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Abstract
The paper relates estimation and testing for additive interaction in proportional hazards models to
causal interactions within the counterfactual framework. A definition of a causal interaction for
time-to-event outcomes is given that generalizes existing definitions for dichotomous outcomes.
Conditions are given concerning the relative excess risk due to interaction in proportional hazards
models that imply the presence of a causal interaction at some point in time. Further results are
given that allow for assessing the range of times and baseline survival probabilities for which
parameter estimates indicate that a causal interaction is present, and for deriving lower bounds on
the prevalence of such causal interactions. An interesting feature of the time-to-event setting is
that causal interactions can disappear as time progresses i.e. whether a causal interaction is present
depends on the follow-up time. The results are illustrated by hypothetical and data analysis
examples.

A paper by Li and Chambless1 considered tests for additive interaction between the effects
of two exposures in proportional hazards models. In this paper I will briefly relate these tests
for additive interaction (along with proportional hazards survival curves) to causal
interactions within the counterfactual framework.2–4 Causal interactions refer to settings in
which there are persons for whom the outcome would occur (by a certain time) if both
exposures were present but for whom the outcome would not occur if only one of the two
exposures were present. Statistical interactions do not necessarily imply the presence of
causal interactions.2 In this paper, it is shown that the tests for additive interaction in the
proportional hazards model (or variants of such tests) can be used to infer the presence of a
causal interaction at some point in time. To draw conclusions about the presence of causal
interactions for intervals of times more generally, one can use results concerning the
proportional hazard model parameters and the baseline survival function.

Methods
Let T be a time-to-event outcome and let D(t) be an indicator for the outcome having
occurred by time t. Let G and E be two dichotomous exposures of interest and C a collection
of covariates. Let S(t; g, e, c) and λ(t; g, e, c) denote, respectively, the survival function and
hazard function at time t conditional on G = g, E = e, C = c. The proportional hazards model
considered by Li and Chambless1 takes the form

(1)

where λ0(t) is the baseline hazard at time t and (β1, β2, β3, γ1, …, γn) are the model
parameters. Note that, in the proportional hazards model in (1), we have that S(t; g, e, c) =
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S(t; 0, 0, c)exp(β1g+β2e+β3ge). Li and Chambless propose using as a measure of relative excess
risk due to interaction5 (RERI) the quantity

which equivalently is

where HR(g, e; c) is the hazard ratio, conditional on C = c, comparing G = g, E = e with the
reference group G = 0, E = 0. Li and Chambless discuss estimation, testing and confidence
intervals for this quantity, RERIHR.

Now let Dge(t) denote the counterfactual outcome for a person at time t if, possibly contrary
to fact, G had been g and E had been e; thus Dge(t) = 1 if the outcome for the person would
have occurred by time t if G were g and E were e. We can say that there is a causal
interaction between G and E at time t if for some individual D11(t) = 1 but D10(t) = D01(t) =
0 so that for that person the outcome would have occurred by time t if both exposures had
been present but would not have occurred by time t if only one of the two were present. This
definition generalizes the notion of a causal interaction from an outcome at a single point in
time6 to a time-to-event outcome. We will take probabilities and expectations over all
persons in the population.

We say that the effects of G and E are unconfounded conditional on C if P(Dge(t) = 0|C = c)
= S(t; g, e, c). Essentially, if the effects of G and E are unconfounded conditional on C, then
the survival curves conditional on G = g, E = e, C = c will reflect what the survival curve
would have been had the exposures G and E been set to levels g and e, respectively, for the
entire subpopulation with C = c. We will say that G and E have positive monotonic effects
on the outcome if Dge(t) is non-decreasing in g and e for all t and all persons i.e. P(Dge(t) ≤
Dg′e′(t)) = 1 for all g ≤ g′,e ≤ e′ and all t. The exposures G and E have positive monotonic
effects on the outcome if they are causative or neutral (i.e. never preventive) for all
individuals. If the exposures have negative monotonic effects on the outcome (i.e.
preventive or neutral for all individuals), then the exposure values could be recoded so that
the recoded exposures have positive monotonic effects on the outcome. These assumptions
of monotonicity concern individual-level counterfactuals and cannot be verified empirically;
they must be made based on substantive knowledge. We then have the following results.
Proofs are given in the Appendix (our results presuppose the technical condition that the true
survival curves, S(t; g, e, c), are continuous functions of time t).

Result 1
If the effects of G and E are positive monotonic and are unconfounded conditional on C,
then RERIHR > 0 in model (1) implies that there is some time t > 0 such that there is a causal
interaction between G and E.

Result 1 states that if the effects of G and E are unconfounded then the tests for interaction
on an additive scale given by Li and Chambless,1 i.e. concerning RERIHR, imply that a
causal interaction is present at least at some point in time. However, in a proportional
hazards model, RERIHR > 0 does not imply that there will be a causal interaction for all
times t. We may have RERIHR > 0 in model (1) but there may be some time t > 0 for which
there is no causal interaction. Result 1 requires the assumption that G and E had positive
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monotonic effects on the outcome. A similar result holds without employing monotonicity
assumptions, but requires RERIHR > 1.

Result 2
If the effects of G and E are unconfounded conditional on C, then RERIHR > 1 in model (1)
implies that there is some time t > 0 such that there is a causal interaction between G and E.

The basic intuition for Result 2 is that if RERIHR > 1 then HR(1, 1; c) − HR(1, 0; c) − HR(0,
1; c) > 0, so that the hazard ratio when both exposures are present is greater than the sum of
the hazards under each of the exposures alone. If this is the case then in small intervals of
time there must be some person for whom the outcome would occur if both exposures were
present, but for whom it would not occur if only one of the two were present. Methods for
testing the conditions on RERIHR in Results 1 and 2 and for obtaining confidence intervals
for RERIHR are described by Li and Chambless.1 Results similar to those given in Results 1
and 2 hold for logistic regression with a dichotomous outcome4; the results given above
generalize these results for dichotomous outcome to time-to-event outcomes. Note that
Results 1 and 2 (and also Results 3 and 4 below) provide sufficient but not necessary
conditions for their conclusions.

Results 1 and 2 relate only to drawing conclusions about causal interactions that may be
present at a single point in time. We might also be interested in the circumstances under
which one could conclude that there is a causal interaction between G and E for a range of
times. The next two results give such conditions; Result 3 requires a monotonicity
assumption; Result 4 does not.

Result 3
Let stc = S(t; 0, 0, c) be the survival function at time t conditional on G = 0, E = 0, C = c. If
the effects of G and E are positive monotonic and are unconfounded conditional on C, then
under proportional hazards model (1), there will be a causal interaction between G and E in
the subpopulation C = c for all times t that satisfy

(2)

As an illustration of Result 3, suppose that β1 = 0.18, β2 = 0.14, β3 = −0.01 and that the
effects of G and E are positive monotonic and are unconfounded conditional on C. We then
have that (0.8)exp(β1+β2+β3) − (0.8)exp(β1) − (0.8)exp(β2) + (0.8) = −0.0015 < 0 and thus there
would be causal interaction for all times t and c such that the baseline survival curve S(t; 0,
0, c) = 0.8. Here we also have that (0.6)exp(β1+β2+β3) − (0.6)exp(β1) − (0.6)exp(β2) + (0.6) =
0.00017 > 0, and thus we could not draw conclusions about causal interactions for t and c
such that S(t; 0, 0, c) = 0.6.

In practice, one could use the parameter estimates for (β1, β2, β3) and apply Result 3 to
derive a range of values of stc for which there is evidence of causal interaction by
conducting a numerical search evaluating the expression in (2) for many possible values of
stc to generate the range for which the inequality is satisfied. The smallest value of the
baseline survival function S(t; 0, 0, c) for which this is satisfied may be of particular interest.
Confidence bands for this range could be obtained by bootstrapping. If we apply this
numerical-search approach to the parameter values above, we find that causal interaction
would be present for all t and c such that 0.61 < S(t; 0, 0, c) < 1.
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As noted in the Appendix in the proof of Lemma 1, the negation of the expression in (2) i.e.

{ } is a lower bound on the prevalence of individuals
exhibiting a causal interaction at time t in strata C = c, provided that G and E have positive
monotonic effects. The result in Lemma 1 in fact also applies to models other than the
proportional hazards model. The next result allows for a similar approach but does not
require assumptions about monotonicity.

Result 4
Let stc = S(t; 0, 0, c) be the survival function at time t conditional on G = 0, E = 0, C = c. If
the effects of G and E are unconfounded conditional on C, then under model (1) there will
be a causal interaction between G and E in the subpopulation C = c for all times t that satisfy

(3)

The condition in Result 4 is similar to that in Result 3 except the final stc is replaced by 1.

The negation of the expression in (3), i.e. { }, is a lower
bound on the prevalence of individuals exhibiting a causal interaction at time t in strata C =
c without assumptions about monotonicity.

Example
Li and Chambless1 use a proportional hazards model (1) to examine possible interaction on
coronary heart disease between the presence of GSTM1 susceptibility polymorphisms and
smoking (ever versus never), controlling for age, cholesterol, sex, hypertension, diabetes
mellitus and ethnicity. They fit model (1) to data from the ARIC cohort of 15, 792 African
American and white men and women age 45 – 64 years. They obtain an estimate of RERIHR
of RÊRIHR = 1.14 (95% CI: 0.05, 2.23) and estimates of (β1, β2, β3) of β ̂1 = 0.05 (95% CI:
−0.51, 0.61), β ̂2 = 0.29 (95% CI: −0.22, 0.79), and β ̂3 = 0.59 (95% CI: −0.14, 1.32).
Suppose that the effects of G and E are unconfounded conditional on C. We see that the
estimate of 1.14 and entire 95% confidence interval (0.05 – 2.23) for RERIHR are above 0.
Thus, from their analysis, under the assumption that the GSTM1 polymorphism and smoking
had monotonic effects on the outcome, we would have evidence that there is some time t > 0
such that there is a causal interaction between the effects of the GSTM1 susceptibility
polymorphism and smoking, i.e. some time t at which, for some people, the outcome would
have occurred if both the GSTM1 polymorphism and smoking were present, but the outcome
would not have occurred by time t if just one of the two exposures was present. We see also
from the analysis of Li and Chambless that, without assumptions about monotonicity,
although the point estimate of 1.14 is such that RÊRIHR > 1, the 95% confidence interval
(0.05 – 2.23) contains values below 1 and thus, without the assumption that G and E have
positive monotonic effects on the outcome, there is only limited evidence for causal
interaction.

Suppose that both the GSTM1 susceptibility polymorphism and smoking had positive
monotonic effects on the outcome. Using Result 3 we can numerically search for those
values of stc = S(t; 0, 0, c) for which the parameter estimates suggest that causal interaction
is present. Doing so we obtain that condition (2) is satisfied (and thus the parameter
estimates would suggest the presence of a causal interaction under the monotonicity
assumption) for all t and c, such that 0.01 < S(t; 0, 0, c) < 1 − i.e. for almost the entire range
of the baseline survival function. A similar numerical search using Result 4 without
monotonicity assumptions gives the range 0.36 < S(t; 0, 0, c) < 1.
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Discussion
This paper provides conditions that may be useful in helping researchers draw conclusions
about causal interactions - at any time or at a range of times - when using proportional
hazards models. One of the interesting features of such time-to-event settings is that causal
interaction can disappear as time progresses (i.e. whether a causal interaction is present
depends on the follow-up time). As shown here, the conditions for additive interaction
discussed by Li and Chambless1 using the relative excess risk due to interaction in the
proportional hazards model (RERIHR > 0) allow one to conclude that there is some point in
time for which a causal interaction is present under an assumption that both exposures have
positive monotonic effects on the outcome. To draw the same conclusion without
monotonicity assumptions requires RERIHR > 1. This paper also describes a method
whereby a researcher can determine the range of times and values of the baseline survival
function for which the parameter estimates of the proportional hazards model suggest the
presence of a causal interaction. It is also possible to estimate bounds on the prevalence of
persons who exhibit causal interactions at various times. The results given here hold for the
proportional hazards model; future work could examine other time-to-event models. It might
also be of interest to attempt to further relate the results concerning causal interactions to the
sufficient-cause framework.2, 3, 7 It has, however, been noted elsewhere4, 6 that functional-
form restrictions such as those in model (1) impose certain restrictions on the sufficient-
cause framework that may be difficult to evaluate in practice. The proportional hazards
assumption will impose yet further restrictions.

Inverse-probability-of-treatment weighting6, 8 to control for confounding can circumvent
some of the functional-form restrictions of model (1) but the proportional-hazard restriction
would remain. Attempting to formulate the sufficient-cause framework so as to explicitly
and formally allow for time may also face certain challenges.9 Such a formulation may be
possible by using other models for time-to-event data.
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Appendix

Lemma 1
If the effects of G and E are positive monotonic and are unconfounded conditional on C then
there is a causal interaction between G and E at any time t such that

Without assumptions about monotonicity, if it is assumed only that the effects of G and E
are unconfounded conditional on C, then there is a causal interaction between G and E at
any time t such that

Proof of Lemma 1
If for some time t there is no causal interaction between G and E, then by monotonicity we
would have that at time t, D11(t) − D10(t) − D01(t) + D00(t) ≤ 0 and thus [D11(t) − D10(t) −
D01(t) + D00(t)|C = c] ≤ 0 and by unconfoundedness [1− S(t; 1, 1, c)] − [1 − S(t; 1, 0, c)] −
[1 − S(t; 0, 1, c)] + [1 − S(t; 0, 0, c)] ≤ 0 i.e. S(t; 1, 1, c) − S(t; 1, 0, c) − S(t; 0, 1, c) + S(t; 0,
0, c) ≥ 0. Thus if S(t; 1, 1, c) − S(t; 1, 0, c) − S(t; 0, 1, c) + S(t; 0, 0, c) < 0, then there must
be a causal interaction between G and E at time t. Without assuming monotonicity, if for
some time t there is no causal interaction between G and E, then we would have that at time
t, D11(t) − D10(t) − D01(t) ≤ 0 and thus [D11(t) − D10(t) − D01(t)|C = c] ≤ 0 and by
unconfoundedness [1 − S(t; 1, 1, c)] − [1 − S(t; 1, 0, c)] − [1 − S(t; 0, 1, c)] ≤ 0 i.e. S(t; 1, 1,
c) − S(t; 1, 0, c) − S(t; 0, 1, c) + S(t; 0, 0, c) + 1 ≥ 0. Thus if S(t; 1, 1, c) − S(t; 1, 0, c) − S(t;
0, 1, c) + 1 < 0, then there must be a causal interaction between G and E at time t. By the
same logic it follows that the extent to which S(t; 1, 1, c) − S(t; 1, 0, c) − S(t; 0, 1, c) + S(t;
0, 0, c) is less than 0 or the extent to which S(t; 1, 1, c) − S(t; 1, 0, c) − S(t; 0, 1, c) + 1 is less
than 0 would serve as lower bounds for the prevalence of individuals exhibiting such causal
interactions with or without the monotonicity assumption respectively.

Proof of Result 1
Suppose that RERIHR = eβ1+β2+β3 − eβ1 − eβ2 + 1 > 0. Define Q(s) = sexp(β1+β2+β3) − sexp(β1)

− sexp(β2) + s. We have that Q(1) = Q(S(t = 0; 0, 0, c)) = 1exp(β1+β2+β3) − 1exp(β1) − 1exp(β2) +
1 = 0. Furthermore

and thus if RERIHR = eβ1+β2+β3 − eβ1 − eβ2 + 1 > 0 we have that  (i.e. a
positive first derivative), which implies that for some ε > 0, Q(1 − ε) < Q(1) = 0. Because
the survival curve S(t; 0, 0, c) is continuous in t, there exists some t > 0 such that S(t; 0, 0, c)
= 1 − ε and thus for this time t,
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Thus if RERIHR > 0 so that for some time t, S(t; 1, 1, c) − S(t; 1, 0, c) − S(t; 0, 1, c) + S(t; 0,
0, c) < 0 then, by the Lemma above, there must be a causal interaction between G and E at
this time t.

Proof of Result 2
Suppose RERIHR = eβ1+β2+β3 − eβ1 − eβ2 + 1 > 1 so that eβ1+β2+β3 − eβ1 − eβ2 > 0. Define
Q(s) = sexp(β1+β2+β3) − sexp(β1) − sexp(β2). We have that Q(1) = Q(S(t = 0; 0, 0, c)) =
1exp(β1+β2+β3) − 1exp(β1) − 1exp(β2) = −1. Also

and thus, if RERIHR > 1, so that eβ1+β2+β3 − eβ1 − eβ2 > 0, we have that ,
which implies that for some ε > 0, Q(1 − ε) < Q(1) = −1. Because the survival curve S(t; 0,
0, c) is continuous in t, there exists some t > 0 such that S(t; 0, 0, c) = 1 − ε and thus, for this
time t,

Thus if RERIHR > 0 so that for some time t, S(t; 1, 1, c) − S(t; 1, 0, c) − S(t; 0, 1, c) < −1
then, by the Lemma above, there must be a causal interaction between G and E at time t.

Proof of Results 3 and 4
Under the proportional hazards model 1 we have that S(t; g, e, c) = S(t; 0, 0,
c)exp(β1G+β2E+β3GE). Applying the Lemma above and using these proportional hazards
model expressions for S(t; 1, 1, c), S(t; 1, 0, c), S(t; 0, 1, c) and S(t; 0, 0, c), implies that, if
the effects of G and E are positive monotonic and are unconfounded conditional on C there
will be a causal interaction between G and E for all times t that satisfy S(t; 0, 0,
c)exp(β1+β2+β3) − S(t; 0, 0, c)exp(β1) − S(t; 0, 0, c)exp(β2) + S(t; 0, 0, c) < 0. This proves Result
3. Likewise, applying the Lemma above and using the proportional hazards model
expressions for S(t; 1, 1, c), S(t; 1, 0, c) and S(t; 0, 1, c) implies that if the effects of G and E
are unconfounded conditional on C, there will be a causal interaction between G and E for
all times t that satisfies S(t; 0, 0, c)exp(β1+β2+β3) − S(t; 0, 0, c)exp(β1) − S(t; 0, 0, c)exp(β2) + 1
< 0. This proves Result 4. Note that the derivative of the expression in inequality (2) of

Result 3 with respect to β3 is ; since stc ≤ 1 we have that log(stc)
≤ 0 and thus the derivative is negative. Therefore larger values of β3 will imply lower values
of the left-hand-side of inequality (2); thus for larger values of β3 inequality (2) will be
satisfied for more values of stc. The derivative of the expression in inequality (3) of Result 4
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with respect to β3 is also  and thus by the same argument, for
larger values of β3 inequality (3) will be satisfied for more values of stc.

VanderWeele Page 8

Epidemiology. Author manuscript; available in PMC 2012 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


