Skip to main content
. 2011 Jul 26;2011:506205. doi: 10.1155/2011/506205

Table 2.

The standard deviation of the 34 algorithms.

Algorithm Standard deviation
Basic training dataset Independent test dataset
ACC (%) MCC (%) ACC (%) MCC (%)
AdaBoostM1 0.61 1.16 1.00 1.94
J48 0.88 1.76 1.42 2.84
IBk 0.52 1.01 1.18 2.21
MultiClassClassifier 0.60 1.21 1.04 2.09
PART 0.55 1.25 1.26 2.54
MultilayerPerceptron 1.26 2.52 2.22 3.04
KStar 0.72 1.41 1.07 2.00
Bagging 0.76 1.51 0.43 0.88
NBTree 0.82 1.64 2.04 4.09
Decorate 0.73 1.47 1.16 2.25
RandomForest 0.67 1.32 0.62 1.25
JRip 0.48 0.96 2.25 4.43
RandomCommittee 0.51 0.99 1.23 2.59
FilteredClassifier 1.11 2.22 1.16 2.32
ClassificationViaRegression 0.96 1.91 0.80 1.57
Dagging 0.70 1.38 1.00 2.00
AttributeSelectedClassifier 0.85 1.71 0.66 1.40
REPTree 0.71 1.46 1.32 2.66
SMO 0.55 1.10 1.06 2.11
J48graft 1.06 2.12 1.40 2.81
Ridor 1.01 2.14 1.70 3.44
RandomSubSpace 0.91 1.84 1.22 2.44
EnsembleSelection 0.78 1.60 1.35 2.42
SimpleLogistic 0.41 0.83 0.92 1.84
DecisionTable 0.98 2.06 1.86 3.87
DataNearBalancedND 0.88 1.76 1.42 2.84
RacedIncrementalLogitBoost 0.63 1.59 1.68 3.61
SimpleCart 0.63 1.26 1.13 2.25
LogitBoost 0.43 0.87 1.23 2.47
ND 0.88 1.76 1.42 2.84
BayesNet 0.51 1.02 1.02 2.10
ClassBalancedND 0.88 1.76 1.42 2.84
OrdinalClassClassifier 0.88 1.76 1.42 2.84
END 0.88 1.76 1.42 2.84