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Abstract
Cellular responses often involve a transition of cells from one state to another. A transition from a
stem cell to differentiated cell state, for example, may occur in response to gene expression
changes induced by a transcription factor, or signaling cascades triggered by a hormone or
pathogen. Regulatory networks are thought to control such cellular transitions. Thus, many
researchers are interested in reconstructing regulatory networks, not only to gain a deeper
understanding of cellular transitions, but also with the aim of using networks to predict and
potentially manipulate cellular transitions and outcomes. In this review, we highlight approaches
to the reconstruction of regulatory networks underlying cellular transitions, with special attention
to transcriptional regulatory networks. We describe recent regulatory network reconstructions in a
variety of organisms and discuss the success they share in identifying new regulatory components
as well as shared relationships and phenotypic outcomes.

Regulatory Networks Underlying Cellular Transitions
Cells respond to various stimuli, such as hormones and pathogens, as well as changes in
environmental conditions. A yeast cell, for example, undergoes changes in response to low
oxygen to produce ethanol. Cellular responses such as this often involve a transition from
one state to another. Other examples include when cells transition between different states
during the phases of the cell division cycle and during stages of pathogen infection. Cellular
transitions from one state to another can occur over various time frames and are impacted by
interactions between many internal and external factors (Figure1). Such transitions are
believed to be orchestrated by regulatory networks [1–6; Glossary Box, Fig.1], which are
composed of biological molecules, such as proteins, that are involved in the control of a
range of biological activities, including signaling cascades and transcriptional activity.

One recent example of a regulatory network underlying a cellular transition is found in
human stem cells transitioning to differentiated endoderm, which later produces lung,
thyroid, and pancreatic cells [7]. In this example, a regulatory network of the transcription
factors NANOG, OCT4, and SOX2 is known to be important for stem cell pluripotency the
potential of stem cells to differentiate into different germ layers. The authors showed that
these transcription factors directly control expression of EOMESODERMIN, which
transitions cells to specify endoderm. In turn, EOMESODERMIN interacts with SMAD2/3
to initiate the subsequent formation of endoderm from stem cells [7]. These findings are
significant because they not only describe the regulatory network underlying the cellular
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transition from stem cells to endoderm, but also point to potential therapeutic uses in the
regeneration of human organs derived from endoderm [7]. This example highlights the
relevance and importance of understanding regulatory networks controlling cellular
transitions.

Regulatory networks can be difficult to characterize and may be represented in a variety of
ways. One simplistic view can be obtained from playing Perfection, a game from Milton
Bradley. This game requires skill and speed to place the many different shaped pieces (like
circles and squares) into the corresponding shaped spaces of the depressed, ordered grid
before it pops up and spews out all of the pieces. On a gross level, biological networks are
similar in that they are composed of the molecules in a cell. In the simplest sense, these
molecules or pieces are localized to specific positions relative to one another. For example,
molecules can be found in the nucleus versus the cytoplasm of the cell, relative to each other
based on their sequential action (such as enzymes acting in a biochemical pathway), or
precisely interacting with a molecule to regulate its action or expression (as in phosphatases
regulating kinase receptors, or transcription factors controlling expression of a gene). Many
researchers are working hard to correctly place all of the pieces or components into a larger
framework, or network, to understand their location and relationships.

Of course, biological networks are much more complex than this simple analogy. The
components or pieces consist of an assortment of different molecules, such as DNA, RNA,
metabolites, and proteins. While the relationships between molecules within networks have
been represented as simple connections [8,9], in reality molecules act dynamically in the
cell, sometimes interacting with multiple different partners in less than a second. The
partners and/or targets of these molecules can then change a few seconds later. In addition,
over time, evolutionary changes occur in the molecules of a network, which influence the
relationships between molecules and thereby the architecture of the network. Thus, the study
and representation of the components, interactions, and their dynamics within a biological
network are quite challenging and complex.

One aim of systems biology [Glossary Box] is to characterize and manipulate these highly
dynamic and complex regulatory networks. To accomplish this aim, systems biology utilizes
and often combines methods and approaches from a variety of disciplines, including, but not
limited to, biology, chemistry, physics, mathematics, statistics, engineering and computer
science. A systems approach encompassing molecular, genetic, genomic, mathematical, and
computational methods, for example, has been successfully used to discern the cellular
response of human cells to influenza virus [10]. The experimental strategy included assays
of protein-protein interactions between human and viral proteins (yeast two-hybrid assays),
gene expression in human bronchial epithelial cells (HBECs) exposed to virus and virus
infection (microarrays), as well as genetic knock-down experiments combined with viral
replication and reporter assays in HBECs [10]. Data obtained from these experiments were
combined and divided into groups, or clusters , using computational algorithms to identify
signaling pathways in human cells involved in the detection and elimination of influenza
proteins. Using this systems approach, the authors identified a regulatory network that
includes RNA binding, WNT signaling, and viral polymerase subunit proteins that have
functional roles in HBECs infected by influenza virus [10].

Systems biology approaches embrace traditional experimental approaches from molecular
biology and genetics that are focused on individual molecules, in addition to high-
throughput experimental approaches like large-scale analyses of gene expression. While
traditional and high-throughput strategies both allow detection and quantification of gene
expression based on nucleotide hybridization, for instance, these approaches differ
considerably in many aspects such as cost, scale, feasibility, and sensitivity [Box 1]. The
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questions that systems biology approaches are being used to address cover a wide range of
topics in a variety of organisms. Some examples include: How do components of a cell,
tissue, or organ cooperate to recognize signals and coordinate an appropriate response? How
is cellular homeostasis maintained when an underlying regulatory network is perturbed by
unfavorable environmental conditions or pathogen attack? How stable are cellular
transitions in development, for instance, from one cellular identity to another, and can they
be induced or reversed by alterations in network components and relationships? Can we
predict which drugs and therapies will be most effective in treating human cancers and
disease, and specifically target them to affect only certain portions of a larger regulatory
network controlling overall human health? Systems biology approaches utilizing and
integrating knowledge, techniques, and methodologies from diverse disciplines are therefore
necessary to address the complexity of these important biological questions.

Box 1

Strengths and weaknesses of traditional and high-throughput approaches
Traditional and high-throughput strategies are both used for regulatory network
reconstruction. Since these approaches differ considerably in scale, feasibility, and
sensitivity, traditional and high-throughput each have different advantages and
disadvantages.

Both strategies allow detection and quantification of gene expression based largely on
nucleotide hybridization. Traditional methods of detecting gene expression differences
include Northern blots, in situ hybridization, and Real Time quantitative PCR (RT-
qPCR). Northern blots have the advantage that large probes can be used to detect the full-
length transcript of most mRNA sequences. In situ hybridization has an edge in that it
detects the localization of a specific transcript within a tissue or organism instead of in a
test tube, or on a blot or glass slide. RT-qPCR is considered the gold standard for
sensitivity, as it can reliably detect as little as a few transcripts in a sample. The
disadvantages of these traditional assays mirror the advantages of high-throughput assays
quantifying gene expression.

High-throughput methods include microarrays and next-generation or deep sequencing
[Glossary Box] of cDNAs corresponding to mRNA. The advantages of these assays are
that they are less labor intensive due to the use of robots, and they measure gene
expression for all genes in the genome for a reasonable cost, representing a sizable
increase in gene number over the 100 s feasible by traditional approaches.

Both strategies can also detect and quantify phenotypes and determine genetic
relationships that can then be used for regulatory network reconstruction. Traditional
approaches to studying phenotypes involve generation and analysis of single and/or
double mutants by procedures including mutagenesis, knock-out by homologous
recombination, transformation, crossing, mating, growth measurements, behavior and
disease assays, and microscopy. Here again, the advantages and disadvantages are
reciprocal for traditional and high-throughput approaches. High-throughput phenotyping
platforms use robots and automation of machines, such as microscopes, to standardize
and increase the number of mutants or conditions assayed. However, each platform is
often optimized for a specific phenotypic assay and platforms are limited by growth
habits of organisms and other factors, presenting challenges to high-throughput
phenotyping [11]. Nevertheless, it is a key future goal considering that an Escherichia
coli network that has 4500 genes and 300 regulators would require 4500X300 =
1,350,000 experiments to test all of the possible connections [12].
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In this review, we highlight studies reconstructing regulatory networks underlying biological
or cellular transitions, with special emphasis on studies of transcriptional regulatory
networks. Recent interest has focused on reconstructing these networks using experimental
and theoretical approaches (for a review of theoretical approaches, see [13]). Generally,
these approaches have started from molecular or phenotypic data and inferred relationships
between molecules and or phenotypes associated with given cellular transitions. The
resulting regulatory network reconstructions in a variety of organisms have identified new
network components as well as shared relationships and phenotypic outcomes that are
involved in cellular transitions.

Network Reconstruction Using ‘Guilt-by-Association’
One common approach to reconstructing regulatory networks is to identify and characterize
clusters of components and/or connections associated with a given cellular transition. Input
from this guilt-by-association approach often comes from high-throughput data sets obtained
from large-scale analyses of changes in gene expression (e.g. DNA/RNA microarrays or
deep sequencing [Glossary Box]) or from protein interaction analyses (e.g. yeast-two hybrid
assays or protein arrays) before, during, and/or after a cellular transition. Connections
between genes or proteins are inferred, and then grouped into clusters based on the
correlation of gene expression or protein interaction profiles with each other and the cellular
transition. A critical assumption used frequently to reconstruct networks with this approach
is that statistical relations in the data arise from relationships and interactions between
molecular components. For example, in a recent study of Alzheimer s disease in humans,
mRNA expression profiles previously obtained from a number of normal tissues and cell-
types were used to determine the correlation between genes known to increase susceptibility
to, or cause, this neurodegenerative disorder and genes located in chromosomal regions
associated with Alzheimer s disease [14]. If a highly significant correlation was observed for
an expression profile of a gene located in a chromosomal region associated with the disease
and the expression profiles of known Alzheimer s disease genes (i.e., the genes were co-
expressed), then the gene was inferred to have a relationship with known Alzheimer s
disease genes. Genes identified using a guilt-by-association approach are often referred to as
candidate genes to reflect the predictive nature of the inference. The candidate genes
resulting from this approach are thus hypothesis-generating in that they are implicated, but
not demonstrated, to be involved somehow in the etiology of Alzheimer s. This is one of the
major strengths of this approach: new genes are identified that potentially are involved in a
given cellular transition, or, as in the example described, in increased susceptibility to
Alzheimer s disease. When data generated from many large-scale experiments, such as
microarrays are used, the search is unbiased and often a large number of new candidate
genes can be identified.

There are, however, drawbacks to the guilt-by-association approach. One major weakness is
that while genes can be co-expressed, the relationship between some of these genes may be
unclear or even not exist. For instance, in the Alzheimer s study [14], genes may share
mRNA expression profiles across a number of tissues and cell-types but the purpose or
outcome of the expression profile may be very different. Some genes may be expressed for
specific processes like development or metabolism in these tissues and cell-types unrelated
to disease, while others are expressed as part of signaling cascades specific to Alzheimer s
disease. Approaches to addressing this issue include applying more stringent statistical
thresholds for determining correlations, or using and integrating additional data or
information, such as gene expression data sets more specific to Alzheimer s disease or the
cellular transition of interest. As there are many methods for assessing statistical
relationships in data, it is also worth noting that the genes and relationships identified using
the guilt-by-association approach may differ depending on the computational and statistical
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methods employed. If this occurs, it is possible to obtain a more confident set of genes and
relationships by considering only those found by several methods. Additional confidence
can also be gained by performing additional genetic and/or molecular experiments to
directly test and verify the nature of inferred gene relationships. For instance, the researchers
in the Alzheimer s disease study performed pair-wise protein-protein interaction assays of
known and candidate genes identified by the guilt-by-association approach [14]. Positive
interactions provided further evidence for a role in Alzheimer s for a number of proteins,
including Programmed Cell Death 4 (PDC4), which could act as a neuronal death regulator
in conjunction with PRESENILIN2 and apolipoprotein E, known Alzheimer s genes [14].
This leads to perhaps the largest limitation of this approach, which is that it does not provide
mechanistic, or functional , information about the resulting genes and relationships (We
discuss functional approaches to network reconstruction later in the review). The guilt-by-
association approach does, however, generate interesting hypotheses and candidate genes for
further study and also enables reconstruction of regulatory networks.

Reconstruction of Transcriptional Regulatory Networks
A large amount of work over the last few years has gone into the reconstruction of
transcriptional regulatory networks (TRNs). In this type of network, the connections
represent binding of transcription factor proteins (TFs) to the regulatory region of their
target genes (Figure 2). One way to infer these regulatory relationships is from observed
changes in mRNA expression levels. For example, from transcriptional profiling data
collected before and after a cellular transition, and prior knowledge of the type, number, and
organization of specific cis-regulatory elements bound by individual TFs in the promoters of
TF target genes, network relationships can be drawn. This strategy was successfully used for
TRN reconstruction, and impressively, prediction of TF target gene expression patterns in
Drosophila melanogaster segmentation [15]. Here TRN reconstruction extended from input
TF expression to TF binding of cis-regulatory sequences to the output spatiotemporal
expression patterns of TF target segmentation genes during embryogenesis. In this TRN
reconstruction, the number and position of known transcription factor binding sites (TFBSs)
in the promoter of each target gene was recorded for each TF known to regulate patterning
of the embryonic segments. The authors then calculated the probability that a given TF
would bind to a given site in the promoter of a TF target gene from prior knowledge of the
binding affinity of that TF [15]. This was calculated for all sites in all promoters of predicted
TF targets; the resulting probabilities allowed the authors to predict the strength of TF
binding to sites in target promoters in the TRN. These probabilities were then integrated
with information on TF expression levels in each fly segment (i.e. how much TF was
available for binding to sequence sites) to predict the output expression level of each target
gene for each of the segments [15]. Remarkably, the authors accurately predicted expression
patterns of TF target genes in fly segmentation [15]. This was a surprising result for a
number of reasons. First, the reconstructed TRN relied on inferences of TF binding events
and their contributions to the expression of specific target genes, many of which were not
demonstrated experimentally. Second, further assumptions were made that TF binding not
only had functional effects on target gene expression, but also that these functional effects
led to a specific output level of gene expression. Finally, the impacts of other factors known
to affect gene expression levels, such as the accessibility of chromatin to TFs, were not
included in the model [15]. This work stands in contrast to most other studies of TRNs in
that it demonstrates the predictive power of TRN reconstructions to generate quantified
outputs.

Another approach to TRN reconstruction is to use data from direct binding assays of TFs to
DNA. TRNs have been reconstructed in this way by using in vitro TF binding data. For
example, yeast one-hybrid assays or promoter binding microarrays combined with gene
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expression information in Caenorhabditis elegans and Arabidopsis thaliana have been used
to reconstruct TRNs [16–18]. However, TRN data are more commonly obtained in vivo
from Chromatin Immuno-Precipitation followed by quantitative PCR (ChIP-qPCR),
genome-wide microarray (ChIP-chip) or deep sequencing (ChIP-seq, [Glossary Box])
experiments because these data are thought to reflect in vivo, direct binding events. There
are numerous examples of the use of these approaches and we will only highlight a few.

The largest atlas of ChIP-chip experiments has been compiled in yeast [19,20]. TFBSs were
determined for most yeast TFs and then mapped onto the yeast genome to generate a TRN.
This representation of the network was first reconstructed from standard conditions without
incorporating gene expression information (Figure 2). This is a valid approach because this
type of TRN represents a large set of inferred regulatory connections. However TRNs, as
defined above, indicate regulation by a TF; thus knowledge about whether or not these
binding events contribute to gene regulation (i.e. expression changes) must be incorporated
to determine if they are regulatory. For example, yeast ChIP-chip results were combined
with data from 500 microarray experiments to identify groups of genes that are coordinately
bound and expressed, which were called multi-input motifs refined for common expression
(MIM-CE) [19]. In brief, the method defines a group of genes that are bound by a set of TFs
and then refines the cluster to include only genes that are similarly expressed in all of the
microarrays. Next, the algorithm searches for other genes with similar expression profiles,
which are also bound by the same TFs. These genes are then added to the group. This
process is repeated until all combinations of genes bound by TFs have been queried.
Applying this method to the extensive expression data available for the cell cycle, the
authors reasoned that MIM-CEs enriched in genes whose expression oscillated through the
cell cycle would identify TFs that control these genes. Indeed, the authors accurately
identified 9 TFs and correctly assigned them to the corresponding phase of the cell cycle.
This included two TF MIM-CEs that had been implicated in the cell cycle, but had ill-
defined functions [19]. This method and resulting cell cycle TRN are impressive because
direct binding events of various TFs are likely to differ depending on the phase of the cell
cycle, and these were not experimentally determined in this study (TF targets were
determined by genome-wide ChIP studies performed on non-synchronized cells under
standard conditions) [19]. However, the success of using dynamic expression data to achieve
an appropriate cell cycle TRN points to the importance of starting with dynamic data for
TRN reconstruction of cellular transitions.

Other recent studies have also reported TRNs derived from dynamic transcriptome and
ChIP-chip or ChIP-seq data. For instance, dynamic transcriptional data was used in a study
of two TFs, SHORT-ROOT (SHR) and SCARECROW, which regulate the asymmetric cell
divisions that generate the endodermal and cortex cell lineages of the Arabidopsis thaliana
root. Transcriptional profiling was performed at multiple time points after induction of these
TFs in sorted cells [21]. A previously described algorithm [22] was then used to identify
genes directly bound and regulated at the precise time and location of the asymmetric cell
division [21]. One of these confirmed targets was a D-type cyclin specifically expressed in
these asymmetrically dividing cells, linking cellular patterning and division [21]. Previous
transcriptional studies addressing the role of SHR did not identify this D-type cyclin [23],
suggesting that this integral link between cellular patterning and division would not have
been discovered if dynamic transcriptional data had not been used. Thus, this study
emphasizes the importance of incorporating dynamic transcriptional information to
determine TRNs underlying cellular transitions.

Another recent study uses dynamic expression data and concentrates on the transition from
vegetative to reproductive development in Arabidopsis, which is controlled by a set of TFs.
When these TFs are mutated, plants have disrupted floral initiation, patterning, and
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development. APETALA1, a key TF regulator of floral initiation and development, was
chosen in this study to profile expression changes over time with microarrays and TF
binding using ChIP-seq during the course of floral initiation [24]. The overlap between the
genes found from each of these experiments was then used to reconstruct the TRN. The
results indicated that genes involved in vegetative development were repressed by this TF,
while genes specifying reproductive development were activated [24]. The dual action of
this TF in repressing one fate while activating another is intriguing because a similar dual
function has been reported in animals. For example, in embryonic mouse stem cells the TFs
OCT4, SOX2, and NANOG have been shown to simultaneously repress targets associated
with cellular differentiation while activating genes specifying stem cell fate [25]. This
suggests that dual activation and repression by TFs in TRNs may be a general mechanism
for controlling cellular transitions.

These examples highlight the power of using dynamic expression data to reconstruct TRNs,
as key targets (and thus TRN architecture) and mechanisms of transitions can be missed in
TRN reconstructions lacking dynamic transcriptional information. Despite the power of
these studies, they do not include information about the dynamics of direct TF binding (e.g.
dynamic ChIP data). This is a drawback because TRNs reconstructed from dynamic
transcriptional data, but single time point ChIP data, still rely on inferences about whether
the observed dynamic changes in gene expression are actually dictated by direct TF binding
events. Confidence in the resulting TRNs is therefore less than for a TRN reconstructed
using ChIP-chip or ChIP-seq data obtained at the same time points profiled in dynamic
expression experiments. Future studies incorporating dynamic information of both direct
binding and gene expression should add to the confidence in TRN architecture.

The previous two examples of TRN reconstruction in plants used direct TF binding and
dynamic gene expression experiments for single TFs. However, larger TRN reconstructions
involving a greater number of TFs have been performed. For example, in mouse embryonic
stem cells (ESCs), TRNs were reconstructed for 9 and 11 TFs involved in reprogramming of
ESCs using ChIP-chip and ChIP-seq, respectively [26,27]. ChIP-chip and transcriptome data
were grouped with additional data obtained from ChIP-chip data of methylation patterns in
ESCs (H3K4me3 and H3K27me3) using a supervised clustering approach [26, Glossary
Box]. What emerged was striking; genes that were active in ESCs and repressed upon
differentiation had promoters that were occupied by multiple TFs, whereas a single factor
occupied promoters of genes that were inactive in ESCs and activated upon differentiation
[26]. Clearly, this feature would not have emerged from a TRN reconstruction based on a
single TF. Thus, TRN reconstructions of individual factors overlook combinatorial action of
TFs that may be vital to the regulation and control of target genes. For this reason several
projects are now trying to systematically analyze binding of all TFs involved in a biological
process with the goal of accurately reconstructing TRNs. For example, the Drosophila
modENCODE project [28, 29] has reconstructed a large TRN using ChIP-based TF binding
of 76 TFs, 104 TF conserved binding sequences, and gene expression data [28].

Collectively, TRN reconstructions in many organisms have led to new and important
insights about biological transitions, which should allow predictive modeling and future
manipulation of transcriptional regulatory events. However, comprehensive TRNs
incorporating dynamic direct binding and gene expression for all TFs in a given organism
have not yet been achieved. Emerging high-throughput data from large projects in many
organisms, such as modENCODE in C. elegans [30] and ENCODE in humans [31,32], offer
promise for future comprehensive and accurate TRNs. Despite this promise, some TRN
studies indicate that reconstruction using direct binding information from transcriptome and
genome-wide ChIP data is more complex as TF binding events far exceed the number of
genes regulated at the transcriptional level (reviewed in [33]). Many hypotheses have been
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proposed for this observed discrepancy, but the significance of direct TF binding without
accompanying changes in gene expression remains unclear [33]. A major challenge for the
future is to better interpret ChIP data as well as other aspects of TRN reconstruction [Box 2].
It is likely that integration of other data types and/or novel approaches will be needed to
improve the accuracy of TRN reconstruction.

Box 2

Considerations for reconstructing TRNs
The goal of TRN reconstruction is to determine the relationship between TFs, their target
DNA sequences, and the effects of these relationships on gene expression. Some
researchers consider TRNs to be functional if they are able to accurately predict output
gene expression levels of TF targets. However, in the context of this review we define
functional regulatory networks to be those that make connections to phenotypes.

Much progress has been made in assaying TF binding targets on a genome-wide scale in
vivo using microarrays and next-generation sequencing, which is allowing reconstruction
of more expansive TRN reconstructions. ChIP data are being integrated with gene
expression data and in vitro assays that determine TF binding site sequences for a number
of organisms. Here we mention a few considerations for TRN reconstruction involving
direct binding data obtained from ChIP assays.

First, TF expression, as well as chromatin accessibility to TFs, can be different depending
on the environment, developmental stage, or spatial location of cells. This presents a
challenge for TRNs reconstructed using ChIP, or in vitro assays of TF binding sites used
to infer TF targets, for multiple TFs. This is because making or inferring connections
between different TFs and targets may be complicated if these TFs are not expressed or
able to bind accessible chromatin in similar cellular locations or times. This may be why
some TRN reconstructions have focused on a core group of TFs that are expressed in the
same cells and cellular conditions. Future advances in ChIP allowing the use of small
numbers, or even a single cell, may provide the necessary spatial and temporal resolution
for reconstructing TRNs with greater cellular relevance for multicellular organisms.
However, the utility of TRN reconstructions for whole organs or organisms using TF
binding data derived from different spatial and/or temporal conditions remains an open
question.

Secondly, many TFs differ in structure, DNA affinity, stability, and turnover. Perhaps as
a result, ChIP protocols vary between labs in fixation, shearing of chromatin, and
immunoprecipitation conditions and thus produce different results. In addition, different
antibodies, epitopes, and tags are utilized for ChIP studies, which may perform
differently in ChIP assays. Therefore, standardization of ChIP procedures is a future
challenge; surmounting it will likely result in more comparable data sets. These data sets
will increase the predictive power of reconstructed TRNs and serve as improved
resources for data integration in other regulatory networks.

Functional Approaches to Regulatory Network Reconstruction
In the previous section we described a basic approach to regulatory network construction of
a specific type of network, the TRN, which is potentially useful for prediction and
manipulation of gene expression levels. However, cellular phenotypes which should
constitute the functional outcome of a TRN don t always correspond to the outputs of
reconstructed regulatory networks. Predicting phenotypes from the molecular interactions
encoded in the genotype is a central goal of systems biology. To achieve this aim, another
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common approach to reconstruction of regulatory networks is to start with phenotypes and
then connect them to genetic or molecular relationships.

Such a functional approach to regulatory network construction has been taken in yeast by
systematically analyzing different pairs of deleted or knocked-down genes for fitness
phenotypes, which were measured as yeast colony size [34]. This work involved analysis of
yeast mutants in 1712 essential and non-essential genes that were screened against 3885
non-essential mutant strains; a total of over 5 million gene pairs were thus quantitatively
scored for fitness [34]. When fitness scores of double and single mutants were compared,
about 170,000 genetic interactions were found. A genetic regulatory network was then
reconstructed in which connections denoted genes sharing similar genetic interaction
profiles or a common set of genetic interactions. The connectivity of the resulting network
was then used to successfully predict function of known and uncharacterized genes [34].
The genetic network was also integrated with data from ~4700 deletion mutants exposed to
hundreds of chemical compounds. From these data, the authors calculated a “chemical-
genetic degree,” the number of chemical perturbations for which a gene deletion mutant
exhibits hypersensitivity when exposed. Interestingly, a significant correlation was found
between the number of genetic interactions of a given gene and its chemical-genetic degree
[34]. Based on this, the authors suggested that the same genes act to protect yeast cells
against genetic and chemical perturbations, which may be useful for linking chemical
compounds to gene targets and predicting synthetic interactions between drugs [34].
Recently, similar genetic analyses combined with transcriptional profiling of yeast strains
with multiple deletions in kinases and phosphatases have allowed reconstruction of a
signaling regulatory network [35]. It will be interesting to see if future integration of these
data with chemical data will lead to stronger predictions of chemical and genetic targets for
drug discovery.

In addition to potential applications in chemical and drug discovery, other advantages of
functional approaches using genetic interaction assays include the ability to implicate genes
in a genetic pathway or in biological functions. In [34] the authors compared the ability of
their genetic interaction network to predict multiple phenotypic functions as compared to
networks reconstructed from protein-protein interaction data. They found that genes that
have many interactions (i.e. hubs) in their network correlate more highly with multiple
biological processes than do hubs from protein-protein interaction networks. This suggested
that networks from genetic interaction studies are better at identifying broad phenotypic
functions [34]. However, there are some disadvantages to genetic interaction studies. For
instance, how the genes act at the molecular level to achieve biological functions must be
inferred by annotation or from previous molecular studies. Also, even though certain genes
may interact at the genetic level, the nature of this genetic interaction at the molecular level
is often unknown and the protein products of interacting genes may not interact at the
molecular level to accomplish biological functions. Indeed, the authors suggest that although
genetic interaction networks may implicate many phenotypic functions, protein-protein
interaction networks elucidate local molecular pathway architecture [34], which may lie
within larger genetic interaction hubs. Thus, there are pros and cons to reconstructing
networks from genetic versus protein-protein interaction data. One common disadvantage is
that the relevance of observed interactions is often unclear. Although a pair of genes or their
encoded proteins appear to interact based on genetic or in vitro protein-protein assays, in
vivo this may not be the case. For example, two proteins may not be expressed in the same
place or time frame, suggesting in vitro interactions do not occur in vivo. Integration of gene
and protein expression data with genetic and protein-protein interaction data may help to
circumvent this problem and provide more solid links between genes, proteins, phenotypes,
and biological functions of reconstructed networks.
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Reconstruction of functional TRNs has also been accomplished by combining gene
expression information of knock-out TF lines and the transcriptome. For example,
transcriptional profiling was performed for 263 deletion strains of yeast TFs and then each
was compared to wild type under standard conditions [36]. These data were used to
reconstruct a functional TRN that showed low, but significant, overlap with direct targets
reported for these same TFs in ChIP-chip studies. This small overlap indicated to the authors
that some of the targets in their network were indirect. To address this, a regulatory network
model was generated using a directed-weighted graph method [Glossary Box] and then
refined by removing putative indirect connections. Refinement involved the following logic
about whether a given TF A regulates a target gene: if the statistical value of a gene
regulated by two TFs (for example a given TF A that targeted another TF B) was higher for
TF A than for TF B [36], then the connection between TF A and the gene is indirect. This
refinement significantly improved the overlap, as did using higher quality TF binding data
sets [36]. Future research may address whether overlap between these regulatory networks
can be enhanced with deep sequencing technologies and/or if other levels of regulation, such
as post-transcriptional mechanisms, must be incorporated to reconstruct functional TRNs
using this approach.

In mammals, a functional approach using knock-down and gene expression data has recently
been reported in mouse dendritic cells exposed to various pathogens for reconstruction of an
observational regulatory network [37]. The authors first characterized transcriptional
responses of dendritic cells to various pathogens at different time points using microarrays.
Potential regulators and time points were then selected using an information-theoretic
approach [Glossary Box], whereby the regulators and time points selected capture the most
gene expression information. Next, this dynamic data set was used to cluster different
responses and reconstruct a regulatory network using an Expectation Maximization (EM)
approach [Glossary Box]. The expression of selected regulators was then reduced by > 75%
using lentiviral shRNAs in dendritic cells. The resulting expression profiles were then
determined at a selected time point after exposure to a single treatment activating the
majority of pathogen responses. These data were then used to reconstruct a functional
regulatory network that largely agreed with their observational model [37]. This suggests to
us that dynamic expression data alone may be sufficient to reconstruct a network similar to
one generated with functional approaches. However, the remaining false positive
interactions of the observational model were attributed to the fact that a correct regulator had
gene expression profiles that were indistinguishable from other regulators [37], suggesting
this is a shortcoming of models lacking functional approaches.

Collectively from these studies, the main strength of functional approaches is clear and
formidable: gene expression changes are directly linked to a cellular state, transition, or
perturbation. In the case of [37], gene expression changes were linked to the response of a
specific cell type (dendritic cells) to exposure of a specific pathogen, which may facilitate
therapeutic targeting of specific pathways to enhance human vaccine efficacy or combat
disease. Of course, known challenges also exist for functional approaches employing RNA
interference (RNAi) methods to reconstruct functional regulatory networks. One is the
difficulty and expense in reproducibly performing large scale RNAi screens. Other problems
related to reconstruction of functional regulatory networks include accounting for
differences in the levels of RNAi knockdown achieved for different genes and false positive
regulatory relationships that arise from off-target effects of RNA interference. Further
challenges of network reconstruction using functional approaches can be found in [Box 3].
Another significant hurdle encountered whenever the output is an expression profile is that
this does not provide the molecular mechanism responsible, which may be important for
effective manipulations and applications of reconstructed regulatory networks. One common
tactic to overcome this hurdle is to use other assays to determine and/or validate molecular
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relationships implicated in networks reconstructed by functional approaches. These data can
then be integrated to refine the original network or to generate a more detailed, and perhaps
more predictive, regulatory network reconstruction of phenotypic outputs.

Box 3

Considerations for reconstruction of functional regulatory networks
The goal of reconstructing functional regulatory networks is to connect phenotypic
effects to genes or proteins that are relevant to cellular transitions and ultimately
development and disease. Although we present reconstructions using data generated from
gene deletion or knock-down as a separate approach from approaches starting with
molecular quantifications, this distinction may be hazy. It could be more accurate to say
this is an alternative starting point for reconstructing regulatory networks. Thus, the two
approaches (starting from molecular changes to phenotypes versus phenotypes to
molecular changes) may be considered complementary.

Some of the challenges for identifying and measuring molecules and phenotypes are
similar. Are the assays sensitive enough? Do they measure enough features? Are they
variable between researchers and/or labs?

Platforms capable of monitoring and measuring phenotypic changes in cells and
organisms in high-throughput formats are rapidly emerging. These platforms are
becoming more flexible to provide dynamic imaging and measurements under a variety
of conditions. Since many of these platforms use automated phenotypic quantification,
the continuous and multivariate characteristics of phenotypes are being captured rather
than just categorical (dead or alive) ones that discard information [11]. Concurrently,
techniques for deleting, silencing, and/or inducing genes are improving steadily. Taken
together, phenotypic quantification combined with collections of single or double
mutants provides promising high-throughput assays for associating genes and phenotypes
quickly, reproducibly, and inexpensively.

However, a number of challenges remain for analyses linking phenotypes and genes.
First, many phenotypic measurements and assays are not standardized between
laboratories. Secondly, mutational strategies are often plagued by redundancy in gene
function, off-target effects of RNAi, and indirect phenotypic effects of mutated genes.
Thirdly, even though high-throughput phenotyping assays are improving, currently these
assays often produce low-dimension measurements of small sample sizes.

While these challenges may be tackled with community efforts and technical advances,
the challenges posed by mutational strategies are more problematic. Indirect or
unexpected phenotypic effects or genetic interactions may exist for a multitude of
reasons, including gene redundancy, buffering, variation between individuals with the
same genotype, or modifications at the post-transcriptional or post translational levels.
These may be accounted for by controls or multiple replicates, but incorporation of
further molecular data about molecular mechanism or multiple mutants (>2) and alleles
may be needed to address the gap between genotype and phenotype.

Data Integration and Regulatory Network Reconstruction
“Perform additional experiments” is a comment many researchers have received upon
review of a manuscript or presentation regardless if the work was focused on a single gene
or a cellular network reconstructed from multiple genes. One reason for this response may
be that scientists generally place more confidence in multiple different assays pointing to the
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same biological results and conclusions. This may be why integrating multiple different data
sets is appealing to those reconstructing regulatory networks of cellular transitions.

Another related potential benefit to integrating data for regulatory network reconstruction,
besides increased confidence, is more detail about the molecular nature of inferred
relationships. For instance, suppose two TFs in a reconstructed TRN share direct binding
profiles to the same sites in the promoters of many target genes. Some TRN reconstructions
would denote a relationship between these TFs; however, the nature of this relationship is
unclear. Do these TFs bind at sites very close by, or do they interact in or are part of a
protein complex? Data from protein-protein interaction studies could address this question.
This example also illustrates how integrated regulatory networks are often a source of
hypotheses that drive future research. For example, if the TFs were found to interact, then
further studies could be performed to examine this relationship, such as single or double
knock-down experiments of the TFs evaluating their phenotypic effects on a cellular process
inferred from identities of joint targets.

One recent large-scale effort to determine if data integration improves reconstructions of
regulatory networks comes from the Drosophila modENCODE project [28,29]. In [28] the
authors reconstructed a large TRN by integrating ChIP-based TF binding of 76 TFs, 104 TF
conserved binding sequences, two chromatin data sets specifying chromatin marks, and
three large gene expression data sets using an unsupervised machine learning algorithm
[Glossary Box]. For the reconstruction, the possible set of interactions came from 707 TFs
and 14,444 target genes, which correspond to the number of genes that had at least one
measurement in one data set. The reconstructed functional TRN represents the relationships
with the highest confidence between 576 TFs and 9,436 target genes [28]. The resulting
TRN was then compared to TRNs reconstructed using known TF binding motifs, direct TF
binding information alone, or REDfly literature curation. A few notable findings emerged.
First, the integrated reconstructed network had increased biological relevance, as co-targeted
genes had increased functional similarity, expression correlation, and protein-protein
interactions [28]. Second, although the algorithm used to reconstruct the TRN was not
trained on the REDfly literature-curated network, the highest similarity in connectivity to the
authors integrated network was found in the REDfly literature-curated network, suggesting
to the authors that they had reconstructed a functional TRN [28]. The functionality of the
network was further supported by validation metrics (enrichment above random networks of
gene pairs that share common gene ontology terms, expression values across time courses,
Imago tissue terms, and protein-protein interactions) that were comparable in the authors
reconstructed network and the REDfly gold standard network. However, the authors TRN
also had 100 and 1000 times more components and connections, respectively, than the
REDfly literature curated network [28]. These additional novel relationships remain
hypotheses that are valuable for future research. Taken together, the findings in [28] suggest
that data integration has significant advantages over reconstructions with fewer data types.
Nevertheless, the authors report that further data sets as well as predictive models are needed
because the expression of only one-quarter of the genes could be accurately predicted using
their reconstructed regulatory network as compared to random networks [28]. However,
networks reconstructed from fewer data types had no predictive value over random networks
[28], again supporting the value of integrating multiple data types for network
reconstruction.

From the above example, we see that integrating different data types may have advantages
over regulatory network reconstructions involving fewer data. But how does one know
which types of experimental data are the most informative for integration? The answer
depends on many variables such as the type of network (signaling cascade, transcriptional,
etc.), the desired output of the network, and the experimental strategies available in the cell
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or organism of interest. Nevertheless, one answer seems to be integration of any available
data previously published. It seems wise to approach this answer with caution as integration
of data sets that differ in resolution (i.e. cellular versus organismal or nucleotide versus gene
sequence), platform, lab conditions, and/or quality may not improve a regulatory network
reconstruction. As few studies have attempted to assess whether integration enhances the
confidence or predictive power of a reconstructed regulatory network, future work is needed
in this area.

In a recent study, the question of which data type is optimal for the study of cellular
transitions and network reconstruction was avoided entirely. An unbiased approach
involving the generation of as many different data types as possible was taken, as the type or
level of regulation (DNA, RNA, protein, etc.) responsible for a cellular transition was
largely unknown. In this study of murine embryonic stem cells (ESCs), omics approaches
were used to determine the temporal changes in histone acetylation, chromatin-bound RNA
polymerase II, mRNA, and nuclear protein levels resulting from the loss of the key
pluripotency regulator, Nanog [38]. With the goal of identifying the regulatory layer
primarily responsible for changes in protein levels directing cellular phenotypes due to
Nanog loss, the authors examined transcriptional, post-transcriptional, translational, and
post-translational changes with genome-wide assays. They found that transcriptional
changes mediated by transcription factors preceded chromatin reconfiguration and that many
of these changes were discordant with nuclear protein levels [38]. The authors concluded
that the translational and post-translational steps constituted the majority (43–52%) of the
changes involved in Nanog-regulated ESC fate decisions [38], suggesting that proteomic
data are the most informative for understanding ESC fate transitions. It is still unclear
whether this is true of cellular transitions in other systems [38] and also unknown whether
differences in the types of technologies and/or their sensitivity contribute to these
differences. Many studies, such as [39–44], evaluating the correlation between RNA and
protein expression, for instance, have found that a large proportion (~30–60%) of RNA and
protein profiles using current technologies do not correlate. Although a single reason for this
has not been established, it may suggest that conclusions about the appropriate layer of
regulation that are drawn from comparisons between RNA and protein levels (as in [38]) are
not straightforward. Future studies of other cellular transitions are needed to elucidate the
most important molecular layers and experiments for regulatory network reconstruction.

Concluding remarks
Cellular responses often involve a transition of cells from one state to another, such as a
transition from a stem cell to differentiated cell fate in response to a stimulus. Regulatory
networks are thought to control these cellular transitions. From studies of reconstructed
regulatory networks featured in this review, a few general themes emerge. First, guilt-by-
association and functional approaches have been successful in linking genes to biological
processes and phenotypic effects to gene expression changes, respectively, in order to
reconstruct regulatory networks. Second, new candidates as well as shared relationships and
phenotypic outcomes involved in cellular transitions are valuable deliverables that come out
of regulatory network reconstruction. Dynamic data obtained before, during, and/or after a
transition have been particularly instrumental in uncovering novel factors involved in
cellular transitions. Thirdly, regulatory networks have had limited success in accurately
predicting gene expression and phenotypic outcomes of cellular transitions, which restricts
the utility of such networks for the purpose of manipulations and applications aimed to
control cellular response and disease. Research suggests that the predictive power of
networks will improve with further advances in data acquisition and integration, as well as
the development of new approaches to regulatory network reconstruction. It is also possible
that a large amount of uncertainty will remain and that the primary outcome will be the

Petricka and Benfey Page 13

Trends Cell Biol. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



generation of hypotheses. Therefore, future research will determine not only if regulatory
networks are useful for revealing the mechanisms of cellular transitions, but also if truly
predictive regulatory networks can be realized and serve as effective tools in translational
research.

Glossary Box

Regulatory network the molecular components, interactions, and/or relationships
of a cell, tissue, organ, or organism that regulate a given
biological process. In the context of this review, we use this
broad definition as it encompasses more specific regulatory
networks, such as those in metabolism, protein signaling, and
transcription

Systems biology a field of biology that studies all components of a biological
system, rather than individual ones, to comprehensively and
quantitatively describe and understand their functional
interactions, dynamics, and contributions to the system using
integrative methods from diverse scientific fields, including
physics, mathematics, biology, and chemistry

Next-generation or deep
sequencing

massive parallel sequencing of millions of small ~35–250
nucleotide fragments from a single sample

Transcriptional
Regulatory Network
(TRN)

a representation of connections between transcription factors
(TF) and the target genes to which they bind and whose
expression they control

Chromatin-
immunoprecipitation
(ChIP)-seq

an experimental approach that combines isolation of protein-
chromatin complexes by immunoprecipitation using protein-
specific antibodies or epitopes, combined with next-
generation sequencing

Supervised clustering grouping similar genes or expression profiles using a method
that is constrained by other data or information

Information-theoretic
Approach

an approach that involves quantification of information in
terms of entropy (i.e. the uncertainty in the value of a random
variable)

Expectation
Maximization (EM)
Approach

an iterative statistical method for finding the expected (E)
log-likelihood and then maximization (M) of it to determine
the maximum likelihood of parameters in statistical models
that depend on unobserved variables. In biology, this model is
used in medical image reconstruction, but also is frequently
used for data clustering in machine learning

Directed Weighted
Graph Approach

a method of modeling pairwise relationships in a group of
objects that are represented by a graph (i.e. network). When
the connection between objects (i.e. edge) is given a
numerical/statistical value or oriented between nodes, it is
said to be to be weighted or directed, respectively. In the case
of [54], these objects or nodes are TFs and/or target genes and
the relationship between them is given a value, while the
regulation is given a direction between them (i.e. the network
represents which node is acting upon another)
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Unsupervised machine
learning

a computational method of grouping data that does not
include a priori imposed criteria or information. The machine
(a computer) first “learns the appropriate similarities from a
training data set, for instance from genes or expression data,
and then applies the learned similarities to a larger set of
unknown data in order to group information
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Figure 1.
Schematic drawing of a cellular transition and a regulatory network. At the most basic level,
a regulatory network is made up of components (circles) and connections (lines between
circles) that may change as the result of a cellular transition. For example, in cell state 1
(blue) only some components (yellow) and connections (black) are present. In response to a
stimulus, the cell undergoes a cellular transition from cell state 1 (blue) to cell state 2 (blue-
gray). A corresponding transition also occurs in the regulatory network. While some
components and connections are unchanged, others are now present (orange circles) or lost.
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Figure 2.
Example of a Transcriptional Regulatory Network Reconstruction Components of
transcriptional networks include transcription factors (TFs) and their target genes (circles);
connections between them (lines between circles) denote binding of a TF to the regulatory
region of a target gene. If this TF binding results in gene expression changes, then this
connection is a regulatory connection; reconstruction of this results in a transcriptional
regulatory network (TRN). (a, left) Schematic drawing of the upstream and coding region of
a gene (gene B). Predicted or experimentally determined TF binding sites (gray boxes) of TF
A are found in the upstream region of gene B. (a, right) This information can be used to
reconstruct a representation of the connection (gray line) between a TF A (gray outlined
circle A) and its target gene B (gray outlined circle B). (b) The process in (a) can be
performed iteratively for each TF and gene in the genome. These can then be assembled to
reconstruct a TRN representation. This TRN reconstruction does not include gene
expression information, thus this network looks the same in cell states 1 and 2. (c) From
Figure 1, a schematic drawing of a cellular transition. It serves as a reference for the
networks in (b) and (e). (d, left) Same representation and case as in (a), except there is also
gene expression data supporting the expression of TF A (orange circle with green outline)
and corresponding changes in the expression levels of its target (gene B, orange circle with
blue outline). The orange arrow with blue outline indicates activation of gene B due to
binding and regulation by TF A. (d, right) A representation of the relationship between TF A
and gene B. TF A action (orange circle with a green outline) results in expression of target
gene B (orange circle with a blue outline). The blue line represents the relationship between
them, which is a regulatory connection. (e) The process in (d) can be performed iteratively
for each TF and gene in the genome for each cell state. These can be assembled to
reconstruct a TRN representation for cell states 1 (left) and 2 (right). Note that components
(A and B) and regulatory connections in (d) are absent in cell state 1 (left), but present after
the cellular transition to cell state 2 (right). The black vertical line labeled TSS in (a) and (d)
denotes the Transcriptional Start Site of gene B.
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