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ABSTRACT

Motivation: Mathematical models of complex biological systems
usually consist of sets of differential equations which depend on
several parameters which are not accessible to experimentation.
These parameters must be estimated by fitting the model to
experimental data. This estimation problem is very challenging due
to the non-linear character of the dynamics, the large number
of parameters and the frequently poor information content of the
experimental data (poor practical identifiability). The design of
optimal (more informative) experiments is an associated problem of
the highest interest.
Results: This work presents AMIGO, a toolbox which facilitates
parametric identification by means of advanced numerical
techniques which cover the full iterative identification procedure
putting especial emphasis on robust methods for parameter
estimation and practical identifiability analyses, plus flexible
capabilities for optimal experimental design.
Availability: The toolbox and the corresponding documentation may
be downloaded from: http://www.iim.csic.es/~amigo
Contact: ebalsa@iim.csic.es
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1 INTRODUCTION
Dynamic modeling and simulation are becoming standard
approaches to understand complex biological systems. Model
identification is at the core of model building, and involves
the computation of unknown non-measurable parameters by
means of experimental data fitting (Jaqaman and Danuser, 2006).
However, parametric identification is a bottleneck in the modeling
process due to, mainly, the frequently ill-possed and multimodal
nature of the associated optimization problems, and the poor
practical identifiability due to lack of information in the available
experimental data.

The use of suitable optimization methods to avoid local solutions
has been illustrated during the last decade by many authors, and
some of these methods have been incorporated in software tools
such as: COPASI (Hoops et al., 2006), SBToolbox2 (Schmidt and
Jirstrand, 2006), PottersWheel (Maiwald and Timmer, 2008) or
SensSB (Rodriguez-Fernandez and Banga, 2010). These software
packages allow the dynamic simulation and analysis of systems
biology models, including methods for sensitivity analysis and
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parameter estimation and, in some cases, some basic facilities for
experimental planning.

Here, we present the result of our research efforts in the
development of procedures to improve practical identifiability and
to help in the design of informative experiments. The underlying
idea is to help the system biologist on how to stimulate and observe
the system for the purpose of model identification.

2 SUMMARY OF FEATURES
AMIGO is the first multiplatform (Windows and Linux)
environment which covers all the steps of the iterative identification
procedure (Balsa-Canto et al., 2010). Its ultimate goal is to enable
the computation of model unknowns with the maximum accuracy
and at a minimum experimental cost, offering:

• maximum flexibility for the definition of models and
observation functions;

• multiexperiment tasks with local (experiment dependent) and
global information;

• multiple types of experimental noise conditions and,
accordingly, different types of cost functions for parameter
estimation and experimental design;

• maximum flexibility for the definition of unknowns: parameters
and initial conditions that may be local (experiment dependent)
or global for all tasks;

• several approaches to perform identifiability analyses;

• sequential-parallel optimal experimental designs formulated as
general optimal control problems; and

• a suite of state of the art numerical methods for both
simulation and optimization to cover a broad range of problems:
integration of stiff, non-stiff and/or sparse dynamic systems,
plus solvers for convex and multimodal non-linear optimization
problems.

2.1 Problem definition
Types of models: AMIGO supports general non-linear dynamic
models using a simple syntax. Users can also import SBML models,
or work with arbitrary black-box user-defined models, allowing the
handling of partial differential, general differential and algebraic or
delay differential equations.

Definition of the experimental scheme: the experimental scheme
describes the conditions under which the experiments were
(or are to be) performed at the wet lab (Fig. 1). Users can
define multiexperimental schemes with maximum flexibility over
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Fig. 1. Illustrative example of the experimental scheme and data.

experiments—observables, stimulation profiles, initial conditions,
experiment durations and sampling times—that are to be performed
in silico or to be optimally designed. Any linear or non-linear
observation functions are accepted and several typical stimulation
conditions (sustained, pulse-wise, step-wise or measured) are
already predefined to ease their implementation.

Definition of the experimental data: it allows the loading of real
experimental data with different types of Gaussian experimental
noise, homoscedastic with known constant variance, homoscedastic
with known varying variance, i.e. with error bars determined by
experiments replicates or heteroscedastic with power on the mean
variance.

Definition of model unknowns: it offers the possibility of defining
local (experiment dependent) or global (experiment independent)
model unknowns (parameters and initial conditions).

2.2 Available tasks
Simulation: the toolbox offers several dynamic simulation tasks
(AMIGO_SModel, AMIGO_SObs and AMIGO_SData) to solve
system dynamics under given values of model unknowns and
given experimental schemes. AMIGO_SModel and AMIGO_SObs
solve the system dynamics and depict states and observables
plots, respectively. AMIGO_SData solves the system dynamics and
plots observables together with experimental data, if available, or
generates pseudoexperimental data to perform numerical tests.

Sensitivity analysis and rank of parameters: AMIGO_LRank and
AMIGO_GRank allow multiexperiment local and global sensitivity
analysis, respectively, for local and global model unknowns. The
overall results are collected into a rank of the unknowns to asses
their relative influence in the observables. The sensitivities of the
different observables with respect to selected unknowns for the
given experiments are also provided so as to obtain information
about possible identifiability problems and clues for the purpose of
experimental design.

Parameter estimation: AMIGO_PE allows for multiexperiment
fitting of local and global unknowns. Several types of weighted
least squares and log-likelihood functions may be used depending
on the available information about the experimental noise. The

optimal solution will be accompanied by the confidence intervals
as computed by means of the Fisher Information Matrix (FIM).

Practical identifiability analysis: as well as the use of sensitivity
analysis and the computation of FIM-based confidence intervals,
the tool offers two additional tasks to complete the identifiability
analysis. AMIGO_Contourp plots 2D projections of the parameter
estimation cost function so as to assess multimodality and poor
or lack of identifiability by pairs of parameters. AMIGO_RIdent
performs a robust analysis using a Monte Carlo-based approach
to generate the robust confidence hyperellipsoid and to provide
relevant information regarding correlation of the parameters and
robust confidence intervals.

Optimal experimental design: the toolbox can solve the optimal
sequential-parallel experimental design problem as a truly general
optimal control problem (Balsa-Canto et al., 2008a). It allows
the optimization of the number and location of sampling times,
stimulation profiles, initial conditions and experiment durations
for one or more simultaneous experiments. Sequential-parallel
designs are possible so as to allow for the new optimally designed
experiments to be complementary to existing experiments. Several
FIM-based formulations have been incorporated so as to handle the
different types of experimental noise.

2.3 Numerical methods
AMIGO incorporates a suite of state of the art initial value problem
(IVP) and non-linear optimization (NLP) methods in order to handle
different types of problems.

Regarding IVP solvers, explicit and implicit Runge-Kutta of
several orders and Adams methods have been incorporated to deal
with non-stiff or mildly-stiff dynamic systems; methods based on
the backward differentiation formulae (BDF) are available to solve
stiff models and methods using sparse algebra may be used for large-
scale models. Implementations of the methods are available both for
MATLAB and FORTRAN (the latter allows a significant reduction
of computation times).

Several options are also offered to compute parametric
sensitivities, either using the direct approach based on BDF methods
or by means of finite differences schemes.

Regarding NLP solvers, several direct and indirect local
methods are available to handle convex problems. However,
finding the global optimum for multimodal problems, i.e. those
presenting multiple local optima, requires robust and efficient global
optimization methods. In this regard, the toolbox offers the multistart
of local methods to detect multimodality or poor identifiability and
several global stochastic methods.

Despite the fact that many stochastic methods can locate the
vicinity of global solutions very rapidly, the computational cost
associated to the refinement of the solution is usually large. In
order to surmount this difficulty, the toolbox integrates several
metaheuristics (Egea et al., 2007), clustering methods (Csendes
et al., 2008) and sequential hybrids (Balsa-Canto et al., 2005,
2008b), which combine different mechanisms of global exploration
of the search space with the use of local methods to enhance
computational efficiency.

See the toolbox documentation for exhaustive lists and references
to the available numerical methods.
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Fig. 2. AMIGO structure.

2.4 Illustrative examples
For illustrative purposes, a number of examples are included
with the tool (see folder Examples) covering different types of
biochemical networks. The implementation of these examples and
the corresponding results are extensively discussed in the AMIGO
user guide. In addition, interested readers are referred to the works
by Vera et al. (2010) where the tool was used in the modelling of
the MEK/ERK/RKIP pathway or Balsa-Canto et al. (2010) where
the complete model identification procedure is applied to a NFκB
signaling module model.

3 GENERAL STRUCTURE AND
IMPLEMENTATION

AMIGO has been developed as a modular multiplatform toolbox
organized in two major blocks: the user and the server sides (Fig. 2).

The user side consists of the following folders: doc keeps all
toolbox-related documentation (user guide, tutorials, etc.); Examples
keeps a number of implemented examples that the user may consider
as templates to implement new problems; Inputs, originally empty,
is devoted to keep new inputs created by users; Results, originally
empty, is devoted, by default, to keep all results; Release_info
contains the AMIGO_release_info.m file with all details about
previous and current releases.

The server side is arranged in four modules: the Preprocessor that
generates MATLAB or FORTRAN codes, performs the mex of files
when required; the tasks SModel, Sobs, SData, LRank, GRank,
PE, ContourP, RIdent and OED that correspond to different
steps in the model identification loop; the Kernel that performs the
numerical computations and the Postprocessor that post-processes

the results to generate output reports, structures and figures.
The toolbox has been implemented in MATLAB, but it also

offers the possibility to automatically generate compiled FORTRAN
models that AMIGO will link to FORTRAN initial value problem
(IVP) solvers, substantially increasing computational efficiency. The
user may define and solve different tasks by either using input scripts
or by means of a user-friendly graphical interface. The toolbox
generates reports, including tables and plots, according to user
specifications for the different tasks. Help functions are also present
to facilitate the handling of data and results.
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