range = chrX:60100000–60735000; chimpanzee

Mar 2006 (panTro2) assembly range = chrX:75160560–75392648;

human Mar. 2006 (hg18) assembly range = chrX:72449111–

74160153.

RNA and DNA isolation, reverse transcription, and PCR
RNA and DNA were isolated using a Tri Reagent (Sigma) kit

from pooled preimplantation vole blastocysts, 12.5 dpc vole

embryos and placentas. The cDNA was synthesized using total

RNA by SuperScript III (GIBCO-BRL) reverse transcriptase at

50–55uC according to the manufacturer’s instructions.

The strand-specific primers used for reverse transcription and

cDNA amplification are listed in Table S1. Each reverse

transcription reaction mixture was additionally supplemented with

the strand-specific primer BAss to beta actin [21]. A negative

control reaction, with the reaction mixture lacking reverse

transcriptase, was conduced for each reverse transcription reaction.

The sex of 12.5 dpc embryos and placentas was determined

using the primers UB1X and UB1Y [21], which in vole giving a

PCR products exclusively with male genomic DNA, and the

strand-specific RT–PCR, detecting Xist expression exclusively in

females (Fig. S1).

59 and 39 RACE
The exon–intron structure and boundaries of Tsix were

analyzed using SMART RACE kit (Clontech). The gene-specific

primers for 59 and 39 RACE are listed in Table S2. The amplified

cDNA was cloned in plasmid vectors, sequenced, and analyzed by

Southern blot hybridization. Vole Tsix cDNA obtained from

RACE experiments was registered in GENE BANK under

accession numbers [GenBank: JF519007] (M. arvalis), [Gen-

Bank:JF519006], [GenBank:JF519005] (M. rossiaemeridionalis).

Northern blot hybridization
About 5 mg of poly(A)+RNA isolated using Oligotex-dT30

(Qiagen) from vole and rat 14 dpc male embryos were run on a

1% agarose gel containing formaldehyde and transferred onto

GeneScreen membrane (PerkinElmer). Both vole and rat cDNA

amplicons corresponding to the exon located after the major Tsix

start site in mouse [27] were obtained. The primer pairs used were

gTF TCCTTCTGGCCTCTTCCGTCA - SNTR CTCTCCC-

TGCGCTCCCTCACT for vole and Rnt5 TCTAATATGA-

CATTGCCGATG - Rnt6 GGCTCGCTTTCCGGACTATC

for rat. For probe labeling 50 ng of the amplicons were added in

linear PCR with [a32P]dCTP and strand-specific primers (gTF or

Rnt5) producing DNA strand antisence to Tsix transcript.

Hybridization was performed in x5 SSC, 0,5% SDS at 65uC
overnight. Washing was carried out according to the manufactur-

er’s instructions.

Allelic expression assay
Comparison of the M. arvalis and M. rossiaemeridionalis Xics

detected interspecific single nucleotide polymorphisms (SNPs) in
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the DNA sequences. The PCR primers (Table S3) were designed

to generate the products containing SNPs. RT–PCR and PCR of

genomic DNA were performed by standard methods using RNA

and DNA samples of 12.5 dpc placentas of interspecific vole

hybrids obtained from the crosses M. rossiaemeridionalis 6M. arvalis.

As voles have imprinted XCI in extraembryonic tissues [26], the

majority of placental cells have the inactive X chromosome of

paternal origin and the active X chromosome of maternal origin.

The PCR products containing SNPs were purified by extraction

from agarose gel, and their nucleotide sequences were analyzed in

an ABI Prism automated sequencer.

DNA fluorescent in situ hybridizations
DNA FISH was carried out as previously described [54,55].

The phage clones containing the sequences of the M. rossiaemer-

idionalis genes Xist, Slc7a3, Chic1, Cdx4, Slc16a2, and Pgk1 labeled

with biotin and digoxygenin were used as probes.

Supporting Information

Figure S1 Figure illustrating sexing of vole 12.5 dpc
placentas and embryos. (A) The sex of 12.5 dpc embryos and

placentas was determined using the primers UB1X and UB1Y

[21], which produce a PCR product exclusively from vole male

genomic DNA. (B) Additionally, the strand-specific RT–PCR,

which detects Xist expression exclusively in females, was

performed. Strand-specific primer for Xist cDNA synthesis was

SDX3, CCCAGTGCTGGTGAGCTATTCC. Subsequent PCR

was performed with primers NSX19, GTGATTAATTCATTC-

TATCTGCC and MSX27, TTGCTCAGATTAGCTAG.

(TIF)

Figure S2 Results of comparison of 39 to Xist region in
mouse and rat by PIP maker software.
(PDF)

Figure S3 Results of comparison of the vole sequence 39

to Xist with the corresponding mouse region and Slc7a3
by PIP maker software.

(PDF)

Figure S4 Figure illustrating localization of Slc16a2,
Cdx4, Chic1, Xist and Slc7a3 on the M. rossiaemeridio-
nalis X chromosome.

(TIF)

Figure S5 Figure illustrating transcription antisence to
Xist in rat.

(EPS)

Table S1 List of strand-specific primers for cDNA
syntheses and PCR.

(DOC)

Table S2 List of gene-specific primers for 59 and 39

RACE.

(DOC)

Table S3 List of PCR primers used for allelic expres-
sion assay.

(DOC)
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