(A) Schematic cartoon illustration of a two-metal-ion mechanism as exemplified by nucleic-acid polymerases (green arrows). The two Mg2+ ions (yellow) are highlighted as circles and interactions with surrounding ligands are depicted as dashed red lines. R1 represents the nucleoside moiety of the nucleotide triphosphate (blue), R2 symbolizes the growing 3′-end of a DNA or RNA chain (orange), and E corresponds to the protein environment. The interaction between the 3′-hydroxyl group of the terminal nucleotide and Mg-A lowers the pKa-value of the ligand and allows for its deprotonation by a general base designated B. Both Mg2+ ions share a common α-phosphate oxygen ligand, an interaction also maintained during the pentacovalent transition state that results after the nucleophilic attack onto the α-phosphate accomplished by the deprotonated 3′-hydroxyl group. As indicated by the purple dashed line, a basic amino-acid residue might act as general acid and protonate the additional negative charge at the β-phosphate group. (B) Schematic drawing of the proposed two-metal-ion mechanism in CMP-Kdo synthetases. R3 represents the cytidine moiety of the CTP and R4 symbolizes the C8H13O7 portion of the Kdo sugar. The symbol and color scheme is the same as in (A). Amino-acid residues are labeled according to AA-LCKS nomenclature. Consistent with (A), the C2 hydroxyl group of the Kdo might coordinate to Mg-A, which could facilitate its subsequent deprotonation, and K19 might play the role of a general acid. In contrast to the situation in nucleic acid polymerases and as evident from the AA-LCKS crystal structure, the two metal ions do not share a common oxygen ligand and Mg-B is not in contact with the protein environment.