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Abstract
Background—Ventral tegmental area (VTA) brain-derived neurotrophic factor (BDNF)
contributes to time-dependent increases in cue-induced cocaine seeking after withdrawal
(incubation of cocaine craving). Here, we studied the role of glial cell line– derived neurotrophic
factor (GDNF) in incubation of cocaine craving because, like BDNF, GDNF provides trophic
support to midbrain dopamine neurons.

Methods—We first trained rats to self-administer intravenous cocaine for 10 days (6 hours/d,
cocaine injections were paired with a tone-light cue). We then manipulated VTA GDNF function
and assessed cue-induced cocaine seeking in extinction tests after withdrawal from cocaine.

Results—VTA injections of an adeno-associated virus (AAV) vector containing rat GDNF
cDNA (5 ×108 viral genomes) on withdrawal Day 1 increased cue-induced cocaine seeking on
withdrawal days 11 and 31; this effect was not observed after VTA injections of an AAV viral
vector containing red fluorescent protein (RFP). Additionally, VTA, but not substantial nigra
(SN), GDNF injections (1.25 μg or 12.5 μg/side) immediately after the last cocaine self-
administration session increased cue-induced drug seeking on withdrawal days 3 and 10; this
effect was reversed by VTA injections of U0126, which inhibits the activity of extracellular
signal-regulated kinases (ERK). Finally, interfering with VTA GDNF function by chronic delivery
of anti-GDNF monoclonal neutralizing antibodies via minipumps (600 ng/side/d) during
withdrawal Days 1–14 prevented the time-dependent increases in cue-induced cocaine seeking on
withdrawal days 11 and 31.

Conclusions—Our results indicate that during the first weeks of withdrawal from cocaine self-
administration, GDNF-dependent neuroad-aptations in midbrain VTA neurons play an important
role in the development of incubation of cocaine craving.
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Relapse to cocaine use in humans can occur after prolonged abstinence periods and is often
precipitated by exposure to craving-provoking cocaine-associated cues (1). Gawin and
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Kleber (2) hypothesized that cue-induced cocaine craving increases over the first several
weeks of abstinence and remains high over extended periods. We and others identified an
analogous phenomenon in rats: time-dependent increases in cue-induced cocaine seeking
over weeks after withdrawal from self-administered cocaine (3–5), a phenomenon termed
“incubation of cocaine craving.” This incubation was primarily demonstrated in two
procedures used to assess cue-induced reward seeking (6,7): a single extinction session in
the presence of cocaine-associated cues (8–10) and discrete-cue-induced reinstatement after
extinction of lever presses without these cues (3,11,12).

On the basis of earlier studies (13–15), we previously studied mesolimbic brain-derived
neurotrophic factor’s (BDNF’s) role in incubation of cocaine craving. BDNF colocalizes
with midbrain (ventral tegmental area [VTA] and substantia nigra [SN]) dopamine neurons
(16) and supports their function (17,18). We found that BDNF levels in the VTA (the cell-
body region of mesolimbic dopamine neurons), nucleus accumbens, and amygdala
progressively increase over the first 90 withdrawal days (11). We also found that a single
BDNF injection into the VTA at the end of the cocaine self-administration period enhances
cue-induced drug seeking for up to 30 days after withdrawal (19). These findings implicate
mesolimbic BDNF in incubation of cocaine craving (for a discussion of BDNF’s role in this
incubation see Lu et al.) (19).

Another growth factor that is important for the survival and function of midbrain dopamine
neurons is glial cell line–derived neurotrophic factor (GDNF) (20,21), a member of the
GDNF-subfamily of ligands (22). Although there is evidence that stimulating mesolimbic
BDNF potentiates rodents’ response to cocaine and cocaine cues (13,23–26), opposite
effects were found for GDNF (27–30). GDNF VTA injections decrease, whereas local anti-
GDNF antibodies injections increase, cocaine’s rewarding effects in a conditioned place
preference (CPP) procedure (31). Additionally, striatal transplantation of simian virus-40
glial cells that produce GDNF or local injections of GDNF-conjugated nanoparticles
decrease cocaine self-administration (32,33).

Given these findings and those on the inhibitory effect of VTA GDNF on alcohol reward
(27,30,34,35), we explored whether VTA GDNF is also a negative modulator of the
incubation of cocaine craving. We also studied the role of extracellular signal-regulated
kinases (ERK), the activation of which contributes to the behavioral effects of abused drugs
(36,37). Most relevant here is that VTA GDNF injections increase local ERK activity and
this activity mediates the effect of GDNF on alcohol-taking behavior (34). Additionally, we
found that inhibition of VTA ERK activity prevents the potentiation effect of VTA BDNF
injections on incubation of cocaine craving (19). Here, we report results suggesting that,
contrary to our hypothesis, during the first several weeks of withdrawal from cocaine,
GDNF actions in the VTA are necessary for the development of incubation of cocaine
craving.

Methods and Materials
Subjects

Subjects were male Long-Evans rats (Charles River, Raleigh, North Carolina; Experiments 1
and 2) and male Sprague-Dawley rats (Laboratory Animal Center, Peking University;
Experiments 3–5) weighing 325–375 g. Rats were maintained on a reversed 12-hour light-
dark cycle (lights off at 9 or 10 AM) with food and water freely available in the home cage.
Procedures followed the “Principles of Laboratory Animal Care” (National Institutes of
Health publication No. 86–23, 1996) and were approved by the institutional animal care
committees. The self-administration and locomotor-activity chambers are described in the
Supplement 1.
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Surgical Procedures and Intracranial Injections
The intravenous and intracranial surgical procedures and the VTA or SN coordinates are
based on our previous work (19,38) and are provided in the Supplement 1. Supplement 1
also provides the procedures for intracranial injections of AAV-GDNF and AAV- red
fluorescent protein (RFP), GDNF, anti-GDNF monoclonal neutralizing antibodies, and
U0126.

Construction of the GDNF and the RFP Viruses and Real-Time Polymerase Chain Reaction
Measurement of GDNF mRNA Expression

The procedures for the construction of the GDNF and RFP viruses and real-time polymerase
chain reactin (PCR) measurements are based on our previous work (39–41) and other reports
(42,43), and are described in the Supplement 1.

Experiments
Experiments consisted of three phases: self-administration training, withdrawal, and
extinction testing. Procedures were similar to those used in our recent studies (19,44–47)
and those of others (8–10,48) in which incubation of craving was assessed in extinction
tests. In these tests, rats are exposed to contextual cues previously associated with cocaine
availability (e.g., house light), and responding to the previously active lever (or hole) results
in contingent presentations of the discrete tone-light cue (which serves as a conditioned
reinforcer during testing) (49). The details of the training phase, withdrawal phase, and test
phase are provided in Supplement 1.

Experiment 1: Effect of VTA GDNF AAV Injections
We assessed the effect of increasing GDNF VTA levels by an AAV vector expressing rat
GDNF on the time-dependent increases in cue-induced cocaine seeking. Two groups of
Long-Evans rats (n = 8–10 per group) were used. Rats were infused with the AAV-GDNF or
the AAV-RFP into the VTA on withdrawal day 1. Subsequently, the rats underwent repeated
1-hour extinction tests on withdrawal days 4, 11, and 31. In this experiment, and in
Experiment 4, the duration of the extinction test was 1 hour to maximize our ability to detect
time-dependent increases in extinction responding on withdrawal day 31 after exposing the
rats to the cocaine cues in two earlier tests.

Experiment 2: Effect of VTA GDNF Injections: Long-Evans Rats
We assessed the effect of a single GDNF VTA injection, performed within 1–2 hours after
the last cocaine self-administration, on the time-dependent increases in cue-induced cocaine
seeking. Three groups of rats (n = 8–10 per group) were used. Rats were injected 1–2 hours
after the last cocaine self-administration training session with either vehicle or GDNF (1.25
or 12.5 μg/site) into the VTA. After the injections, rats were brought to the animal facility.
Subsequently, the rats underwent repeated extinction tests on withdrawal days 3 and 10.
Tests consisted of two 1-hour sessions that were separated by 5 min.

Experiment 3: Effect of VTA or SN GDNF Injections: Sprague-Dawley Rats
In Experiment 2, we used Long-Evans rats that were trained to lever press for cocaine
infusions and found that a single VTA injection of GDNF increased extinction responding
on withdrawal days 3 and 10. Here, we assessed the generality of this effect to Sprague-
Dawley rats that were trained to nose poke for cocaine infusions. We also assessed
anatomical specificity by injecting GDNF into the nearby SN. Four groups of rats (n = 8–9
per group) were used. Rats were injected 2–4 hours after the last cocaine self-administration
training session with either vehicle or GDNF (12.5 μg per site) into the VTA or SN. After
the injections, rats were brought to the animal facility. Subsequently, rats underwent
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repeated extinction tests on withdrawal days 3 and 10. Tests consisted of two 1-hour
sessions that were separated by 5 min.

Experiment 4: Effect of Chronic Delivery of Anti-GDNF Antibodies into the VTA
We further accessed the potential role of GDNF in incubation of cocaine craving by
determining whether interfering with GDNF function in VTA by chronic delivery of anti-
GDNF antibodies would prevent time-dependent increases in cue-induced cocaine seeking.
Two groups of Sprague-Dawley rats (n = 8 per group) were used. After the last cocaine self-
administration training session, rats were implanted with osmotic minipumps that contain
either anti-GDNF monoclonal antibodies (600 ng/side/d) or mouse control immunoglobulin
G (IgG). These pumps provided a constant infusion rate of .5-μL/hour for up to 14 days after
implantation. The minipumps were removed after 14 days under anesthesia. Rats underwent
repeated 1-hour extinction tests on withdrawal days 4, 11, and 31.

Experiment 5: Effect of U0126 VTA Injections on GDNF-Induced Potentiation of Extinction
Responding

We assessed the role of the ERK signalling pathway in the potentiation effect of GDNF
VTA injections on cue-induced cocaine seeking. For this purpose, we used U0126, which
inhibits ERK phosphorylation (50). Four groups of Sprague-Dawley rats (n = 8–9 per group)
were used in a 2 (GDNF dose: 0 or 12.5 μg) × 2 (U0126 dose: 0 or 1 μg) factorial design.
Rats were injected into the VTA with U0126 or its vehicle (50% dimethylsulfoxide solution
[DMSO]) 20 min before injections of GDNF or its vehicle; injections were performed 1–2
hours after the last training session. After the injections, rats were brought to the animal
facility. Subsequently, the rats underwent repeated 2-hour extinction tests on withdrawal
days 3 and 10. Tests consisted of two 1-hour sessions that were separated by 5 min.

Results
Figure 1 shows mean ± SEM number of infusions during the training phase of Experiments
1–5. These experiments were conducted over 6 years in different institutions with Long-
Evans rats using levers (Experiments 1 and 2) or Sprague-Dawley rats using a nose-poke
manipulandum (Experiments 3–5). Thus, we analyzed the training data using the between-
subjects factor of Experiment (Experiments 1–5) and the within-subjects factor of Training
Session (Sessions 1–10). This analysis revealed a main effect of Training Session
[F(9,1170) = 63.0, p < .01], reflecting increased cocaine intake over days, and Training
Session by Experiment [F(9,1170) = 2.1, p < .01], reflecting different rates of acquisition in
the different experiments. However, a main effect of Experiment was not significant (p > .
5), reflecting similar overall cocaine intake over the 10 training days in Experiments 1–5.
The groups in the different conditions in Experiments 1–5 were matched for cocaine intake
during training.

VTA Injections of AAV-GDNF Potentiated the Time-Dependent Increases in Cue-Induced
Cocaine Seeking After Withdrawal (Experiment 1)

Figure 2B shows mean ± SEM number of nonreinforced presses on the active and inactive
levers during the extinction tests conducted 4 days, 11 days, and 31 days after withdrawal
from cocaine in rats injected with the AAV-GDNF or the AAV-RFP on withdrawal day 1.
The mixed analysis of variance (ANOVA) included the between-subjects factor of Virus
Type and the within-subjects factor of Withdrawal Day. Active-lever responding analysis
revealed significant effects of virus Type [F(1,16) = 10.6, p < .01] and Withdrawal Day
[F(2,32) = 8.0, p < .01]; the interaction between the two factors was not significant (p = .12)
because responding increased over time in both groups (incubation). One-way ANOVAs for
assessing “incubation” within each group revealed approaching significant (p = .063) or

Lu et al. Page 4

Biol Psychiatry. Author manuscript; available in PMC 2011 August 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



significant (p <.05) effects of Withdrawal Day for the AAV-RFP and AAV-GDNF groups,
respectively. The approaching significant effect in the AAV-RFP group is due to a single
outlier rat that lever pressed four standard deviations above the mean of the other rats in this
group on Day 4. After excluding this rat, the Withdrawal Day effect in the AAV-RFP group
was significant (p < .01). No significant effects were found in the analysis of inactive lever
responding (p values > .15).

Quantitative RT-PCR measurements of GDNF and RNA polymerase II (a housekeeping
gene) mRNA indicated that normalized (deltaCtvirus) GDNF mRNA levels in the VTA of
the AAV-GDNF group (n = 7) were 300% higher than those of the AAV-RFP group (n = 9),
F(1,14,) = 5.5, p < .05.

A Single VTA, but Not SN, GDNF Injection Potentiated the Time-Dependent Increases in
Cue-Induced Cocaine Seeking After Withdrawal (Experiments 2 and 3)

Experiment 2, Long-Evans Rats—Figure 3B shows mean ± SEM number of
nonreinforced responses on the active and inactive levers during the extinction tests
conducted 3 and 10 days after withdrawal in rats given VTA injections of vehicle or GDNF
1–2 hours after the last training session. The ANOVA included the between-subjects factor
of GDNF Dose and the within-subjects factor of Withdrawal Day. Active-lever responding
analysis revealed significant effects of GDNF Dose [F(2,25) = 4.6, p < .05] and Withdrawal
Day [F(1,25) = 10.0, p < .01]. The interaction between these two factors was not significant.
One-way ANOVAs within each group revealed significant (p < .05) Withdrawal Day effects
for the vehicle and 1.25-μg GDNF dose groups, but not for the 12.5-μg GDNF dose. The
lack of Withdrawal Day effect for the 12.5-μg GDNF dose group was due to high
responding on Day 3. Inactive lever responding analysis revealed significant effects of
Withdrawal Day [F(1,25) = 13.2, p < .01] but not of GDNF Dose or an interaction between
these two factors (p > .5). The modest time-dependent increases in low-rate inactive lever
responding has been observed previously in incubation studies; this increase likely reflects
response generalization (5,19) (for a discussion of potential interpretations of inactive lever
data in extinction and reinstatement studies see Shalev et al. (51).

Experiment 3: Sprague-Dawley Rats—The purpose of Experiment 3 was to assess the
generality of the effect of VTA GDNF injections to Sprague-Dawley rats that nose-poked
for cocaine infusions and to assess the anatomical specificity of the effect of the GDNF
injections. Figure 4(B and C) shows mean ± SEM number of nonreinforced responding in
the active and inactive holes during the extinction tests conducted 3 and 10 days after
withdrawal in rats given VTA or SN injections of vehicle or GDNF (12.5 μg/side) 2–4 hours
after the last training session. The ANOVA included the between-subjects factor of GDNF
Dose and Midbrain Site (VTA, SN), and the within-subjects factor of Withdrawal Day.
Active nose-poke responding analysis revealed significant effects of Withdrawal Day
[F(1,29) = 40.8, p < .01], Midbrain Site [F(1,29) = 10.4, p < .01], GDNF Dose [F(1,29) =
8.1, p < .01], and an interaction between Midbrain Site and GDNF Dose [F(1,29) = 8.8, p
< .01]. One-way ANOVAs within each group revealed significant (p < .05) Withdrawal Day
effects for all groups. Inactive nose-poke responding analysis revealed significant effects of
Withdrawal Day [F(1,29) = 16.4, p < .01) but not of GDNF Dose and Midbrain Site or an
interaction between Midbrain Site and GDNF Dose (p > .1). Results on the effect of GDNF
VTA injections on locomotor activity on withdrawal days 1, 3, and 10 are provided in
Supplement 1.
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Chronic Delivery of Anti-GDNF Monoclonal Antibodies into the VTA Prevented the Time-
Dependent Increases in Cue-Induced Cocaine Seeking After Withdrawal (Experiment 4)

Figure 5B shows mean ± SEM number of nonreinforced responding in the active and
inactive holes during the extinction tests conducted 4, 11, and 31 days after withdrawal. The
anti-GDNF antibodies or the mouse IgG control was chronically delivered by Alzet osmotic
minipumps during withdrawal days 1–14. The ANOVA included the between-subjects
factor of Antibody Type and the within-subjects factor of Withdrawal Day. Active nose-
poke responding analysis revealed significant effects of Antibody Type [F(1,14) = 7.3, p < .
05] and Withdrawal Day F [(2,28) = 19.3, p < .01] and an interaction between these two
factors [F(2,28) = 10.5, p < .01]. The significant Withdrawal Day effect in the anti-GDNF
antibodies condition, which is not readily apparent from the data depicted in Figure 5B, is
due to significant differences in responding between Days 11 and 31. One-way ANOVAs
within each group revealed significant (p < .05) Withdrawal Day effects for both groups.
Inactive nose-poke responding analysis revealed significant effects of Withdrawal Day
[F(2,28) = 4.4, p < .05], but not of Antibody Type or an interaction between these two
factors (p > .5).

Blockade of VTA ERK Activity with U0126 Prevents GDNF-Induced Potentiation of Cue-
Induced Cocaine Seeking After Withdrawal (Experiment 5)

Figure 6B shows the mean ± SEM number of nonreinforced responding in the active and
inactive holes during the extinction tests conducted 3 and 10 days after withdrawal from
cocaine in rats given VTA injections of GDNF (12.5 μg/side) or its vehicle and U0126 (1.0
μg/side) or its vehicle (DMSO) 1–2 hours after the last training session. The ANOVA
included the between-subjects factors of GDNF Dose and U0126 Dose and the within-
subjects factor of Withdrawal Day. Active nose-poke responding analysis revealed
significant effects of Withdrawal Day [F(1,30) = 69.0, p < .01], GDNF dose [F(1,30) = 9.2,
p < .01], and U0126 dose [F(1,30) = 5.3, p < .05] and an interaction between GDNF dose
and U0126 dose [F(1,30) = 5.1, p < .05]. One-way ANOVAs within each group revealed
significant (p < .05) Withdrawal Day effects for all groups. Analysis of inactive nose-poke
responding revealed significant effects of Withdrawal Day [F(1,30) = 4.9, p < .03] but not of
GDNF Dose, U0126 Dose, or an interaction between these factors (p > .1).

Discussion
We studied the role of GDNF in the VTA in incubation of cocaine craving. We found that
VTA injections of an AAV vector containing GDNF cDNA on withdrawal day 1 increased
cue-induced cocaine seeking on withdrawal days 11 and 31. We also found that VTA, but
not SN, GDNF injections immediately after the last self-administration session increased
cue-induced cocaine seeking on withdrawal days 3 and 10; this effect was antagonized by
VTA injections of U0126, which inhibits ERK activity. Most important, we found that
interfering with local GDNF function by chronic delivery of anti-GDNF neutralizing
antibodies during withdrawal days 1–14 prevented the time-dependent increases in cue-
induced cocaine seeking on withdrawal days 11 and 31. These results suggest that during the
first weeks of withdrawal from cocaine, GDNF-dependent neuroadaptations in the VTA,
which involve ERK activity, contribute to the development of incubation of cocaine craving.
These findings are unique, because they identify a neurobiological mechanism underlying
the development of incubation of cocaine craving. In previous studies, we and others studied
mechanisms underlying the expression of the incubated response to the drug cues, only after
its development (44,46,52).
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Methodological Considerations
Several methodological issues should be considered. First, in studies using intracranial
injections, drugs may diffuse away from the injection site and act in adjacent areas (53).
This possibility is unlikely, because SN GDNF injections were ineffective. For GDNF and
AAV-GDNF VTA injections, an issue to consider is axonal transport to distal projection
sites (54,55), which in turn may mediate GDNF effects on cocaine seeking. However, it is
unlikely that axonal transport can account for our data, because the AAV-RFP injected into
the VTA was not transported to the nucleus accumbens (Figure 2C), a primary projection
area of VTA neurons.

Second, midbrain GDNF injections cause long-lasting (several weeks) increases in
spontaneous locomotor activity (56). Thus, increased active lever (or hole) responding after
VTA GDNF injections may be due to increased activity. However, it is unlikely that
nonspecific locomotor activity can account for our data, because spontaneous locomotion in
a nondrug context was not altered by VTA GDNF injections (Supplement 1). In this regard,
the effect of GDNF on locomotion has been primarily reported after SN injections (56), a
manipulation that had no effect on extinction responding. Furthermore, at the dose range
used here, VTA GDNF injections decreased lever presses for oral alcohol and had no effect
on lever presses for sucrose (34,35). Finally, our experimental manipulations of VTA GDNF
had no effect on inactive lever (or hole) responding, a putative measure of nonselected
increases in activity and/or response generalization (51).

Third, a potential limitation in our study is the use of Long-Evans rats trained to lever press
for cocaine infusions in Experiments 1 and 2 and Sprague-Dawley rats trained to nose poke
for cocaine infusions in Experiments 3–5. However, we believe that it is unlikely that strain
and type of operant response are potential confounds. Cocaine self-administration during the
10-day training phase was similar at the National Institute on Drug Abuse (Experiments 1–
2) and in Beijing (Experiments 3–5). Also, time-dependent increases in cue-induced cocaine
seeking (incubation of cocaine craving) that we have been studying since 2001 in Long-
Evans rats using lever pressing as the operant response were observed in Sprague-Dawley
rats using nose poke as the operant response. Finally, the effect of acute VTA GDNF
injection on cue-induced cocaine seeking appears independent of rat strain and type of
operant response.

Role of GDNF in Cocaine Reward and Relapse
The findings of similar roles of BDNF and GDNF in cue-induced cocaine seeking correlate
with findings showing similar effects of these growth factors on survival and function of
midbrain dopamine neurons. However, as mentioned earlier, these similar roles were not
predicted from previous studies in the addiction literature. Specifically, whereas Berglind et
al. (57) recently reported that BDNF injections into the medial prefrontal cortex decrease
cue-induced cocaine seeking, results from studies with BDNF heterozygote knockout mice
and those in which BDNF function was augmented in VTA or nucleus accumbens indicate
that BDNF promotes rodents’ responses to psychostimulants and psychostimulant-
associated cues (13,23–26,58,59). In contrast, results from studies with GDNF heterozygote
knockout mice and those in which GDNF function was augmented in VTA or nucleus
accumbens suggest that GDNF inhibits the rodents’ responses to psychostimulants and
psychostimulant-associated cues (27–29,60). Below, we now discuss results from previous
studies on the role of GDNF in psychostimulant reward and relapse with respect to these
results.

With respect to cocaine, Messer et al. (31) and Green-Sadan et al. (32,33) studied
mesolimbic GDNF’s role in the initial rewarding effects of cocaine, assessed by a CPP
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procedure or by a limited-access (1-hour) drug self-administration procedure, respectively.
Additionally, these investigators exposed rats to low amounts of daily cocaine (1.25–10 mg/
kg intraperitoneal or ~12 mg/kg intravenous [IV]), and GDNF function was manipulated
before and during drug exposure. In contrast, we assessed VTA GDNF’s role in cue-induced
cocaine seeking in rats given extended access to cocaine (6 hours/day), which leads to
substantially higher daily cocaine intake (~45 mg/kg IV). Furthermore, we manipulated
GDNF function after withdrawal from cocaine rather than before or during exposure to this
drug.

In reconciling these previous studies with our results, two issues should be considered. First,
there is evidence for differences in the mechanisms underlying the acute initial rewarding
effects of cocaine versus those underlying cue-induced drug seeking after withdrawal
(51,61). Second, extended daily cocaine exposure leads to drug-taking patterns and drug-
induced neuroadaptations that are not observed under conditions of limited access (62–65).
Finally, an interpretation issue in Green-Sadan et al. studies (32,33) is that they used a single
cocaine dose (1 mg/kg) that is on the descending limb of the cocaine dose-response curve
(66). Thus, decreased cocaine self-administration after increasing striatal GDNF levels may
reflect a leftward shift in the dose-response curve or increases in cocaine reward.

Our data are also different from those obtained in a self-administration/reinstatement study
with GDNF heterozygote knockout mice. Yan et al. (67) reported that in these mice, the
dose-response curve for self-administered methamphetamine is shifted upward and to the
left and that responding on a progressive-ratio reinforcement schedule is higher, suggesting
enhanced methamphetamine reward in GDNF heterozygote knockout mice. These mice also
demonstrated enhanced methamphetamine-priming-induced and cue-induced reinstatement.
In reconciling the differences between the knockout mice data and our data, two issues
should be considered. First, the constituent GDNF knockout manipulation changes GDNF
function in the entire brain (and periphery) and affects multiple systems in addition to the
VTA neurons that we studied. Second, when a gene is deleted or manipulated throughout
development, it is unknown whether the observed behavioral changes indicate the gene’s
normal role in behavior or compensatory developmental changes (68). A compensatory
change that may be relevant to enhanced methamphetamine reward and reinstatement in
GDNF heterozygote mice is increased striatal dopamine levels (69,70).

Mechanisms of GDNF Role in Incubation of Cocaine Craving
GDNF modulation of incubation of cocaine craving likely involves VTA-nucleus
accumbens dopamine projections that have been previously implicated in cue-induced drug
seeking (71,72). GDNF mRNA is expressed in nucleus accumbens and dorsal striatum,
while the mRNA of its binding subunit the GDNF family receptor alpha-1 (GFRalpha-1),
and its signaling receptor subunit the RET receptor tyrosine kinase are expressed in VTA
and SN (73–76). Striatal GDNF undergoes retrograde transport to the midbrain (55) where
its cellular effects are primarily mediated by GFRalpha-1 and RET (22).

In vivo, midbrain GDNF injections cause long-lasting (several weeks) increases in
dopamine transmission in both the midbrain and striatum (77–80). In midbrain cell cultures,
GDNF enhances synaptic transmission in tyrosine hydroxylase (TH)-positive dopamine
neurons through an ERK-dependent mechanism (81,82). GDNF activates the ERK pathway
in several brain areas (83,84), including the VTA (34). We previously found that inhibiting
VTA ERK activity reverses BDNF-induced potentiation of cue-induced cocaine seeking
(19). Here, we found that inhibiting VTA ERK activity reverses GDNF-induced potentiation
of cue-induced cocaine seeking. These results indicate that VTA ERK activity, which is
increased after chronic cocaine exposure (85), contributes to both BDNF- and GDNF-
induced potentiation of cue-induced cocaine seeking after withdrawal.
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Concluding Remarks
Our results suggest that during the first weeks of withdrawal from cocaine, GDNF function
in the VTA is critical for the development of incubation of cocaine craving. These findings
extend previous results on the role of BDNF in the mesolimbic system in incubation of
cocaine craving and rodents’ responses to cocaine cues. The integration of our results with
the previous findings from the groups of Nestler and Yadid raises the possibility that
mesolimbic GDNF’s role in cocaine behavioral effects is dependent on the phase of the
addiction cycle: inhibition of initial acute rewarding effects of cocaine versus potentiation of
cocaine seeking after withdrawal from the drug.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Cocaine self-administration training in Experiments 1–5. (A) Mean ± SEM number of
cocaine injections (.75 mg/kg/injection) over the 10 6-hour daily self-administration
sessions. During training, lever presses or nose pokes were reinforced under a fixed-ratio-1
40-sec timeout reinforcement schedule; cocaine injections were paired with a 5-sec tone-
light cue. Data are from rats that were subsequently tested for cue-induced cocaine seeking
after ventral tegmental area (VTA) injections of an adeno-associated virus (AAV) viral
vector containing glial cell line– derived neurotrophic factor (GDNF) cDNA (AAV-GDNF)
or red fluorescent protein cDNA (AAV-RFP) (Experiment 1, Long-Evans rats [LE], total n
= 18), GDNF in VTA of LE rats (Experiment 2, total n = 28), GDNF in VTA or SN of
Sprague-Dawley (SD) rats (Experiment 3, total n = 33), anti-GDNF monoclonal neutralizing
antibodies or mouse immunoglobulin G (Experiment 4, SD rats, total n = 16), and U0126+
GDNF in VTA (Experiment 5, SD rats, total n = 34). (B) Schematic illustration of the
approximate cannulae placements within the VTA (Experiments 1–5) and SN (Experiment
3) (This figure was published in The Rat Brain Stereotaxic Coordinates by Paxinos and
Watson, pp. 18 – 83, copyright Elsevier 2005 [86]); numbers represent millimeters posterior
from bregma. SN, substantia nigra.
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Figure 2.
Ventral tegmental area (VTA) injections of an adeno-associated virus (AAV) viral vector
containing rat glial cell line– derived neurotrophic factor (GDNF) cDNA potentiate cue-
induced cocaine seeking. Data are mean ± SEM responses per 1 hour on the previously
active lever (left column) and on the inactive lever (right column) during the extinction tests
for cue-induced cocaine seeking performed on withdrawal days 4, 11, and 31. During the
test sessions, cocaine was not available, and lever-presses resulted in the delivery of the
tone-light cue previously paired with cocaine injections. AAV viral vector containing rat
GDNF cDNA (AAV-GDNF) or red fluorescent protein cDNA (AAV-RFP) was injected
bilaterally into the VTA on withdrawal day 1. (A) Timeline of the Experiment, (B) VTA
injections and (C) RFP expression in midbrain and striatum (see Supplement 1 for details of
the experimental procedures) (This figure was published in The Rat Brain Stereotaxic
Coordinates by Paxinos and Watson, pp. 18 – 83, copyright Elsevier 2005 [86]). * Different
from AAV-RFP, p <.05 (n = 8 –10, Long-Evans rats per experimental condition). SA, self-
administration.
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Figure 3.
Ventral tegmental area (VTA) injections of glial cell line– derived neurotrophic factor
(GDNF) potentiate cue-induced cocaine seeking in Long-Evans rats. Data are mean ± SEM
responses per 2 hours (sum of two 1-hour sessions that were separated by 5 min) on the
previously active lever (left column) and on the inactive lever (right column) during the
extinction tests for cue-induced cocaine seeking performed on withdrawal days 3 and 10.
During the test sessions, cocaine was not available, and lever presses resulted in the delivery
of the tone-light cue previously paired with cocaine injections. Vehicle or GDNF was
injected bilaterally into the VTA 1–2 hours after the last training session. (A) Timeline of
the experiment and (B) VTA injections. * Different from vehicle, p < .05 (n = 9 –10 per
group). SA, self-administration.
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Figure 4.
Ventral tegmental area (VTA), but not substania nigra (SN), injections of glial cell line–
derived neurotrophic factor (GDNF) potentiate cue-induced cocaine-seeking in Sprague-
Dawley rats. Data are mean ± SEM responses per 2 hours (sum of two 1-hour sessions that
were separated by 5 min) on the previously active hole (left column) and on the inactive
hole (right column) during the extinction tests for cue-induced cocaine seeking performed
on withdrawal days 3 and 10. During the test sessions, cocaine was not available, and nose
pokes resulted in the delivery of the tone-light cue previously paired with cocaine injections.
Vehicle or GDNF was injected bilaterally into the VTA or the SN 2– 4 hours after the last
training session. (A) Timeline of the Experiment, (B) VTA injections and (C) SN injections.
* Different from vehicle, p <.05 (n =8 –9 per group). SA, self-administration.
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Figure 5.
Chronic delivery of anti-glial cell line– derived neurotrophic factor (GDNF) monoclonal
neutralizing antibodies into the ventral tegmental area (VTA) prevented the time-dependent
increases in cue-induced cocaine seeking. Data are mean ±SEM responses per 1 hour on the
previously active hole (left column) and on the inactive hole (right column) during the
extinction tests for cue-induced cocaine seeking performed on withdrawal days 4, 11, and
31. During the test sessions, cocaine was not available, and nose pokes resulted in the
delivery of the tone-light cue previously paired with cocaine injections. The anti-GDNF
monoclonal neutralizing antibodies (600 ng/side/d) or control immunoglobulin G (IgG) was
delivered through Alzet minipumps during withdrawal days 1–14. (A) Timeline of the
experiment and (B) VTA injections. * Different from IgG control, p <.05 (n =8 Sprague-
Dawley rats per experimental condition). SA, self-administration.
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Figure 6.
Blockade of extracellular signal-regulated kinases (ERK) activity in ventral tegmental area
(VTA) with U0126 prevents glial cell line– derived neurotrophic factor (GDNF)-induced
potentiation of cue-induced cocaine-seeking after withdrawal (Experiment 5, Sprague-
Dawley rats). Data are mean ± SEM responses per 2 hours (sum of two 1-hour sessions that
were separated by 5 min) on the previously active hole (left column) and on the inactive
hole (right column) during the extinction tests conducted 3 and 10 days after withdrawal
from cocaine. During the test sessions, cocaine was not available, and nose pokes resulted in
the delivery of the tone-light cue previously paired with cocaine injections. VTA injections
of U0126 (1.0 μg/side) or its vehicle (DMSO), and GDNF (12.5 μg/side) or its vehicle were
performed 1–2 hours after the last training session. U0126 or its vehicle was injected 20 min
before the injections of GDNF or its vehicle. (A) Timeline of the experiment, and (B) VTA
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injections. * Different from the other conditions, p < .05 (n = 8 –9 per group). SA, self-
administration.
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