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Abstract
Cryo-electron tomography provides 3D imaging of frozen hydrated biological samples with
nanometer resolution. Reconstructed volumes suffer from low signal-to-noise-ratio (SNR)1 and
artifacts caused by systematically missing tomographic data. Both problems can be overcome by
combining multiple subvolumes with varying orientations, assuming they contain identical
structures. Clustering (unsupervised classification) is required to ensure or verify population
homogeneity, but this process is complicated by the problems of poor SNR and missing data, the
factors that led to consideration of multiple subvolumes in the first place. Here, we describe a new
approach to clustering and variance mapping in the face of these difficulties. The combined
subvolume is taken as an estimate of the true subvolume, and the effect of missing data is
computed for individual subvolumes. Clustering and variance mapping then proceed based on
differences between expected and observed subvolumes. We show that this new method is faster
and more accurate than two current, widely used techniques.
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1. Introduction
1.1. Background

Cryo-electron tomography provides 3D imaging of biological structures in their native
conformation with nanometer resolution (Frank, 2006; Hoenger and McIntosh, 2009). The
unstained, unfixed samples are highly susceptible to beam damage, however, necessitating
the use of low dose imaging, and resulting in low signal-to-noise ratio (SNR) images.
Significant artifacts caused by incomplete sampling of Fourier space are also typically
present. If the reconstructed volume contains multiple, identical copies of a structure of
interest in varying orientations, both problems can be overcome by alignment and weighted

1Abbreviations used in this article include AIC: Akiake information criterion, BIC: Bayes information criterion, CC: cross-correlation,
CCC: constrained cross-correlation, EM algorithm: expectation maximization algorithm PCA: principal component analysis, PPCA:
probabilistic principal component analysis, RCC: rescaled cross-correlation, SNR: signal-to-noise-ratio, SVD: singular value
decomposition, and WMD: wedge-masked differences.
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averaging of extracted subvolumes in Fourier space. PEET (Nicastro et al. (2006); Cope et
al. (2010), http://bio3d.colorado.edu/PEET) is an open source package which performs such
alignment and averaging.

Averaging implicitly assumes identical particles. This assumption must be checked using
clustering (unsupervised classification) prior to, during, or after averaging. Prior clustering
of 2D projections to provide homogeneous subclasses for reconstruction is common in
single particle techniques (Frank, 2006; Bartesaghi et al., 2008). Recently, Scheres et al.
(2007, 2009) described a 3D method based on the expectation-maximization (EM) algorithm
(Dempster et al., 1977) in which alignment, estimation of missing data, classification and
reconstruction of class averages proceed simultaneously. Yu et al. (2010) also utilize
expectation-maximization after alignment in their PPCA-EM algorithm to estimate missing
data and to extract features for clustering. In section 2.1 below we describe a new technique
for clustering after averaging. Hybrid or iterative application of these methods is also
possible, and may be required in difficult cases.

Clustering requires choosing a particular algorithm as well as the feature or features to
which the algorithm will be applied. Numerous clustering algorithms with varying strengths
and weaknesses are well known (e.g. see Bishop (1995), Duda et al. (2001) and Frank
(2006)). While some, e.g. auto-associative multilayer neural networks, contain built-in
dimensionality reduction, most require explicit dimensionality reduction before application
to very high-dimensional data such as 3D tomographic volumes.

Dimensionality reduction is often accomplished using one of several closely related
techniques based on eigendecomposition. Historically, correspondence analysis was the first
of these techniques applied to electron microscopy (van Heel and Frank, 1981; Bretaudiere
and Frank, 1986). Correspondence analysis requires non-negative values, however, and is
therefore not strictly applicable to either tomographic volumes or cross-correlations, both of
which can be negative. Singular value decomposition (SVD), either of a cross-correlation or
other symmetric similarity (or dissimilarity) matrix or of a covariance matrix is now widely
used for this purpose, e.g. see Frank (2006). SVD of a covariance or correlation matrix is
also known as principal component analysis (PCA). Following Förster et al. (2008) it has
become common in the electron microscopy literature to also refer to SVD of a cross-
correlation matrix as PCA2. We consider this terminology unfortunate, since the two
approaches result in slightly different behavior. In the following, we will distinguish
between them, using the terms “PCA” and “SVD of a cross-correlation”, respectively.

Clustering of tomographic subvolumes using uncorrected cross-correlation or covariance
matrices often fails badly, with artifacts due to missing tomographic data obscuring any real
variation. Approaches to dealing with this issue include restricting the computation to
include only the non-missing data (Bartesaghi et al., 2007, 2008; Förster et al., 2008),
imputing or otherwise filling in the missing data (Scheres et al., 2007, 2009; Yu et al.,
2010), and applying ad hoc corrections to the cross-correlation or covariance (Schmid and
Booth, 2008). Schmid and Booth (2008) noted that cross-correlation between otherwise
identical subvolumes falls off approximately in proportion to the fractional overlap between
their shared informative (i.e. non-missing) regions in Fourier space and suggested rescaling
by the inverse of this factor. PEET has used such rescaling since its initial implementation
by Nicastro et al. (2006). Förster et al. (2008) and Bartesaghi et al. (2007, 2008) restrict

2While Förster et al. (2008) call their matrix “constrained correlation”, it is actually a constrained cross-correlation. The distinction,
while subtle, is not insignificant. In a population of tomographic subvolumes, the ijth off-diagonal entry of the correlation matrix is the
correlation between voxels i and j across all subvolumes. In contrast, the corresponding entry of the cross-correlation matrix is the
normalized dot product (or similarity) between subvolumes i and j.
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computation of the similarity or dissimilarity metric to the mutually shared informative
region. When the metric in question is cross-correlation, this approach has come to be
known as “constrained cross-correlation”. We will refer to clustering based on
eigendecomposition of these corrected metrics as “SVD of a rescaled cross-correlation”
(SVD-RCC) and “SVD of a constrained cross-correlation” (SVD-CCC), respectively.
Singular value decomposition (Golub and van Loan, 1996) plays a key role in understanding
the algorithms described here, as well as a robust and convenient computational module for
their implementation. Because it may not be familiar to some readers, we provide a brief
introduction to SVD in section 6.1 of the supplemental data.

In this report, we describe a new approach based on what we call “wedge-masked
differences” (WMDs). Originally developed as a correction to covariance, this method is
applicable to cross-correlation as well and also leads naturally to a framework for
constructing variance maps. Liu and Frank (1995) and Penczek et al. (2006) have discussed
the issues associated with 3D variance estimation and analysis in the context of single-
particle reconstruction. Variance estimation in cryo-tomography is somewhat simpler, due to
the availability of independent reconstructions for each subvolume. As shown below, the
proposed correction substantially reduces the impact of missing data on the resulting
estimates.

2. Theory
2.1. Wedge-Masked Differences

Figure 1 presents a conceptual illustration of the problem at hand as well as our proposed
solution. Panels in this figure can be thought of, loosely, as sections through cylindrical
volumes. Conventional PCA and variance mapping are based on the magnitudes of the
ordinary differences (ODs) between the ideal (or estimated) object and the corresponding,
aligned reconstructions of single particles. ODs are highly susceptible to artifacts from
systematically missing data, as illustrated. If we know which data are missing, however, we
can compute an expected volume for each particle. WMDs, which are differences between
the expected and observed subvolumes, largely suppress missing data artifacts while
preserving genuine variations. In single tilt-axis tomography, the required missing data
region locations are completely defined by the tilt series acquisition geometry and the Euler
angles which are estimated during alignment.

In overview then, we proceed as follows. Taking the averaged subvolume as an estimate of
the true subvolume, the effect of missing data is computed for each aligned particle yielding
an expected subvolume. Clustering and variance mapping then follow based on the
covariance of the differences between expected and observed subvolumes.

Formally, assume we have an “average” volume x* containing m voxels with 3D Fourier
transform ℱ(x*) = X*, resulting from aligning and weighted, Fourier space averaging of 1 ≤
i ≤ n particles or subvolumes, xi, drawn from among l tomograms, where 1 ≤ vi ≤ l indicates
the tomogram from which the ith particle was sampled, with m ⪢ n. The jth tomogram has
an associated “wedge mask”, Wj, a binary Fourier domain mask with zeros and ones
indicating the missing and informative tomographic regions, respectively, in reciprocal
space tomogram coordinates. The term “wedge mask” derives from the fact that the missing
region is wedge-shaped in single tilt axis tomography. The mask need not be wedge shaped,
however, and any systematically missing regions in reciprocal or real space can be
accommodated. Finally, let parameters θi specify the alignment (rotation and translation)
found for the ith particle, with Rθi denoting the matrix required to rotate the ith particle to its
aligned orientation.
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If sufficient particles with varying orientations have contributed to the average, x* will be
relatively free of both noise and missing tomographic data artifacts compared to the
individual volumes. Assuming a homogeneous population and correct subvolume alignment,
we treat x* as an estimate of the true subvolume of interest. Since alignment parameters, and
specifically rotations, have been estimated for each subvolume, we can compute the
expected subvolume for each particle by applying an appropriately rotated wedge mask to
x*. Differences between expected and observed subvolumes are then used to highlight
unexpected variation and to check the assumption of population homogeneity, as outlined in
Table 1.

In Table 1 and the following, we sometimes treat volumes as 1D column vectors, with
elements presented in a predefined, canonical order. (The order chosen does not matter, so
long as it is applied consistently). In most cases, the distinction between a volume and vector
will be apparent from the context. To avoid possible confusion, however, vectors are
explicitly denoted using lower case bold font. Thus x and x refer to the same data, treated as
a 3D volume or as a 1D vector respectively. Similarly, matrices are denoted with upper case
bold font, and the ith column of matrix M as mi.

To improve noise rejection, we allow use of an optional bandpass filter with Fourier
representation B to be applied to individual volumes. Additionally, a spherical low pass filter
C with a Gaussian rolloff starting at 0.4827 times the sampling frequency and with a
standard deviation of 0.025 is always applied to the rotated wedge mask. These parameters
are chosen to provide an amplitude response of 0.5 at the Nyquist frequency, reducing the
impact of frequencies in the corners of cubical regions in Fourier space. Unlike the user-
defined bandpass, this minimal filter is applied to both individual subvolumes and the
average.

It is sometimes desirable to focus attention on specific subregions of interest. To this end,
we also allow an object space binary particle mask, p, with zeros and ones indicating the
regions to be ignored and considered during clustering, respectively.

Following the algorithm in Table 1, we form a matrix of centered, wedge-masked
differences and decompose it using SVD. We thus have expressed the WMDs in terms of
eigenvectors, given by the columns, ui, of U, and with coefficients given by the columns of
SVT.

For clustering, only coefficients along the first few eigenvectors are needed, rather than the
complete decomposition. These coefficients are used as input to the chosen clustering
algorithm. This is readily accomplished by using only the first k columns of U as basis
vectors, and the first k rows of SVT as coefficients. Since only the k largest eigenvectors and
singular values are needed, the complete SVD is not required. Packages such as ARPACK
to perform such computations efficiently are available (Lehoucq et al. (1998),
http://www.caam.rice.edu/software/ARPACK/). Note also that the eigenvectors of the
WMD-corrected covariance matrix and the associated coefficients are calculated without
explicit evaluation of the covariance matrix. This makes the present method more
computationally efficient than either rescaled or constrained cross-correlation. In each of
those algorithms the form of the correction used forces explicit evaluation of the corrected
cross-correlation matrix prior to calculation of the SVD.

Variance mapping can be useful in significance testing and in identifying both conserved
and variable regions in the 3D average, with highly variable “hot spots” identifying potential
candidates for masking. As was the case with covariance and cross-correlation, an
uncorrected variance map is of little use, because it is corrupted and typically dominated by
artifacts due to missing data. Fortunately, the same WMD correction used for PCA also

Heumann et al. Page 4

J Struct Biol. Author manuscript; available in PMC 2012 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.caam.rice.edu/software/ARPACK/


yields corrected covariance and variance. As indicated in Table 1, the WMD-corrected
covariance matrix is given by C = US2UT / (n − 1). The corrected variance map is just the
diagonal of C, σ2 = diag(C), where σ2 should be interpreted as a 3D volume with voxels in
one-to-one correspondence with those of the average, x*. Standardization of the WMDs
should typically be omitted during variance mapping, since it could cause a change of scale.
While the complete SVD is typically desirable, full evaluation of the covariance matrix is
not needed, since only the diagonal elements are of interest.

2.2. Extensions to Wedge-Masked Differences
In some cases, additive offsets or differences in amplitude may be present between
subvolumes or between the “average” and individual subvolumes (e.g. if the average results
from modeling or a different imaging modality). Additive offsets can be handled by
adjusting both wedge-masked and average subvolumes to be zero mean, or by adjusting
individual wedge-masked subvolumes to match the mean of the corresponding wedge-
masked average.

Multiplicative gain differences are only slightly more problematic. Because individual
subvolumes can have SNR much less than 1, a simple wedge-masked difference between
observed and expected subvolumes could result in a noisy, possibly contrast-reversed copy
of the masked average when differences in signal amplitude are present. To avoid such
problems, each WMD can be computed as the difference between the masked average and a
multiple of the masked subvolume, with the multiplier chosen to yield the minimum norm
difference for each subvolume. Specifically, in Table 1, one would replace the ordinary
WMD, δ = t − y, with the minimum norm WMD, δ = t − (t · y/|y|2) y. Since the data sets
used here do not suffer from significant offsets or gain differences, we use simple WMDs in
the following.

3. Methods
To compare performance of WMD-corrected PCA with that of SVD of rescaled or
constrained cross-correlation, we used a semi-synthetic data set based on the 4 binary
variants of the Yarrowia lipolytica complex I created by Yu et al. (2010) for evaluating their
PPCA-EM algorithm. The 4 initial volumes, provided by them, consist of the original and 3
intentionally distorted versions, each with 1603 3.6 Å voxels. Volume 1 contains the
original, while volumes 2–4 have been distorted using the skew transformation:

with (a, b, c) = (0.25, 0.1, 0.1), (0.1, 0.25, 0.1), and (0.1, 0.1, 0.25), respectively. For
purposes of this study, these initial volumes were low pass filtered to an amplitude response
of 0.5 at 3 nm using a Gaussian filter with a standard deviation of 0.02 commencing at
0.096452 inverse voxels. The low pass filtered volumes were decimated 2.5X and padded to
a final final size of 963 9 Å voxels. Isosurface representations of these decimated, low pass
filtered volumes are shown in Figure 2. 100 copies of each volume in arbitrary orientations
were created with uniform random rotations generated using the algorithm of Shoemake
(1992). The resulting population of 400 noise-free, simulated volumes with no missing
tomographic data was aligned using PEET, and the resulting alignment parameters used
repeatedly for averaging and clustering the 400 volumes with varying amounts of added
Gaussian noise and missing tomographic data. SNRs from ∞ to 0.02 were explored, with
SNR specified as a ratio of particle to noise variance, and with particle variance estimated
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over the central 1/8th of the volume (1/2 of each linear dimension). Similarly, single axis
missing wedges comprising from 0 to 30% of the tomographic volume were simulated, the
latter corresponding to a tomographic tilt range from −63° to 63°. Figure 3 shows a sample 9
Å xy cross sections through volume 1, illustrating the impact of noise and missing
tomgraphic data over the range tested.

A spherical particle mask with a radius of 25 voxels was used, as was a low pass filter with
Gaussian rolloff commencing at 0.25 with a standard deviation of 0.05 inverse voxels. Plots
of singular values and histograms of the corresponding coefficients were used to select
specific coefficients to consider for clustering, which was accomplished using k-means with
10-fold replication and selection of the best clustering score to minimize sensitivity to initial
seeds. Model complexity (i.e. the number of clusters) was chosen, and significance of
resulting fits judged using Akiake (AIC) and Bayes (BIC) information criteria (Hastie et al.,
2002).

To compare the performance of uncorrected and WMD-corrected variance maps, a 200
particle subset of the test data containing only volumes 1 and 2 was used with 30% missing
data and an SNR of 0.2. The weighted average, uncorrected, and corrected variance maps
were computed, and the resulting variance maps compared to the squared differences
between the original, noise-free volume with no missing data.

All of the experiments with semi-synthetic data use an alignment based on noise-free
volumes with no missing data. This provides a fair comparison between the various
corrections, but also leads to optimistic performance estimates. In real applications
alignment would also be impaired by noise and missing data, and performance would be
expected to fall off more quickly than shown here.

Performance of clustering and variance mapping using WMDs was also evaluated on
experimental data sets. Clustering was performed on GroEL14 / GroEL14GroES7
tomographic data similar to those previously described by Förster et al. (2008) and provided
by them. 786 pre-aligned subvolumes, each containing 323 12.0 Å voxels were analyzed.
The first 214 subvolumes were reconstructed from a tiltseries containing only GroEL14,
while the remaining 592 were from a tiltseries containing a mixture of GroEL14 and
GroEL14GroES7 particles, along with damaged or incomplete particles.

WMD-corrected variance mapping was performed on averaged microtubule doublets from
Chlamydomonas reinhardtii wild type axonemes (Heuser et al., 2009). 652 subvolumes
selected with 96 nm periodicity along microtubule doublets were aligned and averaged with
PEET, and the WMD-corrected variance map computed as described in Table 1.

Code incorporating WMD-PCA, SVD-RCC, and SVD-CCC into PEET was written in
MATLAB® (The MathWorks, Natick, MA) and is available for download at
http://bio3d.colorado.edu/PEET.

4. Results
4.1. Clustering With No Missing Data

In the absence of missing data, all 3 corrections described above become irrelevant. WMD-
PCA reduces to standard PCA, and SVD-CCC and SVD-RCC reduce to SVD of cross-
correlation (SVD-CC). Not surprisingly, when noise is also absent, both techniques perform
exceptionally well on the test data. Using PCA, the first 3 eigenvectors account for 44.7%,
29.6%, and 24.8% of the overall variance, respectively, for a total of 99.1%. As illustrated in
Figure 4(a), histograms of the coefficients along these vectors are highly structured, with
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clearly separated, discrete peaks. These turn out to correspond to individual classes, and k-
means using any of these features alone or in combination results in perfect clustering of all
400 subvolumes. Histograms of subsequent coefficients, only one of which is shown,
become progressively narrower and more Gaussian.

SVD-CC also performs perfectly in this idealized case, as illustrated in Figure 4(b). The first
4 coefficients are all highly structured. Features 2–4 in isolation each result in perfect
clustering, while Feature 1 alone misclassifies only a single volume using k-means. Unlike
in PCA, eigenvalues are no longer proportional to the fraction of variation explained, so
slightly more care is required in interpretation and in choosing features. Coefficients along
the first eigenvector are typically offset from 0, reflecting the non-zero mean correlation.
The square of this offset adds to the first eigenvalue, inflating its size, while contributing no
information useful for clustering. Compensation by subtracting the mean squared coefficient
value is possible, but we take the more direct approach of simply examining histograms for
both width and structure. Note in Figure 4(b) that while coefficient 1 does contain useful
structure, its distribution is substantially narrower, and therefore more susceptible to noise,
than those of the following coefficients. Hereafter, coefficient 1 histograms for SVD-RCC
and SVD-CCC will be displayed only when their contribution to clustering is significant.

The effect of adding Gaussian noise to an SNR of 0.05, still with no missing data, is shown
in Figures 4(c) and 4(d). The most informative coefficient (1 for PCA, 2 for SVD-CC), still
separates classes 1 and 2 perfectly, while classes 3 and 4 are no longer resolved. Including
the next 2 coefficients restores perfect clustering in both cases, as does using the first and
third coefficients (1 and 3 for PCA, 2 and 4 for SVD-CC). Using only the first 2
coefficients, results in nearly perfect clustering with minor overlap between classes 3 and 4.

Gaussian noise at an SNR of 0.02 yields only slightly poorer results (not shown), with the
leading coefficient giving nearly perfect 3-class separation, and the leading 3 coefficients
giving nearly perfect 4-class separation for both PCA and SVD-CC.

4.2. Clustering With Missing Data
With missing tomographic data, the 3 corrections become distinct and must be analyzed
separately. Several common trends become apparent, however. With increasing missing data
and with decreasing SNR, formerly discrete peaks broaden and eventually become
indistinct. Simultaneously, coefficient distributions become less structured and their widths
more uniform, making it harder to identify potential features for clustering.

SVD-RCC is the first technique to fail as the amount of missing data increases. With just
10% missing data and no added noise, the distributions of the leading coefficients become
largely structureless, as shown in Supplemental Figure S1 in the online version. The leading
4 coefficients still result in good, but not perfect separation of class 1 from the other classes.
(Coefficients 2–7 jointly do lead to perfect 2-class clustering, but this grouping does not
appear significant using AIC and BIC, and is unlikely to be detected in real applications).
SVD-CCC and WMD-PCA still perform very well under these conditions. In both cases, the
leading 3 coefficients alone (2–4 for SVD-CCC, 1–3 for WMD-PCA) yield perfect
clustering. Additionally, in each case the leading, single coefficient gives perfect 3-class
clustering, with classes 1 and 2 distinct, but classes 3 and 4 lumped together.

Sample distributions illustrating the performance of SVD-CCC with increasing noise and
missing data are shown in Figure 5. With 10% missing data and and SNR of 0.2 (Figure
5(a)), classes 3 and 4 are no longer resolved, but coefficient 2 still yields perfect 3-class
separation. At an SNR of 0.02, some structure remains, as shown in Figure 5(b), resulting in
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2-class separation using the leading 4 coefficients. With 30% missing data and an SNR of
0.2 (Figure 5(c)), clustering is unsuccessful.

Of the 3 corrections tested, WMD-PCA proved most resistant to missing data and noise, as
illustrated in Figure 6. With 10% missing data, coefficients 1–3 lead to perfect clustering out
to and including3 an SNR of 0.05. Coefficient histograms at an SNR of 0.2 are shown in
Figure 6(a) for comparison with the corresponding results in Figure 5(a). Similarly,
coefficient 1 alone yields perfect 3-class separation out to an SNR of 0.05 and good
separation at an SNR of 0.02 (Figure 6(b)). With 30% missing data, coefficients 1–4 give
very good 4-class separation out to an SNR of 0.05. At an SNR of 0.2, where SVD-CCC
fails, coefficient 1 alone gives perfect 3-class separation (Figure 6(c)). Perfect separation is
attainable using more features: coefficients 1-5 suffice out to an SNR of 0.1, while
coefficients 1–8 are required at an SNR of 0.05. Finally, at an SNR of 0.02 much of the
structure in the coefficient histograms is lost, as shown in Figure 6(d). Even in this case,
coefficient 1 alone gives very good, although not perfect, separation of class 1 from the
remaining 3 classes. In all cases, the resulting groupings were judged highly significant by
both AIC and BIC.

Figure 7 summarizes the number of classes successfully separated by k-means clustering on
the leading 4 coefficients for each method over a wide range of conditions. In this figure, we
have adopted the convention that perfect 3-class separation, for example, is shown with a
bar height of 3, while good, but not perfect, 3-class separation is shown with a bar height of
2.5. As illustrated, WMD-PCA discriminates successfully between classes with more noise
and missing data than either SVD-RCC or SVD-CCC.

4.3. Eigenvolumes and Variance Mapping
Another advantage of PCA over SVD of cross-correlation is that each eigenvector is directly
interpretable as a change (eigenvolume or eigenimage) from the average volume. Figure 8(a)
shows a central 5.4 nm thick xy slice through WMD-PCA eigenvector 1 with 30% missing
data and an SNR of 0.02. The result corresponds nicely with a similar slice through the true
difference between classes 1 and 2, shown in Figure 8(b), accounting for the good 2-class
separation achieved even under these fairly extreme conditions.

As described above, the WMD correction can also be applied to generate a map of the
variance (or its square root, the standard deviation) partially corrected for artifacts caused by
missing tomographic data.

Figure 9 shows central 5.4 nm xy slices through the true, WMD-corrected, and uncorrected
standard deviation maps. The latter 2 were constructed using 100 randomly oriented
particles each from classes 1 and 2 with 30% missing data and an SNR of 0.2. True standard
deviation was calculated as the square root of 0.175 times the squared differences between
classes 1 and 2. The factor of 0.175 is the product of a factor of 0.52 to compensate for the
use of class differences rather than differences from the mean and a factor 0.7 to simulate
missing wedge attenuation. While the uncorrected map contains numerous artifacts resulting
from the missing tomographic wedge, the WMD-corrected map eliminates most of these
artifacts and more closely approximates the true standard deviation.

4.4. Throughput and Combining Corrections
With our present MATLAB (R2010b) implementation, WMD-PCA is the fastest of the 3
methods, followed by SVD-RCC, and then SVD-CCC. On a dual 3.33 GHz Xeon 5590 with

3Throughout, “out to” will be used to mean “out to and including”.
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72 Gb of RAM, a single WMD-PCA, SVD-RCC, or SVD-CCC decomposition of our 400
particle test set takes approximately 200, 400, and 1400 seconds, respectively.

On the synthetic test data, WMD-PCA is also the most robust of the 3 corrections in the face
of systematically missing data and noise, followed by SVD-CCC, and then by SVD-RCC.
Since only WMD-PCA utilizes PCA (i.e. SVD of a covariance), while the remaining 2
corrections utilize SVD of a cross-correlation, it is reasonable to question whether the
observed difference in accuracy is due to the WMD correction per se, or due to covariance
being more robust and informative than cross-correlation. Figure 4 suggests that covariance
and cross-correlation are similarly informative with no missing data and no noise. To permit
similar comparison in the presence of noise and missing data, we performed the WMD
correction, followed by computation of rescaled cross-correlations, and, finally, SVD of the
corrected cross-correlation matrix, effectively applying the WMD correction to SVDRCC.
The combined algorithm, WMD-SVD-RCC, performs comparably to WMD-PCA under all
conditions with missing data (e.g. see Supplemental Figure S2 in the online version),
confirming that the WMD correction is responsible for the observed performance
differences. As an aside, the WMD correction often, but not always, removes much of the
offset present with SVD-RCC, making coefficient 1 informative again. For this reason,
coefficient 1 is included in panels (a)–(c), but not (d) of Supplemental Figure S2.

4.5. GroEL and GroEL/GroES Clustering
To verify the performance of WMD-PCA clustering on experimental data, we used a
GroEL/GroES data set previously described by Förster et al. (2008) and supplied by them.
214 aligned subvolumes containing GroEL14 particles and 572 subvolumes containing a
mixture of GroEL14, GroEL14GroES7, and damaged or incomplete particles were grouped
into 4 classes using k-means clustering on the first 3 eigenvectors from WMD-PCA, as show
in Figure 10. Of the 214 GroEL14 particles, 201, 4, 2, and 7 were assigned to classes 1–4,
respectively. Of the 572 mixed GroEL/GroES particles, 123, 281, 104, and 64 were assigned
to classes 1–4, respectively. Based on these results and on similarity between the class
averages and previously published structures, we conclude that class 1 corresponds to
GroEL14, class 2 to GroEL14GroES7, and classes 3 and 4 to damaged, incomplete or
misaligned particles positioned at the top and bottom of the average particle, respectively.
Of the 214 putative GroEL14 particles, 93.9% were thus classified correctly, 1.9%
misclassified as belonging to class 2, and 4.2% classified as damaged or misaligned.
Similarly, of the 285 particles classified as belonging to class 2, 281 (98.6%) were drawn
from the 572 subvolumes containing GroES7. These results compare favorably with those
reported previously (Förster et al., 2008).

We also performed clustering on these data using our implementation of SVD-RCC and
SVD-CCC on the 4 leading eigenvectors. (We note in passing, that these are examples
where eigenvector 1 is useful, despite being offset from 0). SVD-CCC yielded results almost
identical to those for WMD-PCA, while SVD-RCC performed only slightly worse,
misclassifying 14 particles from the GroEL14 subvolumes as belonging to class 2.

4.6. Chlamydomonas Axoneme Variance Mapping
Similarly, we verified WMD-corrected variance mapping performance on Chlamydomonas
reinhardtii axoneme data previously described by Heuser et al. (2009) and provided by
them. As illustrated in Figure 11, in an axial projection the outer dynein arm and beak
regions both show up as areas with high variance, particularly relative to their densities in
the average. This is expected from previous studies, since the beak is present in only some
doublets, while the outer dynein arms are missing from doublet 1 (Hoops and Witman,
1983). Unexpectedly large variance is also observed in the inner dynein arm region.
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Variations in this area have only recently been noted and are still under investigation
(Nicastro, 2009).

5. Discussion
The key idea leading to WMD-corrected covariance is hardly novel. Analysis of squared
differences between observed and expected (or estimated) values is one of the most basic
techniques in statistics. It is therefore somewhat surprising that this simple and seemingly
effective correction has gone unnoticed in cryo-tomography for so long. As we have shown
above, WMD-corrected covariance is less computationally intensive and, at least on our
synthetic test data, more robust against missing data artifacts than rescaled or constrained
cross-correlation. We have demonstrated that this improvement in accuracy is due the WMD
correction per se, and not to any inherent difference between cross-correlation and
covariance.

With hindsight, the improved sensitivity and accuracy provided by the WMD correction is
not surprising. Since constrained cross-correlation handily outperforms rescaled cross-
correlation (presumably due to better rejection of missing data artifacts), consider only the
former. Imagine two subvolumes whose Fourier transforms differ from one another and
from the “true” average in their respective informative regions, but not in the mutually
shared overlap between these regions. Constrained cross-correlation, indeed any constrained
metric computed only over the mutually shared region, is blind to such differences, while
WMD-corrected covariance treats them, correctly, as prima facie evidence of population
heterogeneity. Constrained metrics thus fail to exploit all of the available information.

While we have presented WMD-corrected covariance in the context of 3D electron
tomography, the approach is more general, and is applicable to other fields and to any
number of dimensions, so long the data are partially missing in a known and systematically
varying fashion.

Two potential limitations of WMD-corrected PCA are that it requires an estimate of the true
subvolume, and that, like PCA in general, it lacks an explicitly probabilistic framework.
Recent techniques addressing both issues are available. The probabilistic PCA (PPCA)
method of Roweis (1998) and Tipping and Bishop (1999) provides a probabilistic
framework for PCA and uses the EM algorithm of Dempster et al. (1977) for iterative
solution. Yu et al. (2010) have applied this method to the problem at hand in their PPCA-
EM algorithm, simultaneously estimating the average volume while extracting coefficients
useful for subsequent classification. Scheres et al. (2009) have also proposed a method using
the EM algorithm on unaligned data, attempting simultaneous alignment, missing data
estimation, classification, and estimation of class averages, with regularization to help avoid
local minima. These (and other) techniques vary considerably in their prerequisites,
computational intensity, and outputs. Determining which will prove most effective in
particular circumstances remains a task of considerable importance.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Comparison of wedge-masked and ordinary differences. Ideal: The ideal or true object. If
not known, the ideal may be well approximated by weighted averaging or other techniques.
Actual: An individual, sample object containing a smaller hole than the ideal. Individual
objects are typically not accessible to direct observation. Instead, we have access only to
Observed: a tomographic reconstruction of the actual object suffering from noise and
missing data artifacts. |OD|: Magnitude of the ordinary difference between the ideal and
observed objects. In addition to the real variation in hole diameter, ODs are heavily
influenced by missing data artifacts, resulting in a bright halo. If parameters defining the
missing data are known or have been estimated, they can be applied to compute an
Expected object from the ideal. In this particular example, we Fourier transform the ideal,
zero out a vertically oriented 90° missing wedge, and then invert the masked Fourier
transform. |WMD|: Magnitude of the “wedge-masked” difference between the expected and
observed objects. WMDs preserves true variation while largely suppressing missing data
artifacts.
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Figure 2.
The 4 test volumes. Undistorted complex I (volume 1) is at the upper left, with volumes 2–4
proceeding clockwise. Volumes 2–4 have been distorted with a skew transform

with (a, b, c) = (0.25, 0.1, 0.1), (0.1, 0.25, 0.1), and (0.1, 0.1, 0.25), respectively. With the
exception of volume 2, whose long axis is noticeably stretched, the resulting distortions are
quite subtle, providing a stringent test for clustering. Scale bar is 10 nm.
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Figure 3.
Central 9 Å xy cross-sections of volume 1 showing the impact of noise and single-axis
missing tomographic data. Top: no missing data; Middle: 10% missing (tilt range −81° to
81°); Bottom: 30% missing (tilt range −63° to 63°). SNR is ∞, 0.5, 0.2, 0.1, 0.05, and 0.02,
from left to right, respectively. For purposes of illustration, z was used as the tilt axis, and
the brightness and contrast of each image was adjusted individually.
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Figure 4.
Coefficient histograms with no missing data. (a),(b): SNR=∞. (c), (d): SNR=0.05. In (a)
and (b), discrete peaks correspond to individual classes. In (c) and (d), the 3 peaks in the left
panel correspond to classes 1, 3+4 (combined), and 2. Subsequent coefficients provide
further resolution.
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Figure 5.
Coefficient histograms for SVD-CCC with missing data and noise. (a, b): 10% missing data,
SNR 0.2 and 0.02, respectively. (c): 30% missing data, SNR 0.2. In (a), coefficient 2 yields
perfect 3-class separation. Clustering using k-means gives only 2-class separation in (b) and
fails to find any significant clusters in (c).
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Figure 6.
Coefficient histograms for WMD-PCA with missing data and noise. (a, b): 10% missing
data, SNR 0.2 and 0.02, respectively. (c, d): 30% missing data, SNR 0.2 and 0.02,
respectively. Panels (a)–(c) are directly comparable to Figure 5(a)–5(c) for SVD-CCC, and
show that WMD-PCA better preserves separation between classes.
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Figure 7.
Number of classes separated using k-means on the leading 4 coefficients. A bar height of N
indicates perfect N-class separation, while a height of N − 0.5 indicates good, but not perfect
separation. WMD-PCA outperforms both other methods in the presence of noise and
missing data.
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Figure 8.
Central 5.4 nm xy slices through (a): WMD-PCA eigenvector 1 with 30% missing data and
SNR= 0.02, and (b): the exact difference between volumes 1 and 2 with no noise and no
missing data.
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Figure 9.
Central 5.4 nm xy slices of standard deviation maps. (a): true standard deviation between
classes 1 and 2, computed as the square root of 0.175 times the squared difference between
the volumes. (b,c): WMD-corrected and conventional (uncorrected) estimates, respectively,
of standard deviation with 30% missing data and SNR=0.2.
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Figure 10.
GroEl14/GroEL14GroES7 clustering using WMD-PCA. (a): k-means clusters using the first 3
eigenvectors. Class 1–4 are shown in green, cyan, magenta, and blue, respectively. (b, c):
Central 1.2 nm xy (b) and xz (c) slices through the 4 class averages. Class 1 and 2 averages
correspond to GroEl14 and GroEL14GroES7, respectively, while classes 3 and 4 appear to
contain incomplete, damaged, or misaligned particles positioned at the top or bottom of the
overall average. Scale bar is 10 nm.
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Figure 11.
Chlamydomonas reinhardtii axoneme axial projections. (a): The averaged doublet structure.
(b): The WMD-corrected variance map corresponding to (a). The beak (open arrowhead)
and outer dynein arm (ODA) regions are indicated. Both show up as regions with high
variance relative to their densities in the average, as expected from the known structure.
Scale bar is 10 nm.
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Table 1

WMD-corrected PCA and Variance Mapping.

• Initialize an m by n matrix D = [0]

• For each particle, i

– Construct the rotated wedge mask:

W ′ = CRθi(Wvi)

– Apply the wedge mask to the subvolume and average, and band limit the subvolume:

t = F−1(W ′X ∗)
y = F−1(BW′Xi)

– Form the wedge-masked difference: δ = t − y

– Apply an ROI mask, if any: δ = pδ

– Centralize or standardize as desired. In most of the work described here, we adjusted δ to be zero mean and unit variance
over p, and zero elsewhere. More recently, we have stopped adjusting variance.

– Set column i of D to δ: [di] = δ

•
Center the columns of D: di = di −

1
n Σi=1

n di

• Compute the [partial] SVD of the WMDs: USVT = D

• Cluster using first k rows of SVT as inputs to the chosen algorithm

• If desired, form the corrected covariance: C = US2UT/(n − 1) and the variance map σ2 = diag(C)
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