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Abstract
MicroRNAs regulate temporal transitions in gene expression associated with cell fate progression
and differentiation throughout animal development. Genetic analysis of developmental timing in
the nematode C. elegans identified two evolutionarily conserved microRNAs, lin-4/mir-125 and
let-7, that regulate cell fate progression and differentiation and in C. elegans cell lineages.
MicroRNAs perform analogous developmental timing functions in other animals, including
mammals. By regulating cell fate choices and transitions between pluripotency and differentiation,
microRNAs help to orchestrate developmental events throughout the developing animal, and to
play tissue homeostasis roles important for disease, including cancer.

Introduction
The roles for microRNA pathways in developmental timing were revealed by genetic
analysis of worm mutants with particular kinds of defective larval cell lineages, in which
events that re ordinarily restricted to specific stages of larval development occur at abnormal
stages[1]. Cloning of the genes identified by these so-called heterochronic mutants of C.
elegans led to the identification of the microRNA gene products of lin-4 [2] and let-7 [3].
lin-4 and let-7 regulate the timing of a wide variety of distinct developmental events in
diverse cell lineages by progressively down regulating particular downstream targets (Figure
1), including the transcription factors LIN-14, HBL-1 and the TRIM protein LIN-41 [4].
MicroRNAs act post-transcriptionally on messenger RNA (mRNA) targets to which they
base pair and repress production of the target protein. As post-transcriptional regulators with
the ability to affect subtle changes in gene activity, or major microRNAs may be particularly
suited for the regulation of the timing of events in diverse cell types and hence for
coordinate the robust execution of temporal patterns of events throughout a developing
organism.

While lin-4 and let-7 each exerts its effects on cell fate progression in worm larvae by down
regulating a major target (LIN-14 and LIN-41, respectively), a different sort of
developmental progression is managed by miR430 in the fish embryo. miR430 expression
rises rapidly to very high levels at about 4 hours of embryonic development, and targets
hundreds of maternal mRNAs for deadenylation and destruction. Thus, in this case a
microRNA triggers a major developmental transition by coordinating the elimination of
mRNAs whose function is complete [5]

Interestingly, the involvement of microRNAs in developmental timing is reprised in plants
in a fashion quite analogous to C. elegans (reviewed in [6]). Heterochronic mutants of corn
exhibit global developmental timing defects reminiscent of those in worms [7]([8]. One of
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these corn mutants, Corngrass1 was found to result from over expression of the microRNA
miR156 [9]. The miR156 microRNA, along with other microRNAs, also controls
developmental transitions in Arabidopsis[10] [11]. Plant microRNAs are not related to
animal microRNAs, and so these parallel roles for microRNA pathways in plant and animals
represent independent evolutionary adaptations of microRNAs to developmental timing
roles.

Here I will review recent advances in understanding the microRNA pathways controlling
developmental timing in C. elegans, and how those studies are illuminating principles of
animal microRNA function in general. Emphasis will be placed on relating the functions of
worm lin-4 and let-7 microRNAs to the functions of their orthologous microRNAs in
mammals (mir-125 and let-7, respectively). I will also discuss findings showing that in
vertebrates, other microRNAs (unrelated to lin-4/mir-125 or let-7) function analogously to
the C. elegans heterochronic microRNAs to control the temporal progression of cell fates
within cell lineages, and transitions between pluripotency and differentiation.

Complex microRNA pathways control developmental timing in C. elegans
One overarching feature of the timing of developmental events in C. elegans lineages is the
extreme robustness of the normal pattern, which is completely invariant among wild type
worm. MicroRNAs play critical roles in posttranscriptional regulation of a set of key
transcription factors, LIN-14, HBL-1 and LIN-29 that orchestrate coordinated stage-specific
transcription programs throughout the developing larva. The lin-4-LIN-14 steps in the
cascade occur cell-autonomously [12], so the coordination of events across the animal
probably is not the consequence of extracellular traffic of microRNAs, but more likely
involves a temporally coordinated activation of the microRNAs and/or communication by
conventional hormones at later steps in the pathway [13], [14].

The temporal progression of cell fates in the lateral hypodermal cell lineages of the worm
represents a simple model for stem cell lineages in general, which are characterized by
regulated self-renewal and proliferative cell division patterns and the regulated production of
differentiated cell types (Figure 1). A single proliferative division occurs in the C. elegans
lateral hypodermal lineages, and is restricted to the L2 stage as a result of the stage-specific
down regulation of the transcription factor HBL-1 (Figure 1). HBL-1 is high in the L1 and
L2 stage, and then is down regulated in the L3. The down-regulation of HBL-1 is
accomplished by semi-redundant activity of members of the let-7 family microRNAs (let-7-
Fam), including mir-48, mir-84 and mir-241 [15]. Single-gene mutations of let-7-Fam
microRNAs do not result in appreciable perturbation of the timing of lateral hypodermal
events, but simultaneous mutation of two or more results repetition of the L2 proliferative
division and delay of adult lateral hypodermal fates[15].

The complexity of the gene regulatory pathways in which let-7-Fam microRNAs function in
C. elegans includes a feedback circuit involving let-7-Fam miRNAs and the DAF-12
transcription factor [14]. This circuit pathway involves both positive feedback and negative
feedback between the microRNAs, whose transcription in regulated by DAF-12, and in turn
DAF-12 is regulated by the let-7-Fam microRNAs. This circuit functions to integrate
environmental signals and developmental timing, and to coordinate developmental
quiescence with cell fate specification in the hypodermal lineages (Figure 1).

Another prominent role of let-7 in C. elegans is in terminal differentiation of the lateral
hypodermal lineages in conjunction with the final larva-to-adult molt [3]. The terminal
differentiation of these cells (termed the “larval-to-adult switch”) is mediated by up
regulation of the let-7 microRNA in the L4 stage, which down regulates LIN-41 and thereby
causes the up regulation of the LIN-29 transcription factor (Figure 1). The timing of let-7 up
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regulation is coupled to completion of previous larval development in part by a feed forward
circuit wherein let-7 transcription is repressed by HBL-1 at earlier stages; full let-7
transcription in the L4 is permitted only after completion of the down regulation of HBL-1
by let-7 and her sisters during the L3 stage [16].

The larval-to-adult switch involves terminal differentiation of hypodermal cells, which is
primarily triggered by let-7 via LIN-41 and LIN-29, and also the cessation of the cycle of
molts (Figure 1). The conserved nuclear hormone receptors NHR-23 and NHR-25 control
molting in the worm[17], and the cessation of larval molting results from the direct targeting
of NHR-23 and NHR-25 by let-7-Fam microRNAs [18].

Integration of temporal information with other developmental signals
The heterochronic pathway microRNAs regulate, via their downstream target genes, a
variety of distinct cellular behaviors. For example, lin-4 acts via its major target, LIN-14, to
affect the timing of certain events in development of the worm nervous system -- in
particular, in the timing of neural outgrowth in a neuronal type that matures
postembryonically [19]. MicroRNAs also help coordinate differentiation and proliferation in
other cell lineages, including cell cycle progression and cell fate commitment for vulval
precursor cells (VPCs) [20]. Vulval development involves a precisely orchestrated temporal
and spatial program of sequential signaling events involving an EGF organizer signal,
transduced by the Ras pathway in the so-called 1° VPC, and a LIN-12/Notch lateral signal
from the 1° VPC to its 2° VPC neighbors. The timing of Ras-mediated signaling in the 1°
VPC is modulated by mir-84, a member of the let-7 family of microRNAs [21]. The Ras-
activated fate of this cell includes sending a LIN-12/Notch lateral inhibitory signal to its
neighbors, where the lin-4-LIN-14 circuit interfaces with the LIN-12/Notch gene expression
program to help coordinate steps in cell cycle progression and 2° cell fate commitment [22].
LIN12/Notch activation in the 2° cells engages a feedback loop involving another (non-
let-7- family) microRNA, mir-61. mir-61 down-regulates Ras signaling in the 2° VPC to
help ensure mutual exclusivity of Ras and LIN-12/Notch signaling [23].

Modulation of the activities of temporal microRNAs
The distinctive developmental phenotypes associated with developmental timing microRNA
pathways in C. elegans offers a powerful system for employing genetic screens to identify
cofactors that regulate microRNA biogenesis or activity. RNAi screens for proteins that
genetically interact with let-7-Fam microRNAs and modify their developmental timing
phenotypes identified the conserved TRIM/NHL protein NHL-2, which functions as a
positive co-factor for the activity of let-7-Fam microRNAs and other microRNAs [24]. The
vertebrate and fly orthologs of NHL-2 have similar conserved microRNA-associated
functions [25], suggesting that TRIM/NHL proteins could function widely to adjust the
activity of let-7 and other microRNAs in the context of the physiology of the developing
animal.

Another interesting cofactor for let-7 activity, also identified by genetic modifier screens in
C. elegans, is the ribosomal protein RPS-14[26]. Reduction of RPS-14 by RNAi in the
worm results in elevation of let-7 activity. The RPS-14 protein could be co-
immunoprecipitated with the nematode miRISC Argonaute, ALG-1, suggesting a possible
direct role for RPS-14 in miRISC activity. It is not know if the microRNA-associated
activity of RPS-14 occurs in physical constituent of the ribosome, or in the context of a
hypothetical extra-ribosomal function for RPS-14. Consistent with the theme of ribosome-
miRISC functional interactions, another ribosome-associated protein, RACK1, has been
found to genetically interact with microRNAs in C. elegans, and seems to physically
associate with miRISC to promote microRNA activity in worms and mammalian cells [27].
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RNAi screens for modulators of lin-4 control of developmental timing in C. elegans
identified a conserved RNA binding protein gene rbm-28, which appears to affect the
accumulation of lin-4 microRNA [28]. RMB-28 is homologous to the human RBM28, a
nucleolar protein which has been implicated in diseases associated with defects in
spliceosomal and/or ribosome biogenesis [29] [30] [31], suggesting a possible intersection
of nucleolar RNP function and the regulation of lin-4 accumulation.

Conserved Functions of Developmental Timing MicroRNAs
The finding that let-7 microRNA is conserved in sequence and developmental expression
across wide evolutionary distance [32] was a watershed discovery that set in motion
searches for other small RNAs like let-7 and lin-4 (the only microRNAs known at the time).
Rapidly thereafter, scores of microRNAs were identified in animals [33],[34], [35], and then
plants [36]. An immediately apparent evolutionarily conserved characteristic of let-7
microRNA is its temporal up regulation in conjunction with advancing embryonic
development and differentiation, and the absence of let-7 from pluripotent cells [32]. The
evolutionary conservation of developmental timing roles for microRNAs, particularly the
let-7 family of microRNAs, has been extensively reviewed [37], [38], [39], [40], [41]. Of
particular note is the deep conservation of the direct negative feedback loop between let-7
and the pluripotency factor LIN-28 (Figure 2 A, Figure 3A). LIN-28 binds to pre-let-7 and
inhibits production of the let-7 mature microRNA [42], which in turn directly represses
LIN-28 production by base-pairing to the lin-28 mRNA, [43], [41]. Similarly, let-7 targeting
of LIN-41 is conserved between nematodes and mammalian cells (Figure 2A), and the
expression pattern of let-7 and mir-125/lin-4 microRNAs is inversely correlated with
LIN-41 in mouse [44]. In C. elegans a let-7 family microRNA regulates Ras (LET-60) in the
context of development of the vulval primordium (Figure 2A), and in mammals let-7 targets
Kras in a range of cell types to inhibit proliferation [21]. These deeply conserved
microRNA-target relationships seem to reflect core functions of the microRNA that are
intimately engaged in fundamental regulatory circuitry of all animal cells.

A hallmark of the conservation of let-7 function as a differentiation factor and tumor
suppressor is the fact that the target repertoire of let-7 displays remarkable evolutionary
fluidity, while at the same time exhibiting a core set of conserved targets discussed above
(LIN-28, Ras, LIN-41). Interestingly, the non- -conserved targets of let-7 are also set in the
theme of temporal control of cell fate (Figure 2A). For example, in Drosophila, one of the
temporal transitions regulated by let-7 is a reorganization of the neuromusculature of the fly
during metamorphosis[45],[46]. A key let-7 target in this event is Abrupt[45], which is not a
target of let-7 in worms or mammals. Similarly, a key target of let-7 in mammals is the
oncogene HMG2A [47], orthologs of which are not targets of let-7 in worms or flies.

Similarly consistent with a conserved temporal control function, the mammalian lin-4
homolog miR-125b seems to regulate the proliferation of hematopoietic stem cells and also
affects the balance of cell fates during lymphoid development, in part probably by acting as
a lineage-specific anti-apoptotic factor [48]. miR-125b also plays analogous roles in the
temporal progression of neuronal differentiation in humans by repressing multiple targets
[49]. The apparent conserved roles for let-7 and miR-125/lin-4 microRNAs as a temporal
regulators of cell fate transitions could reflect ancestral roles for these microRNAs.

Noteworthy advances around the subject of microRNAs in neural development include roles
for the miR-183 family and for miR-96 in the development of sensorineural fates in the
inner ear[50], [51], [52]. Particularly exciting is the finding that mutations in the miR-96
seed sequence are responsible for progressive hearing loss in certain human families[52].
Moreover, mice carrying miR-96 seed mutations exhibit a similar deafness [51], and the
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underlying developmental defect in these mice seems to be an arrest in the developmental
progression program for inner and outer hair cells, as well as blocks in steps of auditory
neural wiring [53]. Thus, mir-96 (which is not related in sequence to lin-4/miR-125 or let-7),
controls a program of developmental progression for mammalian inner ear cells in a fashion
analogous to the roles of C. elegans lin-4 and let-7 microRNAs in promoting developmental
progression in worms cell lineages.

Developmental timing and Cancer
Consistent with an analogy between temporal progression of cell fates in C. elegans larval
development, which is controlled by microRNA pathways, and cancer progression, lin-4/
miR-125 and let-7 family microRNAs figure prominently in tumorigenesis (reviewed by
[41]). Change in the level of miR-125 expression is a common characteristic of leukemia,
and experimental support for a direct contribution miR-125 to leukemogenesis comes from
mouse experiments. Over expression of miR-125 in transplanted mouse fetal liver results in
elevated neutrophils and monocytes, and eventual B-cell acute lymphoblastic leukemia, T-
cell acute lymphoblastic leukemia, or myeloproliferative disease[54]. These and other
findings implicate miR-125b activity in specifying early stages of hematopoietic cell
lineages. Targets for miR-125 in the context of hematopoesis and leukemia have not been
identified, although miR-125 is predicted to target pro-apoptotic transcripts [55],[56], and
p53 (at least in humans) {Le, 2009 #17150

Transitions between Pluripotency and differentiation
MicroRNAs participate in the regulated transitions of progenitor cells from a multipotent,
self-renewal status towards differentiation in numerous cell lineages and tissues of
vertebrate embryos. The roles of microRNAs in the development of mammalian skin [57]
include the action of mir-203 to promote differentiation by repressing stemness [58].

A possible inverse relationship between microRNA expression and pluripotency of
Embryonic Stem (ES) cells emerged from the finding that LIN-28 could act, together with
three other proteins, to induce the reprogramming of human somatic cells to pluripotent
stem cells {Yu, 2007 #6568}. LIN-28 inhibits expression of microRNAs associated with
differentiation, including let-7 (Figure 2; Figure 3A). MicroRNAs that target LIN-28
(including miR-125/lin-4 and let-7)[59] are expressed during differentiation of cell lineages
from ES cells in a fashion inversely correlated with LIN28 expression [60]. Certain
microRNAs, such as miR-145 [59], or let-7 [61] can inhibit reprogramming of somatic cells
to induced pluripotent stem (iPS) cells.

However, recent findings provide evidence for a direct role for microRNAs in the
pluripotency of Embryonic Stem (ES) cells. First, microRNA-depleted ES cells are
incapable of producing differentiated cells, indicating that although they are viable, they do
not possess the developmental potential characteristic of normal ES cells [62] [63]. Second,
a distinct set of microRNAs are expressed in ES cells [64], and evidence indicates that these
ES cell microRNAs (ESmirs, Figure 3) help maintain the pluripotency and self-renewal
capacity of ES cells. Third, certain Myc-induced microRNAs can replace Myc in the
generation of induced pluripotent cells [65], providing evidence for a potentially direct role
for microRNAs in promoting pluripotency. Finally, expression of the miR302/miR367
microRNA locus from a viral vector has been shown to be sufficient to reprogram mouse or
human fibroblasts to induced pluripotent stem (iPS) cells [66] (Figure 3B). The fact that
reprogramming of somatic cells to induced pluripotency can be triggered by expression of
just two microRNAs suggests that these microRNAs exert enormous leverage upon key
gene regulatory network hubs that orchestrate bidirectional transitions between pluripotency
and differentiation in mammals.
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Conclusions
The C. elegans model system continues to be a valuable tool for discovering and
characterizing microRNA pathway components involved in the organized developmental
progression of cell lineages from earlier, more pluripotent stages, towards differentiation.
Much work needs to be done, employing model organisms such as C. elegans, in
conjunction with mouse and human genetics, to understand how microRNAs are temporally
regulated in particular cell lineages, and how they engage specific targets in specific cell
types in the context of developmental progression. Of particular interest in the near future
are the apparently powerful roles of microRNAs in transitions between pluripotency and
differentiation that are fundamental to developmental progression, tissue homeostasis, and
human disease.
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Highlights

• C. elegans heterochronic gene pathway is a model for temporal control of cell
fates.

• MicroRNAs have evolutionarily conserved functions in developmental timing.

• MicroRNAs exert powerful roles in pluripotency and differentiation.
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Figure 1. MicroRNAs and developmental timing in C. elegans
MicroRNAs (shaded text boxes) of the lin-4 and let-7-Family control the temporal
progression of cell fates in the lateral hypodermal “seam” cell lineages of developing C.
elegans larvae. In each of stages L1-L4, seam cells undergo a single round of stem cell-like
self-renewal divisions (wedge-shaped bars), with a single symmetric division (red bar)
interposed in the L2 stage. At the L4 molt, seam cells exit the cell cycle and terminally
differentiate (triple bars). MicroRNAs post-transcriptionally regulate key target mRNAs by
direct interactions (blue lines) with to 3′ UTR sequences. Down regulation of the
transcription factor LIN-14 by lin-4 microRNA is required for progression from the
asymmetric L1 division pattern to symmetric division in the L2. Progression from the L2 to
the L3 fate is caused by the down regulation of the transcription factor HBL-1 through the
redundant activity of microRNAs of the let-7 family, which includes let-7, mir-48, mir-84,
and mir-241 [15]. let-7-Family microRNA activity is modulated positively by the TRIM/
NHL protein NHL-2 [24]. The L2 to L3 transition also involves down regulation of the
RNA binding protein LIN-28 by lin-4 microRNA; LIN-28 acts upstream of the let-7-Family
microRNAs [15]. The nuclear hormone receptor is the hub of a complex set of interactions
that integrate microRNA and steroid hormone inputs to coordinate temporal cell fates with a
decision to enter an optional diapause after the L2 stage [14]. Progression from a cycling
status to terminally-differentiation at the L4 molt is conferred by a dramatic up-regulation of
let-7 in the L4, resulting in down-regulation of the TRIM/NHL protein LIN-41, and
consequent up regulation of the transcription factor LIN-29. HBL-1 represses let-7
transcription, ensuring that the up regulation of let-7 microRNA occurs only after
completion of earlier steps. The cessation of molting after the L4 stage involves in part the
down regulation, by let-7 family microRNAs, of the nuclear hormone receptor molting
factors NHR-23 and NHR25 [17].

Ambros Page 12

Curr Opin Genet Dev. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Evolutionary conservation of developmental timing roles for microRNAs
A. In nematodes, insects and mammals, let-7 family microRNAs control progression from
earlier, or more proliferative states, to later, more differentiated states. These conserved
activities in developmental progression can involve explicitly conserved targets (red), and
non-conserved targets (blue). C. elegans let-7 family microRNAs act in several cell types to
control early-to-late cell fate progression. Examples of targets that are conserved between C.
elegans and mammals and insects include LIN-28, LET-60/Ras and LIN-41. Nonconserved
targets of let-7 can nevertheless mediate roles for let-7 in promoting transitions from more
primitive to more differentiated developmental states: examples include in Drosophila the
down regulation of Abrupt in the control of a reorganization of the neuromusculature at
metamorphosis [45],[46], and in humans the down regulation of the oncogene HMGA2 [67].
B. MicroRNAs of families other than let-7 can also control temporal developmental
transitions, such as the case of miR-96, which is required for a program of differentiation in
mammalian inner ear hair cells [53]. There could be multiple relevant targets of miR-96 in
this context, since many mRNAs are deregulated in mir-96 mutant mice [51].
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Figure 3. MicroRNAs and transitions between pluripotency and differentiation
A. An evolutionarily conserved reciprocal repression between let-7 microRNA and LIN-28
results in mutually exclusive expression of LIN-28 between ES cells and differentiated cells,
respectively. ES cell microRNAs (ESmirs) promote pluripotency and self-renewal together
with other factors, including LIN-28, which acts in part by preventing expression of let-7. B.
MicroRNAs miR-302 and miR-367 are expressed in stem cells of various types, including
ES cells. Under certain conditions, experimental expression of miR-302 and miR-367 can be
sufficient to reprogram mouse or human fibroblasts to induced pluripotent stem (iPS) cells
[66].
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