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Abstract

As organisms adaptively evolve to a new environment, selection results in the improvement of certain traits, bringing about an
increase in fitness. Trade-offs may result from this process if function in other traits is reduced in alternative environments
either by the adaptive mutations themselves or by the accumulation of neutral mutations elsewhere in the genome. Though
the cost of adaptation has long been a fundamental premise in evolutionary biology, the existence of and molecular basis for
trade-offs in alternative environments are not well-established. Here, we show that yeast evolved under aerobic glucose
limitation show surprisingly few trade-offs when cultured in other carbon-limited environments, under either aerobic or
anaerobic conditions. However, while adaptive clones consistently outperform their common ancestor under carbon limiting
conditions, in some cases they perform less well than their ancestor in aerobic, carbon-rich environments, indicating that
trade-offs can appear when resources are non-limiting. To more deeply understand how adaptation to one condition affects
performance in others, we determined steady-state transcript abundance of adaptive clones grown under diverse conditions
and performed whole-genome sequencing to identify mutations that distinguish them from one another and from their
common ancestor. We identified mutations in genes involved in glucose sensing, signaling, and transport, which, when
considered in the context of the expression data, help explain their adaptation to carbon poor environments. However,
different sets of mutations in each independently evolved clone indicate that multiple mutational paths lead to the adaptive
phenotype. We conclude that yeasts that evolve high fitness under one resource-limiting condition also become more fit
under other resource-limiting conditions, but may pay a fitness cost when those same resources are abundant.
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Introduction

R.A. Fisher’s fundamental theorem of natural selection relates

the rate of adaptation by populations of organisms to their genetic

variance in fitness at a given time [1]. Understanding the

mechanistic basis for this variance, and the distribution of a

population’s fitness variance under alternative modes of selection,

have been goals of evolutionary biologists since the modern

synthesis. Experimental laboratory evolution using metazoans

such as Drosophila [2], and microorganisms such as bacteria [3],

algae [4], or yeast [5] has provided the most direct route to these

goals, providing deep insight into the forces that guide the adaptive

process under different modes of selection [6].

In foundational work, Paquin and Adams monitored the

evolution of laboratory strains of the budding yeast Saccharomyces

cerevisiae [7] during growth under aerobic glucose limitation in

continuous culture [8,9]. By monitoring population genetic

dynamics over the course of these experiments and characterizing

the fitness phenotypes of individual evolved clones, they arrived at

two key insights concerning the mechanism of adaptive evolution

in clonal populations. First, adaptive shifts, inferred from scoring

fluctuations in the frequency of neutral markers, occurred more

often in evolving diploids than in otherwise isogenic haploids [8].

Second, in a subset of evolutions, relative fitness of successive

adaptive clones was non-transitive, that is, although any particular

clone was more fit than its immediate predecessor it was not

necessarily fitter than the ancestral strain used to found the

population [9]. As for the specific mechanisms underlying changes

in fitness, common phenotypes among adaptive clones included

increased glucose transport capacity and characteristic cell

morphology changes that increased surface area to volume ratios,

as might be expected for cells adapted to better scavenging low

concentrations of limiting growth substrate [10].

The clones derived from Paquin and Adams’ original experimen-

tal evolutions have shown an enduring usefulness over the past 25

years for addressing fundamental questions concerning the nature of

adaptive evolution. 15 years after the original experiments, Brown et

al., discovered that at least one genetic mechanism underlying

enhanced glucose transport was tandem duplication of adjacent

genes encoding the high-affinity glucose transporters Hxt6 and Hxt7

[11]; this genomic rearrangement has subsequently been observed in

other independent glucose-limited evolution experiments [12]. Ferea
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et al. [13] probed more deeply into physiological changes that result

from prolonged glucose-limited selection using one of these strains

and two others evolved under identical conditions from the same

ancestor. In the first experiment to use gene-expression microarrays

in evolutionary biology [3], they showed an overall shift in these

clones from fermentation to respiration, in what they termed an

‘‘enhanced classical Pasteur effect’’ that allowed for more efficient

metabolism of the available glucose [13]; subsequently, Dunham et

al. used these same clones to discover genomic rearrangements that

occur during adaptation [14].

One fundamental question that these strains have not yet been

used to address is: ‘‘Does evolution of increased fitness under one

type of selection cause decreased fitness under another?’’ - in other

words, are there fitness trade-offs? That trade-offs occur and

constrain organismal evolution is foundational to much evolution-

ary theory, theory that extends into ecology where it has guided

analyses of how communities are structured in relation to resource

availability [15–17] and which factors constrain life history

evolution [2,18]. The question of how niche breadth evolves has

been addressed both theoretically and experimentally [19–22]. It is

widely held that adaptation to a homogenous environment should

favor a narrowing of niche-breadth, whereas adaptation to a

heterogeneous environment should favor evolution of a broad

niche and maintenance of population genetic variation [19,23].

One theory for why niche breadth might be narrowed in an

environment where selection is uniform and constant is based on

the possibilities that either adaptive mutations or neutral mutations

that accumulate under one selection pressure are deleterious under

others – possibilities known, respectively, as antagonistic pleiotropy

or mutation accumulation. However, these trade-offs can be hard

to demonstrate directly and mechanistically [24–26], in part

because they must be tested in relation to the ancestral state, which

may not always be known or accessible.

Correlated responses of fitness to selection are conventionally

measured in terms of how well an organism performs in an

environment different from the one in which it evolved [24,27,28].

However, the observation of correlated responses does not by itself

prove the existence of trade-offs. What is required are experi-

mental data showing that in alternate environment(s) fitness is

reduced relative to the ancestor [29]. Experimental microbial

evolution has shown that trade-offs do occur, but not inevitably,

following selection. Clones from populations of E. coli serially

diluted for 20,000 generations in minimal medium containing

glucose as the sole carbon source exhibit reduced fitness on a

variety of alternative carbon sources [30–32]. Narrowed niche-

breadth does not appear to be specific to evolution on a particular

nutrient, as populations of E. coli experimentally adapted to low

temperature can show trade-offs at high temperature [33–35].

Experimental evolution using the facultatively photosynthetic

algae Chlamydomonas has also revealed trade-offs: strains evolved

in the presence of light often grow more poorly than the original

ancestor in the dark, and vice versa [27,29]. In a final example,

among E. coli populations evolved in a continuous, mixed-sugar

chemostat environment (lactulose and methyl-galactoside), clones

evolve most often through either amplification of the lac operon or

mutations in the mgl operon. In only one out of thirteen chemostats

did a clone evolve having mutations in both of these operons [36].

Taken together these experimental studies suggest that fitness

trade-offs (which could be due to either antagonistic pleiotropy

[AP] or mutation accumulation [MA]), while not inevitable, can

play an important role in determining an organism’s niche

breadth. In addition to these studies, other recent work has delved

deeply into the molecular genetic basis for adaptation using gene-

expression analysis, targeted gene sequencing, array comparative

genomic hybridization [aCGH], and/or whole genome sequenc-

ing [12,37–41]. Notwithstanding such breakthroughs, few at-

tempts have been made to comprehensively integrate whole-

genome sequence data with estimates of physiological perfor-

mance and fitness; this activity is essential to achieving the goals of

understanding the mechanistic basis for population genetic

variance, as well as for the distribution of fitness variance under

alternative modes of selection.

Here we present just such an integrated set of fitness,

physiological, and whole-genome sequence data that we use to

test whether evolutionary adaptation to one type of carbon

limitation diminishes organismal performance under other types of

carbon limitation (or non-limitation). Specifically, we asked

whether the well-studied Paquin and Adams [7–9] and Ferea et

al. [13] yeasts that were evolutionarily adapted to aerobic glucose

limitation fared better, no differently, or worse than their common

ancestor when cultured in two other carbon-limited environments:

anaerobic glucose limitation in chemostats or aerobic acetate

limitation in chemostats. Additionally, we assayed these strains’

fitness under non-limiting glucose in serial batch culture, and in

glucose-rich, nitrogen-limited chemostats. Remarkably, we dis-

covered that evolved strains were consistently more fit than their

common ancestor under every condition where carbon was

limiting, but that this advantage disappeared when carbon was

abundant, indicating the existence of a trade-off. To understand

how this might be so, we measured for each strain in each

environment indicators of physiological performance including

yield and global gene-expression profiles. Then, to discover the

genetic mechanisms that underlie these phenotypes and to further

unravel the evolutionary history of these well-studied clones, we

sequenced the genomes of all five adaptive clones and their

common ancestor.

Results

Evolved Clones Outperform Their Ancestor in Diverse
Carbon-Limited Environments

Paquin & Adams [8,9] and Ferea et al. [13] isolated end-clones

from independent evolution experiments originating from a

Author Summary

Microorganisms such as yeast have been used for decades
to study adaptive evolution by natural selection. Thirty
years ago in now seminal experiments, a strain of yeast
was evolved multiple times under carbon limitation. The
adaptive changes that gave rise to increases in fitness have
previously been studied both phenomenologically and
mechanistically but not in detail at the molecular level. To
better understand the basis for these strains’ fitness
increase, we sequenced their genomes and identified
putative adaptive mutations. We found that multiple
mutational paths lead to these fitness increases. We also
determined whether the evolved yeasts’ gains in fitness
under the original conditions in some cases diminished
fitness under other conditions. We therefore evaluated
their performance relative to the ancestral strain under the
evolutionary and two alternative resource-limiting condi-
tions by determining the ancestral and evolved strains’
relative fitnesses and gene-expression levels under all
three conditions. We found scant evidence among evolved
strains for fitness trade-offs when nutrients were scarce,
but discovered a cost was paid when nutrients were
plentiful.

Genomic Analysis of Trade-Offs in Evolved Yeast
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diploid strain of S288c (CP1AB) that was grown under continuous

aerobic glucose limitation [7]. To determine whether five of these

clones from independent lineages (hereafter referred to as E1

through E5, see Materials and Methods) maintained their fitness

advantage relative to the ancestor in ‘‘novel’’ carbon-source

environments, selection coefficients were calculated by competing

each clone and their ancestor against a common reference strain

(see Materials and Methods) in three environments: aerobic

glucose limitation (the ‘‘direct’’ fitness response, i.e., to the original

selection), anaerobic glucose limitation and aerobic acetate

limitation (the latter two measure ‘‘correlated’’ responses). The

two alternative carbon-limiting environments were chosen to test

their effects on the ‘‘enhanced classical Pasteur effect’’ observed in

these clones by Ferea et al. [13]. Specifically, they provide

complementary environments to test the fitness consequences of

adaptively switching from respiro-fermentative metabolism to

respiration alone. In one case, only fermentation is possible

(anaerobic glucose limitation), while in the other, only respiration

is possible (aerobic acetate limitation). Competitions were carried

out for approximately 20 generations, which was short enough to

ensure no further adaptive genetic changes would appreciably

affect the outcome.

As expected, each evolved clone had a significantly higher

relative fitness than the ancestor in the aerobic glucose-limited

environment in which all of the original evolutions were

performed (Figure 1 (‘‘Aerobic’’) and Table S1). In the alternative

carbon-limited environments, i.e., ‘‘Anaerobic’’ and ‘‘Acetate’’,

each adaptive clone also exhibited significantly higher fitness

relative to the ancestral diploid CP1AB, (in a 2-tailed t-test)

(Figure 1 and Table S1). These data indicate that the adaptation to

aerobic glucose limitation in each of the clones is not accompanied

by a reduction in fitness compared to the ancestral state in either of

two alternative environments. They also suggest that selection has

improved these clones’ ability to scavenge the limiting nutrient and

has also enhanced respiratory efficiency.

In the above analyses, we compared evolved clones’ direct and

correlated responses to selection within each environment. To

compare the responses to selection between environments, we

calculated grand means of all five clones’ relative fitnesses within

each environment and tested these means for significance

differences between each of the three environments (2-tailed t-test).

We hypothesized that some of the adaptive mutations due to the

original aerobic regime would be deleterious or neutral under

anaerobic growth, specifically those that resulted in the ‘‘enhanced

classical Pasteur effect.’’ This hypothesis predicts that these same

mutations would produce a fitness advantage in aerobic acetate-

limited growth (provided they continue to enhance respirative

growth). The data in Table S2 show significant differences in overall

mean fitness between all three environments. As predicted by our

hypothesis, mean relative fitness in the aerobic glucose-limited

Figure 1. Normalized Competition Coefficients for 3 Environments. Data are competition coefficients calculated by competing each strain
(evolved and ancestor CP1AB) against a common reference strain. Values are the average of three biological replicates, with values normalized such
that ancestral CP1AB (‘‘P’’) equals 1 in each environment. Significant differences versus CP1AB within each environment were calculated using a
2-tailed t-test. ‘‘*’’ indicates p,0.05 and ‘‘**’’ p,0.01. Error bars represent the Standard Error of the Mean. See Table S1 for un-normalized, average
competition coefficients.
doi:10.1371/journal.pgen.1002202.g001

Genomic Analysis of Trade-Offs in Evolved Yeast
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environment is higher than in anaerobic glucose limitation

(competition coefficients 0.280 vs. 0.143 respectively, p,0.05 in

two-tailed t-test); strikingly, the relative fitness under acetate-

limitation is higher still than under aerobic glucose limitation

(competition coefficients 0.437 vs. 0.280 respectively, p,0.05 in

two-tailed t-test). These data are consistent with the notion that

while the mutations conferring the adaptive advantages for E1

through E5 have an overall net positive effect on fitness when

compared to the original ancestor in each environment, some of

these mutations might be deleterious or neutral in the anaerobic

environment. More specifically, these results indicate that increased

glucose transport is still advantageous under anaerobic glucose

limitation, but that enhanced respiration provides no benefit in the

absence of oxygen. However, enhanced respiration provides

obvious benefits under acetate limitation, where oxygen is available.

While these trends are important, they are not universally true

for all clones. For example, one clone (E4, Figure 1) has the highest

relative fitness in the anaerobic environment, yet it has one of the

weakest fitness advantages compared to the other four clones in

aerobic glucose limitation and an intermediate fitness under

acetate limitation. There are also two cases (E1 and E5) in which

the correlated responses in the acetate-limited environment are

less than the direct fitness response under aerobic glucose

limitation. Taken together, these two observations are consistent

with a hypothesis that the more adapted to one environment a

particular clone might be, the higher the chance that there will be

a fitness cost in a different environment, and vice-versa. This

variation in fitness also suggests that multiple genetic paths that

have answered the selection are represented among these

independent clones.

Physiological Responses Help Explain Correlated Fitness
Advantage

To determine whether unique physiological traits are associated

with the fitnesses we observed, three independent, single colonies

of each evolved clone and the common ancestor were grown to

steady state in the chemostat and three different parameters of

culture growth—culture density (optical density [OD] at 600 nm),

cell number (cells mL21), and biomass (g 100 mL21)—were

measured (Table S3, Figure 2). The data in Figure 2 are

represented as fold-change relative to the ancestor; please see

Table S3 for raw values and statistics. For the aerobic glucose-

limitation growth condition, we observed, for all five evolved

clones, the same physiological changes reported in previous work

[10,11,13], namely a two to four-fold increase with respect to the

ancestor in optical density, cell number, and biomass (Table S3,

Figure 2A). The observed increases in all measured cell growth

parameters among the evolved clones have been postulated to

arise from both an increase in glucose transport and from an

adaptive switch to increased rates of respiration, resulting in a

more energetically efficient use of the available glucose [13].

In alternative carbon-limited environments, evolved clones also

demonstrate increased cell yield, relative to their common

ancestor, although these differences are much more pronounced

under aerobic acetate limitation than under anaerobic glucose

limitation. In fact, the differences in magnitude we observe under

acetate limitation are comparable to those we observed under

aerobic glucose limitation, with values ranging from an almost 5-

fold increase in one case (cells mL21 for E2), down to a roughly 2-

fold increase in biomass for E5 (Figure 2C, Table S3). In the case

of anaerobic glucose limitation, however, the increases are more

modest, ranging from a maximum 2.5-fold increase (cells mL21 for

E1 over CP1AB) to no change or perhaps even a slight reduction

(cells mL21 for E5 and OD600 for E1) for these traits (Figure 2B,

Table S3). Another general observation is that under both acetate

limitation and aerobic glucose limitation, there seems to be general

concordance between the three physiological traits measured, i.e.,

changes relative to the ancestor in biomass, cell number, and

culture density change in the same direction and with similar

magnitudes when considering any individual clone. This is to be

contrasted with anaerobic glucose limitation, where there is no

concordance between any of the three physiological parameters; in

fact, the data are consistent with steady state OD and cells mL21

being anti-correlated. Finally, we observe a clear relationship

between relative fitness increases and the magnitude of the growth

parameter increases relative to the ancestor for these three

physiological parameters, both in the aerobic glucose-limited

environment (Figure 2A) and to a lesser extent in the acetate-

limited environment (Figure 2C). However, none of the three

parameters seem to be correlated to relative fitness in the

Figure 2. Physiological Fold-Changes Overlaid on Fitness.
Representation of physiological data combined with fitness data for
three environments A) aerobic glucose limitation, B) anaerobic glucose
limitation, C) aerobic acetate limitation. Primary (left) y-axis is
normalized competition coefficient (same normalization as Figure 1).
Secondary (right) y-axis is fold change (evolved/ancestral) of steady
state physiological data including A600 (optical density at 600 nm), cells
mL21, and biomass g 100 ml21. See Table S3 for un-normalized values
and statistical analysis.
doi:10.1371/journal.pgen.1002202.g002

Genomic Analysis of Trade-Offs in Evolved Yeast
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anaerobic environment, suggesting that mechanisms independent

of enhanced respiration are contributing to higher relative fitness

under anaerobiosis in these clones compared to the ancestor

(Figure 2B).

Direct Gene-Expression Responses Are Not Constitutive
in Alternative Carbon-Limited Environments

The ‘‘enhanced classical Pasteur effect’’ described by Ferea et al.

[13] was inferred from their gene-expression microarray data. We,

too, have used microarrays to determine how the transcriptome

responds to alternative carbon-limited environments when cell

populations are at steady state. RNA was isolated from the same

cultures that were used to estimate physiological parameters (using

two of the three biological replicates), and transcript abundance

was measured on Agilent yeast catalog arrays, relative to a pooled

reference that contained equimolar amounts of each sample. The

values (Log2(sample/reference)) for the biological replicates were

averaged for the subsequent analyses.

Because Ferea et al. [13] performed gene expression microarray

analysis with only three of these evolved clones (E1 through E3) we

wished to determine if the ‘‘enhanced classical Pasteur effect’’ also

occurred in the other two clones (E4 and E5) under aerobic

glucose limitation, as well as whether the effect manifested in the

two alternative environments. We therefore examined our

microarray data alongside the 88 ‘‘enhanced classical Pasteur

effect’’ genes shown in Figure 1 of Ferea et al. (Figure 3, Dataset

S1).

Under aerobic glucose limitation our data (Figure 3) largely

recapitulate the ‘‘enhanced classical Pasteur effect’’ described by

Ferea et al. [13], as well as evolved transcriptional changes

reported under aerobic glucose limitation by Jansen, et al. [42]. In

all adaptive clones the expression levels of genes involved in

glucose oxidation increased while levels of glycolytic genes

decreased, relative to the common ancestor. Note that the

previously uncharacterized E4 and E5 clones appear to share

many of the changes observed in E1, E2, and E3 in the aerobic

glucose-limited environment, although not exclusively; in fact, E5

appears to be the most divergent of the five evolved clones. Some

deviations from the original experiments are seen, particularly in a

number of the glycolytic genes that do not appear as highly

repressed in our experiments as in the original work (ADH1,

ADH2, ENO1, ENO2, PGK1, PDC1).

Under anaerobic glucose-limiting conditions, glucose-oxida-

tion pathways are repressed (or simply not induced) as would be

expected in the absence of oxygen. Contrary to our initial

expectations, these same pathways are not highly expressed

relative to the ancestor under aerobic acetate limitation. Thus,

at least for this set of genes, it appears that evolved clones do not

have mutations in one or more global regulators of pathways

that result in constitutive up-regulation. Interestingly, under

aerobic and anaerobic glucose limitation (but not acetate

limitation) we observed up-regulation of the hexokinase gene

HXK2. HXK2 encodes a bifunctional enzyme whose cytosolic

form irreversibly commits glucose to metabolism by phosphor-

ylating it [43]; also, the nuclear form of Hxk2 is required for

Mig1-dependent glucose repression of multiple genes, including

HXK1 and itself [44]. Although this enzyme is thought to be a

Figure 3. 88 Genes that Show ‘‘Enhanced Pasteur Effect’’ from
Ferea et al. Average of two biological replicates of relative mRNA
abundance (measured against a pooled reference of all samples) for all
three environmental conditions of the 88 genes identified in Ferea et al.

[13] whose expression level in that experiment was .2 fold up or
down-regulated relative to the ancestor. All data are normalized to the
ancestor (evolved log2(sample/reference) – ancestral log2(sample/
reference)). Gene tree has been removed for space considerations.
Clustered raw data are available in Dataset S1.
doi:10.1371/journal.pgen.1002202.g003

Genomic Analysis of Trade-Offs in Evolved Yeast
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key element of the high-glucose sensing pathway [45], in

chemostats fed with 0.08% glucose HXK2 expression was

increased 4- to 16-fold in all five evolved clones compared to

the parent, a result we provisionally attribute to a 2-fold

decrease in expression of the Mig1-Hxk2 regulator SNF1

observed under this condition.

Evolved Clones Share Gene-Expression Responses
Consistent with Up-Regulation of Nutrient Signaling
Pathways

To uncover general expression patterns underlying the direct

and correlated responses to selection in these strains, we

performed a two-class, unpaired Significance Analysis of Micro-

arrays [SAM] [46], comparing all of the data for the evolved

strains in all three environments to all of the data for the ancestor.

This procedure identified 160 genes whose expression values

significantly differed between the evolved and ancestral strains

(FDR,5%) (Figure 4, Dataset S2). Because the Ras and TOR

pathways provide obvious candidates for a general adaptive

response that could lead to improved growth of evolved clones

relative to their ancestor in all three environments [12,47–50], we

also considered how these 160 genes behaved in three publicly-

available datasets: one that assayed gene-expression in response

to induction of RAS1 [51]; and two that measured gene-

expression when cells were treated with rapamycin, a drug that

inhibits the TOR pathway [52,53]. What is visually striking about

this list of genes is the degree of correlation (or anti-correlation in

the case of TOR) with the up-regulation of RAS1, and the down

regulation of the TOR pathway. GO::TermFinder [54] analysis

supports this visual observation, as the up-regulated genes are

enriched for functions including ribosome biogenesis (GOID

42254, Bonferroni corrected p-value = 4.67e-5), while down-

regulated genes are enriched for response to oxidative stress

(GOID 6979, Bonferroni corrected p-value = 3.3e-6) and [small

molecule/vacuolar/protein] catabolic process (GOID 9056,

Bonferroni corrected p-value = 1.71e-06) among others. These

three functions all have regulatory ties to both TOR and Ras/

cAMP signaling [55–57] and support the hypothesis that

mutations that modulate signaling through the Ras/cAMP

and/or TOR pathways are likely to provide a mechanism for

the evolution of a broad niche that encompasses multiple carbon-

limited environments.

Whole-Genome Sequence Analysis of E1–E5 and CP1AB
Reveals a Surprising Number of Mutations That Are Likely
Adaptive under Nutrient Limitation

The genomes of CP1AB and the five evolved clones E1–E5

have been previously interrogated in a number of different ways

including southern blot [11], gene-expression microarrays [13],

array comparative genomic hybridization [14], and most recently

by whole-genome tiling arrays [39]. While some of the genomic

events that have occurred as a result of adaptation are known –

notably, HXT6/7 amplifications [11,14], rearrangements near

the CIT1 locus [14], and mutations in the AEP3 gene [39] – a

comprehensive resequencing of these strains has not been

performed. We therefore performed high-throughput whole-

genome sequencing (Table S4) and then determined single-

nucleotide polymorphisms [SNPs], small insertions and deletions

[indels], and larger-scale genomic copy number variations

[CNVs] in each evolved strain relative to the common ancestor

(see Materials and Methods). We validated each substitution or

indel in both the evolved and the ancestral strains by Sanger

sequencing of the locus, using the same genomic DNA sample

that was used for whole-genome sequencing, isolated from a

single colony of the indicated strain (for primers, see Table S5).

Table 1, Table 2, Table 3, Table 4, and Table 5 show the results

of this analysis, which identified 28 single-nucleotide polymor-

phisms relative to the ancestor in E1 (evolved for 460

generations), 17 in E2 (250 generations), 11 in E3 (250

generations), 9 in E4 (301 generations), and 10 in E5 (264

generations), as well as two short indels, one each in E1 and E2.

One general observation is that the strain that underwent the

most number of generations of selection (E1) contained the most

polymorphisms relative to the other evolved strains. Another

general observation is that these strains have accumulated

polymorphisms at a faster rate than haploid populations evolved

under almost identical conditions; a haploid adaptive clone

isolated from one of the populations from Kao & Sherlock [12]

after 440 generations had only accumulated 5 SNPs, 1

transposon insertion, and the HXT6/7 amplification [58]. This

observation supports Paquin and Adams’ original conclusion that

diploids accumulate adaptive mutations more rapidly than

haploids [8].

Based on the fact that these independent diploid yeast

colonies that were sequenced were single adaptive clones that

each represent one lineage throughout the entirety of the

evolution, we used simple coalescent theory to estimate the

number of mutations we would expect by chance. Theory

predicts that the number of neutral mutations we would expect

to see in any given clone is simply m * L * t where m= mutation

rate (per base per generation), L = genome size (bases), and

t = time (generations). Using even the most generous estimate of

mutation rate (6.44e-10 per bp per generation estimated by

Lang & Murray [59] at the CAN1 locus) – we would only expect

to see a small number of mutations per strain. For E1, we only

expect 7–8 neutral mutations, and for E2–E5 we only expect 3–

5 mutations. Under the assumption that this is a Poisson

process, seeing the observed number of mutations is significant

for each clone (p,0.01 for E1, E2, E3, and E4, and p,0.05 for

E4, Table S6). These data support the hypothesis that a

significant fraction of the mutations that we identified are

adaptive. Finally, the vast majority (63 out of 69) of these

polymorphisms are heterozygous, as might be expected in

evolving diploid populations.

To gain further insights about the nature of these mutations

as a group, we characterized them with respect to whether they

lie in coding regions and if so, whether missense or nonsense

amino-acid substitutions are created. Again under the assump-

tion that the mutational events are distributed across the

genome in a Poisson fashion, we can determine whether both

the distribution of mutations in coding regions, and the

frequency with which mutations within a coding region result

in an amino acid change, deviate from our expectations. The

probability of a mutation occurring in a coding region

(including stop codons) is ,0.721 and, using clone E1 as an

example, the expected number of coding mutations out of 28

observed mutations is between 20 and 21. Given these

estimates, our null hypothesis under a Poisson distribution is

that we will not observe greater than 20–21 coding mutations

out of 28 total mutations. Because 21 of these 28 mutations

actually occur in coding regions, we cannot reject the null

hypothesis, and thus we do not see more mutations in coding

regions than we would expect by chance (p = .085) (Table S7).

Similarly for clone E1, we know that 18 of our 21 coding

mutations result in an amino acid change. Using the known

probability of a coding sequence mutation effecting an amino

acid change (see Materials and Methods), our expectation is
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that ,0.787 (or 16–17 out of 21) coding mutations will be

non-synonymous. Under a Poisson distribution, we again

cannot reject the null hypothesis that the number of non-

synonymous mutations observed in E1 (18/21) is greater than

the expected number (16–17/21) with p = 0.088 (Table S7).

These data combined with our previous observation suggest

that despite a large fraction of these mutations probably being

adaptive, the gene-dense nature of the genome (,72% coding)

and a large probability that a mutation occurring in a coding

region will result in an amino acid change (,79%) does not

allow us to predict that any given mutation being non-

synonymous means it will necessarily be adaptive.

Mutational Changes Have Occurred in Glucose Sensing
and Transport Pathways As Well As in Mitochondrial
Structural Proteins

In light of these data, but with the caveat that segregating out

dozens of mutations and individually testing their fitness effects is a

large undertaking, we can still draw some interesting conclusions

about the biological implications of these mutations from the

actual genes that are affected. We observed that the gene AEP3,

which encodes a mitochondrial integral membrane protein that

stabilizes mRNA of the ATP synthase complex [60], is affected by

polymorphisms in three of the evolved strains – E1, E2, and E3.

This strongly argues for these mutations being adaptive,

Figure 4. Expression Changes Common to Evolved Clones. Significance analysis was performed as a 2-class SAM between all evolved clone
data and all ancestral data for the three conditions. Prior to clustering the data were normalized to the ancestor as for Figure 3. Data from [51]
represents a time course of a constitutive Ras2G19V allele induced by the GAL10 promoter. mRNA abundances at 0, 20, 40, and 60 min were measured
on an Affymetrix platform and normalized for our purposes to 0 min (log2(20 min/0 min), etc.). Data from [52] are relative mRNA abundances over a
time course (0, 15, 30, 60 min) of rapamycin (rap) treatment normalized to 0 min (log2(15 min/0 min), etc.). Data from [53] are relative mRNA
abundance of rapamycin treated wild type cells versus wild type (log2(rapamycin/no treatment)). Each row represents a gene, and grey indicates
missing data. Clustered raw data are available in Dataset S2.
doi:10.1371/journal.pgen.1002202.g004

Table 1. Summary of Substitutions and Indels for E1 (460 generations).

Chr Pos Ref Alt Zygosity Annotation Syn? Gene

II 40357 A T hom (Ref)-.het CDS I 405 L BNA4

II 336311 C G hom (Ref)-.het CDS A 170 P REB1

II 649740 G A hom (Ref)-.het CDS V 619 I NGR1

IV 63483 C A hom (Ref)-.het CDS Q 512 H CDC13

IV 1154148 T C hom (Ref)-.het intergenic HXT7

IV 1154160 A G hom (Ref)-.het intergenic HXT7

V 246512 A T hom (Ref)-.het intergenic SAP1/CAJ1

V 246513 G A hom (Ref)-.het intergenic SAP1/CAJ1

VII 96460 A G hom (Ref)-.het CDS syn MIG2

VII 674719 A C hom (Ref)-.het CDS K 845 T VAS1

VIII 71474 G T hom (Ref)-.het CDS G 400 V YHL017W

VIII 142574 C G hom (Ref)-.het CDS E 329 Q DED81

X 514538 G T hom (Ref)-.hom (Alt) CDS V 162 F NUP85

XI 248086 G A hom (Ref)-.het CDS syn YKL102C

XI 365899 A C hom (Ref)-.het CDS syn RGT1

XII 353829 A T hom (Ref)-.het CDS S 3304 T MDN1

XII 445330 C A hom (Ref)-.het intergenic YLR152C/ACS2

XII 855305 C T hom (Ref)-.het CDS S 36 L YLR365W

XIII 136753 C A hom (Ref)-.het CDS S 418 R POB3

XIV 399951 C A hom (Ref)-.het CDS G 196 V TOM70

XIV 429367 A C hom (Ref)-.het CDS K 545 Q MET4

XIV 619219 +A hom (Ref)-.het CDS 2169aa SIS1

XV 172862 T G hom (Ref)-.het CDS L 598 W IRA2

XV 780679 T G hom (Ref)-.hom (Alt) intergenic SNR17A/DFR1

XVI 113951 G A hom (Ref)-.het CDS G 1767 D FAS2

XVI 422593 C G hom (Ref)-.het CDS S 549 * MUK1

XVI 489680 C A hom (Ref)-.het CDS R 562 L SVL3

XVI 549443 C T hom (Ref)-.het CDS P 320 S AEP3

XVI 640448 A C hom (Ref)-.het CDS Q 308 H ARP7

In the ‘‘Syn?’’ column, amino acid changes are indicated if the mutation is non-synonymous. Stop codons are indicated by ‘‘*’’. For intergenic mutations, flanking or
nearby genes are indicated in the ‘‘Gene’’ column.
doi:10.1371/journal.pgen.1002202.t001
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particularly because each of the mutations creates a different

amino acid substitution. These mutations had previously been

observed in E2 and E3 [39], and each created a novel growth

phenotype on acetate at 37uC in haploid progeny of E2 and E3

[14]. These mutations, now also confirmed in E1, presumably

confer an adaptive phenotype during growth in limiting glucose

and in limiting acetate despite being heterozygous. A number of

other genes that have been mutated are clearly connected to

adaptation in the original evolution condition, notably those

involved in glucose transport and its regulation (MIG2, RGT1), as

well as glucose and nutrient signaling (IRA2, CYR1, AVO1, TOR1,

ARP7). In particular, we discovered mutations in the Ras/cAMP

signaling pathway that have been previously identified in glucose-

limited evolutions [12], strongly suggesting adaptive roles for IRA2,

one of the Ras-GTPase-activating proteins [61], and CYR1, which

encodes the yeast adenylate cyclase [62]. Signaling through the

TOR pathway has also been implicated in physiological

adaptation to limiting glucose [63], again suggesting adaptive

phenotypes for mutations in TOR1 and AVO1, a member of the

TORC2 complex [64]. These mutations in the Ras/cAMP and

TOR pathways have clear implications for the changes that we

observed in the transcriptomes of these evolved clones. In E1 we

also observe a mutation in MUK1, which has no known function,

but which has also been the target of selection in independently-

evolved, haploid, glucose-limited populations of yeast; the

mutation appears not to be adaptive on its own ([12,58])

suggesting the presence of epistasis between mutations in these

strains. Taken together, our data reveal likely genetic bases

for adaptation to glucose limitation in diploid yeasts, includ-

ing changes in pathways affecting glucose/nutrient signaling,

Table 2. Summary of Substitutions and Indels for E2 (250 generations).

Chr Pos Ref Alt Zygosity Annotation Syn? Gene

II 589713 T G hom (Ref)-.het intergenic FZO1/DTR1

III 52717 G T hom (Ref)-.het CDS G 25 C GID7

III 303345 A G hom (Ref)-.het intergenic YCR101/2

IV 573016 G T hom (Ref)-.het CDS V 790 F MAK21

IV 677840 G T het-.hom (Ref) intergenic FOB1/ALT2

VII 120132 G T hom (Ref)-.het CDS T 259 K MCM6

VII 845690 G C hom (Ref)-.het tRNA tG(GCC)G1

VIII 85164 G T hom (Ref)-.het intergenic YAP3/tRNA-Val

VIII 335011 G T hom (Ref)-.het CDS T 218 N YHR112C

VIII 490972 -G hom (Ref)-.het CDS 2202aa NVJ1

X 427840 G T hom (Ref)-.het CDS C 895 F CYR1

XII 898188 G C hom (Ref)-.het 59 UTR RPS29A

XIII 687242 C A hom (Ref)-.het CDS V 15 L YMR209C

XV 183953 C A hom (Ref)-.het CDS L 758 I AVO1

XV 466475 G T hom (Ref)-.het CDS V 569 L SGO1

XVI 549443 C A hom (Ref)-.het CDS P 320 T AEP3

XVI 549453 A T hom (Ref)-.het CDS E 323 V AEP3

XVI 549454 A G hom (Ref)-.het CDS syn AEP3

doi:10.1371/journal.pgen.1002202.t002

Table 3. Summary of Substitutions and Indels for E3 (250 generations).

Chr Pos Ref Alt Zygosity Annotation Syn? Gene

IV 475252 T G hom (Ref)-.het CDS Y 403 D RAD61

IV 1178957 G T hom (Ref)-.het CDS V 98 L SBE2

VI 200817 C A hom (Ref)-.het CDS T 315 K PES4

VI 215628 C G hom (Ref)-.het CDS P 773 A MET10

VIII 114175 A G hom (Ref)-.het CDS L 248 P GPA1

VIII 405592 G T hom (Ref)-.het CDS C 876 F RTT107

IX 301064 C T hom (Ref)-.het CDS C 65 Y YIL029C

XIII 46350 C A hom (Ref)-.het intergenic CTK3/BUL2

XIV 155354 G T hom (Ref)-.het CDS L 85 F ORC5

XV 76249 C A hom (Ref)-.het CDS T 617 K ALR1

XVI 549444 C A hom (Ref)-.het CDS P 320 Q AEP3

doi:10.1371/journal.pgen.1002202.t003
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regulation of glucose transport, and enhancement of aerobic

respiration, as well as other intriguing mutations whose roles in

adaptation remain to be elucidated.

To confirm the DNA copy number changes and other larger

scale genome rearrangements discovered by Dunham, et al. [14],

we applied a depth-of-sequence-coverage approach [37] to

identify areas of increased or decreased coverage relative to the

ancestor, CP1AB (see Materials and Methods). Figure S1 shows

the genome mean-centered log2 ratio of coverage (evolved/

ancestor) in E1 through E5. Our data recapitulate those of [14],

specifically the ChrIV (HXT6/7) amplification and ChrXIV

rearrangement in E1 (Figure S1, E1 and E1, HXT6/7), the

ChrVII amplification and ChrXV deletion in E4 (Figure S1, E4),

and the ChrIV amplification and ChrXIV deletion in E5 (Figure

S1, E5). While the biological significance of all of these structural

variants remains to be elucidated, the specific rearrangements in

both E1 and E5 near the important TCA cycle gene CIT1 on

ChrXIV, as well as the specific amplification of the HXT6/7

chimera in E1 and of the right arm of ChrIV in E5 (which includes

the HXT6 and HXT7 loci) have clear implications for adaptation

to carbon-limited growth.

Where Are the Trade-Offs? An Example of Antagonistic
Pleiotropy under Glucose Non-Limiting Conditions

Glucose at high concentrations is toxic to cells [65], and

glycolytic intermediates can produce reactive carbonyl species that

damage DNA and proteins [66]. Not surprisingly, yeast tightly

regulates glucose flux into glycolysis by coordinating expression of

low-, medium- and high-affinity hexose transport genes in

response to changing concentrations of extracellular glucose

[67]. Given these observations and our own observations of the

increased copy number of HXT6/7 and mutations in RGT1 and

MIG2 discovered by genome sequencing, an obvious candidate

condition in which to test for the presence of trade-offs is glucose-

rich medium, as enhanced glucose transport may no longer be

advantageous when glucose is abundant, and may even be costly.

To test this hypothesis, we grew evolved and ancestral clones

under glucose non-limiting conditions in batch culture and found

that nearly all showed diminished maximum specific growth rate

(mmax), relative to their common ancestor (Figure 5).

To determine whether evolved strains’ diminished growth rate

on glucose translated into fitness differences when this resource

was abundant we competed the strains and their common ancestor

against the same reference strain as before, under two continuous

conditions: nitrogen-limited, glucose-sufficient chemostat, and

glucose-sufficient serial batch cultures (Figure 6 and Table S8).

Under both conditions, the fitness advantages observed under

carbon limitation disappeared. In serial dilution, evolved strains

performed no, or only very slightly, better than their ancestor

(while statistically significant, the effect sizes are only ,1%), and in

NH4+ limited, carbon-sufficient chemostats, evolved strains were

invariably out-competed by their ancestor. Thus, these evolved

Table 4. Summary of Substitutions and Indels for E4 (301 generations).

Chr Pos Ref Alt Zygosity Annotation Syn? Gene

II 706287 C G hom (Ref)-.het CDS M 169 I ALG7

VII 147966 G A hom (Ref)-.het intergenic CDC55/RPS26A

VII 187253 G C hom (Ref)-.het CDS V 399 L SUA5

VII 332623 T C hom (Ref)-.het CDS K 615 E PAN2

IX 69914 G C hom (Ref)-.hom (Alt) CDS N 1180 K SLN1

XIII 729971 C A hom (Ref)-.het CDS G 385 C RRP5

XV 379626 T C hom (Ref)-.het intergenic HST3/BUB3

XV 821295 A G hom (Ref)-.het CDS syn PNT1

XV 878199 T C hom (Ref)-.hom (Alt) intergenic MBF1/BUD7

doi:10.1371/journal.pgen.1002202.t004

Table 5. Summary of Substitutions and Indels for E5 (264 generations).

Chr Pos Ref Alt Zygosity Annotation Syn? Gene

VII 34321 A T hom (Ref)-.het CDS syn ZIP2

VII 126868 T C hom (Ref)-.het CDS F 724 S MDS3

VII 155424 G T hom (Ref)-.het CDS P 197 T STR3

VIII 389336 A G hom (Ref)-.het LTR YHRCdelta10

IX 166517 C A hom (Ref)-.het intron MOB1

X 566107 C A hom (Ref)-.het CDS T 2231 K TOR1

XI 644490 C G hom (Ref)-.het intergenic SIR1/FLO10

XII 933374 T C hom (Ref)-.hom (Alt) CDS syn YLR407W

XV 237964 C A hom (Ref)-.het CDS P 1009 Q GAL11

XV 452940 T A hom (Ref)-.het CDS I 175 F ALG8

doi:10.1371/journal.pgen.1002202.t005
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yeasts are specifically adapted to growth on carbon as a limiting

resource, and these adaptations are either of no benefit or actually

detrimental when that resource is abundant.

Because amplification of high-affinity hexose transporters

appears to be in negative epistasis with adaptive mutations in

MTH1 [58], we further tested for the possibility that high HXT6/7

copy number is disadvantageous under glucose-sufficient condi-

tions. We founded 5 independent populations with CP1AB and 10

independent populations with the E1 clone (which contains this

amplification in addition to other putative adaptive mutations),

experimentally evolved these for .100 generations by serial

transfer in 2% YEP dextrose medium and then tested for changes

in HXT6/7 copy number by quantitative PCR. We discovered

that in at least one instance, copy number decreased (Figure S2),

indicating that this condition can favor reduction or loss of the

amplification. Longer-term experiments in rich media will be

required to determine whether lower-copy number variants are

consistently selected. To determine whether the HXT6/7

amplification alone decreases the growth rate relative to a strain

with wild-type HXT6/7 copy number, we characterized spores

derived from a diploid strain that was heterozygous for this

amplification and carried no other adaptive mutations (spores

courtesy D. Kvitek). We observed that the HXT6/7 amplification

resulted in decreased growth rate relative to sister spores

Figure 5. Specific Growth Rate of Evolved Clones Is Decreased
in Glucose-Rich Environment. Maximum specific growth rates of
evolved clones and ancestor CP1AB (‘‘P’’) were calculated by growing
multiple independent colonies of each strain in batch culture in two
different media (rich ‘‘YP’’ medium and minimal ‘‘Adams’’ medium) with
4% glucose. Values are the mean of 3 independent colonies (change in
ln(OD) per hour during exponential growth), with error bars showing
standard error of the mean. Significant differences versus CP1AB within
each medium were calculated using a 2-tailed t-test. ‘‘*’’ indicates
p,0.05 and ‘‘**’’ p,0.01.
doi:10.1371/journal.pgen.1002202.g005

Figure 6. Normalized Competition Coefficients for 2 Glucose-Rich Environments. Data are competition coefficients calculated by
competing each strain (evolved and ancestor CP1AB) against a common reference strain. Values are the average of three biological replicates, with
values normalized such that ancestral CP1AB (‘‘P’’) equals 1 in each environment. Significant differences versus CP1AB within each environment were
calculated using a 2-tailed t-test. ‘‘*’’ indicates p,0.05 and ‘‘**’’ p,0.01. Error bars represent the Standard Error of the Mean. See Table S8 for
un-normalized, average competition coefficients. Aerobic Glucose-limited data are the same as in Figure 1 and were added for comparison.
doi:10.1371/journal.pgen.1002202.g006
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containing the ‘‘wild-type’’ HXT6/7 locus (Figure S3). These data

support the hypothesis that the HXT6/7 amplification is

deleterious during growth in excess glucose, and hence is an

example of antagonistic pleiotropy.

Discussion

This work builds upon seminal experiments in evolutionary

biology performed nearly 30 years ago by Paquin and Adams. The

original experiments shed light on the topography of fitness

landscapes in evolving asexual populations and the tempo of

adaptive change in relation to ploidy [8,9]. Later experiments

using these yeasts yielded the first global-scale insights into how

evolution shapes the transcriptome [13] and brings about

chromosomal rearrangements via recombination at rRNA loci,

Ty- and deltaelements [14]. We have used these strains to ask

questions concerning direct and correlated responses to selection,

the evolution of niche breadth, and the complete catalog of

mutations that accumulate within diploid yeasts independently

derived from a single common ancestor. The answers to these

questions make it possible to begin to elucidate the molecular

mechanisms underlying observations made in each of the previous

foundational studies.

Adaptive Clones Independently Evolved under One Type
of Carbon Limitation and Exhibit Similar Phenotypes
under Others

Our choice of assay regimes was motivated by a desire to

understand the generality, relative magnitude and mechanistic

bases of adaptations for acquiring [11] and processing [13]

limiting glucose under prolonged selection. All evolved strains

showed significant improvement in fitness under the selective

regime and assay regimes where carbon was limiting. Microarray

analysis of cells grown under the selective regime showed that,

relative to their ancestor, evolved yeasts had diminished

expression of genes in fermentative metabolism and increased

expression of genes in oxidative metabolism. These results

essentially recapitulate earlier findings [13], even though our

analyses were performed on a different platform and included

strains from the Paquin and Adams experiments that had not

been previously investigated. Interestingly, beginning with a

different yeast ancestor (CEN.PK 113-7D) and using a slower

dilution rate (0.1 h21), Jansen, et al. [42] also saw diminished

fermentative capacity in yeast evolved under prolonged glucose

limitation, evidenced at both the transcriptional and enzymatic

levels. Thus, adaptive evolution of an ‘‘enhanced classical

Pasteur effect’’ under this selective regime appears to be a

general result.

Remarkably, although the clones we investigated evolved in

independent populations under aerobic glucose limitation, they

performed better than their common ancestor in other carbon

limiting environments under both anaerobic and aerobic condi-

tions. The adaptive clones’ superior performance is manifest in cell

yield and fitness in both the selective and assay regimes. The

relative magnitudes of the physiological values associated with

fitness differences can be easily explained in terms of the energetics

of aerobic vs. anaerobic catabolism [68] and the phenotypes most

likely to bring about a competitive advantage under resource

limitation: either or both enhanced capacity to scavenge limiting

resource which increases fitness without significant gains in yield,

or increased efficiency of limiting resource utilization resulting in

higher cell yield and higher fitness [17,69]. Specifically, we suggest

that the heritable changes we identified that improve glucose

uptake capacity in aerobic conditions [10] result in the modest

increased yield and fitness under anaerobic glucose limitation;

under aerobic acetate limitation, we see heritable changes that

improve aerobic capacity, evidenced by more pronounced changes

in these parameters.

The relative magnitude of yield and fitness differences in these

two assay regimes reflects the scope for selection: only modest

gains are possible in high-affinity glucose transport, whereas much

more substantial gains are possible by shifting to and then

improving upon the machinery of oxidative metabolism, whose

ATP yield is many-fold greater than fermentation [68]. Thus, cells

have greater scope for adaptive change by simply enhancing the

classical Pasteur effect. That said, a striking result of our data is

that adaptation to glucose limitation has not only resulted, as

expected, in increased glucose transport and diminished catabolite

repression, but also to more efficient machinery for carrying out

oxidation, even of the non-fermentable, non-repressing substrate,

acetate.

Convergent Adaptive Phenotypes Arise from Different
Sets of Mutations Affecting Common Pathways

Our phenotypic data indicate that five independently evolved

clones have converged on growth phenotypes that give them a

competitive advantage in selective (and carbon scarce) assay

regimes alike. We would not necessarily have predicted this from

previous studies [11,13,14], as they provided few clues as to the

possible costs of adaptive change. Remarkably, the similar

phenotypes we observed arise from different sets of mutations in

each clone, although certain genes and pathways seem more likely

to be targeted by selection than others. For example, while

increased glucose transport is clearly an adaptive phenotype, it

appears to have been accomplished by different mutations in two

of these clones. Clone E1 contains mutations in two genes that

regulate glucose transporter gene-expression, MIG2 and RGT1, as

well as a tandem duplication of the genes encoding the hexose

transporters Hxt6 and Hxt7. Interestingly, the mutations in MIG2

and RGT1 are synonymous, indicating potential functional roles

for mutations that do not effect an amino-acid change. By

contrast, clone E5 contains an amplification of the entire right arm

of chromosome IV, containing the HXT6 and HXT7 loci.

Our microarray results, viewed through the lens of our whole

genome sequencing data, suggest other adaptive mechanisms

additional to the changes in HXT6/HXT7 copy number and CIT1

regulation noted previously [11,14]. These gene-expression data in

particular lend support to the hypothesis that the glucose/nutrient

signaling pathways of these strains are affected in such a way as to

promote cell division even in a nutrient-poor environment. Two

clones have mutations that likely affect signaling through the Ras/

cAMP pathway. E1 is heterozygous for a mutation in IRA2, a gene

that encodes a Ras-GAP that functions to decrease intracellular

cAMP levels. Interestingly, E2 contains a mutation in the same

pathway in the gene that encodes yeast adenylate cyclase itself,

CYR1. These mutations would be particularly interesting to

characterize, as our gene expression data and data from [12]

would predict that the cyr1 mutation would be a gain-of-function

mutation that increases intracellular cAMP levels, whereas the ira2

mutation should be a loss-of-function mutation resulting in

constitutive Ras signaling and similar increases in cAMP levels.

Gene-expression data also suggest increased signaling through

the TOR pathway across all evolved clones, relative to their

common ancestor, an observation that is again supported by the

presence of novel mutations in this pathway. We found that E2 has

a mutation in AVO1, a component of the TORC2 complex, while

E5 has mutations in TOR1 itself as well as in MDS3, a putative

component of the TOR signaling cascade. Again, our prediction is
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that these mutations should be gain-of-function that increase

signaling through this key regulatory pathway.

Finally, our fitness and physiological data point to increased

function in oxidative metabolism as an alternate mode to answer

the challenge of limiting glucose, while simultaneously creating a

fitness advantage when grown in acetate limitation. We

uncovered three independent mutations in AEP3, a gene that

encodes a mitochondrial protein important for ATP synthase

function. Strikingly, the mutations in E1, E2, and E3 all affect the

same codon but effect independent amino acid substitutions, and

E2 contains 2 additional nucleotide changes that change another

amino acid in close proximity to the other mutated codon. We

observe additional mutations in E1 that likely affect mitochon-

drial function, including BNA4 (involved in biosynthesis of

nicotinic acid), NGR1 (over-expression of which impairs mito-

chondrial function), and TOM70 (which is a translocase of the

outer mitochondrial membrane). It will be illuminating to follow-

up these observations with a characterization of their individual

or epistatic fitness contributions. These data also provide a

hypothesis for observed variation in correlated responses to

selection. The whole genome sequence of clone E3 provides no

mechanistic basis for enhanced glucose transport, but does have a

mutation in the integral mitochondrial protein, AEP3. Signifi-

cantly, we observed that relative to the ancestor and to other

independently evolved clones, E3 exhibited highest fitness under

acetate limitation and less of a selective advantage under glucose

limitation. A final observation regarding clones E3 is that it

appears to have the most distinct gene expression pattern

compared to the other five clones under acetate limitation

(Figure 3 and Figure 4), possibly suggesting roles for altered

transcription leading to higher relative fitness under acetate-

limited growth. One possible contributor to the observed gene

expression differences of E3 under acetate limitation is the

mutation in GPA1, an upstream G-protein that leads to activation

of a transcription factor, Ste12p, that plays a role in both

pheromone response and regulation of invasive growth. Indeed,

many of the genes that show altered transcription in Figure 3 and

Figure 4 are known Ste12p targets, but again, more work will be

required to determine if the mutation in GPA1 is responsible for

the observed gene expression phenotype.

Our sequence data provide a rich resource to begin answering

other fundamental questions about the nature of yeast’s evolu-

tionary adaptation to a limiting resource: What are the fitness and

biochemical effects of each new mutation? Which mutations are

adaptive, and which are neutral or mildly deleterious and merely

hitchhiking? How pervasive is epistasis between new mutations?

And, because most novel alleles are heterozygous, which, if any,

are over-dominant? Finally, because we have seen haploids adapt

to limiting glucose by similar mechanisms, albeit more slowly, (see

genotypes in Kao & Sherlock [12]), we may ask: are mutational

differences seen in diploids due to ploidy or due to our sampling

not having comprehensively obtained all possible genotypes that

can respond to this selection?

This work has also addressed unanswered questions posed by

Ferea et al. [13] concerning the genetic basis of the ‘‘enhanced

classical Pasteur effect.’’ While the specific causal mutations of

these gene-expression changes remain to be determined, our data

lead us to two conclusions. The first is that these changes are not

constitutive: mutations that cause increased expression of glucose-

oxidation pathways specifically under aerobic glucose limitation

can still be repressed in the absence of oxygen, when their

expression is inappropriate. The second is that there appear to be

multiple adaptive paths to the same phenotype, in opposition to

one of the original hypotheses that there are few [13]. Additional

experiments will be required to isolate individual mutations and

determine how each, alone and in combination with others,

impacts differential regulation of glycolysis and the TCA cycle

under the selective and assay regimes.

Apparent Absence of Trade-Offs under Carbon Limitation
Makes Possible the Evolution of ‘‘Hunger Artists’’

Our work brings new evidence to bear on the longstanding

question of how trade-offs influence adaptive evolution. Constant,

homogenous environments are widely believed to favor evolution

of narrow niches in contrast with heterogeneous environments,

which are believed to favor evolution of broad niches [19,70,71].

Corollary to this belief is that narrow niches arise from trade-offs

due to antagonistic pleiotropy, and/or differences in the rates at

which beneficial and/or deleterious mutations accumulate in these

different selection regimes [28,72]. Here we find that clones

evolved under constant glucose limitation are, as expected, more

fit than their common ancestor in the selective regime, but also

more fit in two assay regimes: anaerobic glucose limitation and

aerobic acetate limitation.

In retrospect, given the changes we have discovered in strains’

physiology, gene expression and genome sequence, the apparent

lack of trade-offs under the assay regimes we chose is perhaps not

so surprising. An increased capacity to scavenge glucose should

produce a fitness advantage in any environment in which glucose

is meager; thus the direct genetic evidence we see for this in at least

two strains, E1 and E5 (HXT6/7), likely outweighs any cost of

uselessly increasing glucose-oxidation ability under anaerobic

glucose-limitation. Similarly, although increased glucose transport

is unlikely to be adaptive under acetate limitation, any cost

imposed thereby is likely offset by an increased capacity to oxidize

carbon. More generally, we can use a term defined by Bell &

Reboud [29] to describe selection in aerobic glucose limitation as

synclinal – meaning that the direct and correlated fitness responses

to this selective regime were positive with respect to the ancestor in

all five evolved clones. These conclusions, however, might only

apply to carbon (or even particular kinds of carbon) limitation, and

in further work it would be appropriate to test these evolved clones

under a much more diverse set of environments to determine the

breadth of their niche. These types of experiments will be crucial

to discerning whether trade-offs exist under other assay regimes

and, if so, how mutation accumulation and antagonistic pleiotropy

combine to produce them.

Side-Effects of Adaptation: Do Scavengers Suffer in Times
of Plenty?

The Paquin and Adams [7–9] and Ferea et al. [13] yeasts

evolved under limiting glucose have been used over the last

quarter century to address fundamental questions relating to the

dynamics and mechanisms of adaptive evolution. Our work

continues in that vein, providing evidence to support the

conclusion that evolution under one resource limiting condition

leads to generalists that are more fit than their ancestor under

other resource limiting conditions, but less fit when the original

limiting resource is abundant. Additionally, we have sequenced

these strains’ genomes and provided a list of genetic changes that

arose in independent evolution experiments, creating a rich

resource of information that can be used to continue studying the

mechanisms by which organisms adapt to resource scarcity, as well

as the apparent cost to being a ‘‘hunger artist’’ when resources are

plentiful. Intriguing as these apparent trade-offs that we have

identified may be, more work will be required to understand every

mutation’s mechanistic role (biochemical, metabolic, regulatory,
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etc.) in adaptation to prolonged resource limitation. We will then

be in a position to generate further specific hypotheses as to which

conditions should reveal the cost of particular adaptations and

whether that cost is incurred as a result of antagonistic pleiotropy,

mutation accumulation, or both.

Materials and Methods

Strains
Strains used in this study were Saccharomyces cerevisiae CP1AB

with genotype MATa/a, gal2/gal2, mel/mel, mal/mal [7] and

evolved clones E1, E4, and E5 [8] and E2 and E3 [13]. The

common reference strain used for the competition experiments

was DBY11249 (FY4, with a d-Tomato/NatMX cassette replacing

the dubious ORF YLR255c, strain courtesy David Gresham and

Greg Lang). Cultures were stored in 15% glycerol at 280uC.

Competition Experiments
Strains for chemostat cell cultures were grown in 1% YEP

Dextrose and 1 mL aliquots were frozen in 15% glycerol at

280uC. The entire contents of a single 1 mL frozen aliquot of

either the reference strain and evolved or ancestral isolates were

used to inoculate an individual chemostat (ATR SixFors

fermentation apparatus, ATR Biotechnologies) with working

volume set to 400 mL of minimal (SC) media defined by [73].

Batch cultures were then grown for 24 hours to achieve saturation.

After saturation was achieved, chemostat pumps were turned on to

the desired dilution rate and 2–3 vessel volumes of turnover were

allowed so cultures could reach steady state. 100 mL of each strain

growing at steady state (reference plus evolved or ancestor) were

transferred to a fresh chemostat and the dilution rate was set to

0.17 hr21 for aerobic (0.08% glucose) and anaerobic glucose

limitation (0.08% glucose+420 mg mL21 Tween 80+10 mg L21

ergosterol) and 0.05 hr21 for aerobic acetate limitation (10.9 g/L

sodium acetate). For aerobic ammonium limited (0.015%

(NH4)2SO4), glucose-sufficient (9 g/L glucose) growth, chemostat

dilution rate was also set to 0.17 hr21. Aerobic conditions were

achieved by sparging with 25 L h21 of sterile air and anaerobic

conditions by sparging cultures with 25 L hr21 sterile-filtered,

humidified N2 (g). 3 mL samples were taken at time = 0

(immediately following transfer to fresh chemostat) and every 6–

8 hours for 2–3 days (,15 generations). Time and volume of

effluent were measured at each sample to determine generations.

1 mL of cells were resuspended in Phosphate Buffered Saline,

sonicated for 10 s, and analyzed with flow cytometry to determine

relative proportions of fluorescent (reference) to non-fluorescent

(experimental sample) strains. 50,000 cells were counted to obtain

accurate measurements of relative proportions. Regression

analysis of generation time vs. ln(experimental sample/common

reference) was used to calculate per-generation competition

coefficients. This method is based on the method worked out by

Alex Ward and David Gresham and similar to the method used in

[74]. Similar procedures were used to compute selection

coefficients of strains competed in serial dilution batch culture.

The media employed in these experiments was that of Adams et al.

with the addition of 4% dextrose (wt/vol). Approximately equal

numbers of the test and fluorescent reference strains were

combined at an initial cell density of ,105 cells mL21 in 10 mL

media. Samples were cultured for 24 h (,6.5 generations) at 30uC
on a New Brunswick T-7 roller drum, then diluted to a similar cell

density in fresh media and cultured an additional 24 h. Samples

for FACS analysis were taken over 3 successive serial dilutions

(approximately 20 generations). Pairwise competition experiments

were performed in triplicate.

To determine specific growth rates in glucose non-limiting

batch growth for evolved clones E1–E5, ancestral clone CP1AB,

and haploid segregants with or without the HXT6/7 amplification

(haploid segregants GSY2707-2714 were otherwise isogenic from

parent diploid GSY1208 that was heterozygous only for the

HXT6/7 amplification), multiple independent single colonies of

these strains were grown overnight in 2% YEP dextrose and

diluted 1:50 into fresh medium in a 100 mL, 96-well optical plate

(Costar), sealed with optical sealing tape (E&K Scientific), and

grown for approximately 24 hours in a TECAN plate reader at

30uC. Specific growth rate was defined as the change in ln(optical

density) per hour during exponential growth.

Experimental Evolution under Nutrient Non-Limiting
Conditions

To test the stability of the adaptively evolved HXT7/6

amplification under nutrient-rich conditions, we selected at

random five colonies of the parent strain and ten colonies of

adapted strain E1 and used these to found fifteen experimental

populations. Populations were inoculated at a density of ,105 cells

mL21 in 10 mL YEPD (2% glucose), cultured at 30uC in a New

Brunswick T-7 roller drum, and serially propagated by diluting

cells ,100-fold on a daily basis in fresh media. Experiments were

carried out for 15 days (.100 generations); 1 mL of each culture

was archived every 25 generations as 280uC 15% glycerol stocks.

Population samples from the last time-point of each experiment

were spread onto YPD agar. Genomic DNA was prepared from

three randomly chosen colonies on each plate using the YeaStar

Genomic DNA Kit (Zymo Research); this material was used as

template for quantitative PCR assay of HXT7/6 copy number

using primers specific for the HXT6/7 locus and control primers

on chromosome IV designed against the UBP1 locus (primers in

Table S5), using the DDCt method as described by [58].

Physiological Measurements
To obtain physiological measurements, cultures were grown to

steady state in individual chemostats in each of the three

environments described above, under identical conditions. Exper-

iments were performed in triplicate. Biomass estimates were

determined by rapidly withdrawing 100 mL from fermentation

vessels, and fast-filtering this volume through sterile, tared 47 mm,

0.45 mm Nylon filters (Whatman). Filters were dried overnight in

an 80uC oven and weighed the following day. Cell number was

estimated by haemocytometry using an aliquot from 1 mL of

sample treated with 10 ug mL21 cycloheximide. Steady state

optical density was measured spectrophotometrically at 600 nm.

To isolate total RNA, 100 mL of sample was quickly filtered

through 0.45 mm Nylon filters (Whatman) and flash frozen in

liquid nitrogen. RNA for gene-expression measurements was

isolated using the hot acid-phenol method described by [13].

Gene-Expression Measurements
To assay relative mRNA abundance, total RNA was isolated as

described above. A pooled reference sample was created

containing equimolar amounts of each of 36 samples (6 strains

in 3 environments, using two of the three biological replicates).

325 ng of total RNA from samples or reference pool was used as

the input for reverse transcription and labeling with Cy dyes

(Amersham) using the Low RNA-input Linear Amplification Kit

(Agilent) following manufacturer’s instructions except that reaction

volumes were halved. 1.5 mg each of labeled sample and labeled

reference were hybridized to Yeast Gene Expression Arrays v2

8615k (Agilent) for 17 hours at 65uC rotating at 10 rpm in a
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hybridization oven (Shel Lab). Arrays were then washed according

to manufacturer’s instructions and scanned at 5 mm resolution on

an Agilent Scanner. Data were extracted using Agilent Feature

Extraction v9.5.3.1, which uses linear-Lowess normalization and

calculates log2 ratios. Following data extraction from the raw

images, we averaged the data for both probes for each gene. Raw

gene-expression data have been deposited in GEO with accession

number GSE25081.

Whole-Genome Sequencing
CP1AB and E1–E5 were streaked for single colonies from 15%

glycerol stock solutions (280uC) onto 2% YEP Dextrose plates.

Single colonies were grown in 2% YEP Dextrose liquid cultures

at 30uC and genomic DNA was extracted by spooling as

described [75]. Paired-end libraries were created using the

Illumina Genomic DNA Sample Prep Kit according to

manufacturers instructions (5 mg input genomic DNA), and

sequencing flow cells were prepared using the Illumina Standard

Cluster Generation Kit. Samples were sequenced on the Illumina

Genome Analyzer II, and image analysis and data extraction

were performed using Illumina RTA 1.5.35.0. Reads were

mapped and variants were called using two different methods,

with largely similar results. In the first method, reads with

qualities (FASTQ) were aligned to the S288c reference genome

(SGD, as of Feb 2, 2010) using BWA v0.5.7 [76]. Whole-genome

pileup files were generated using SAMtools v0.1.7 [77] and SNPs

and Indels were filtered using custom Perl scripts. Briefly, SNPs

passed the filter if they were represented in at least 30% of reads

in the evolved strain (allowing for heterozygosity) and at most

10% in the ancestor, or at least 80% in the evolved strain but less

than 80% in the ancestor (allowing for heterozygous to

homozygous mutations). Additional heuristic filters included a

confirming read from both strands, with at least 5 reads covering

the position in both strains, and no more than one ambiguous

SNP call (‘‘N’’) or deletion (‘‘*’’) at that position. Indels were

filtered by requiring at least a 30% or greater allele frequency

difference between ancestral and evolved strains, if they shared

the same indel call. Additionally, if there were .2 indel calls at a

given position, the number of reads supporting the two most

common indel calls had to be . = 80% of the total reads covering

that position. Raw coverage in evolved and ancestral strains at

the given position must also have been at least 106. In the second

method, we mapped reads with qualities using Stampy [78], and

applied the Genome Analysis Toolkit (GATK) ‘‘Best Practice

Variant Detection’’ [79] by first performing base quality score

recalibration, indel realignment, and duplicate removal. We then

performed SNP and indel discovery across all evolved and

ancestral sequences simultaneously using standard hard filtering

parameters [80], and then used custom perl scripts to identify

SNP or indel variant calls that were different between ancestral

and evolved strains. Primers used to confirm or reject SNPs and

Indels are in Table S5. For determining copy number variation

(Figure S1), a coverage-based approach was used as outlined by

[37]. Briefly, raw sequencing coverage was averaged over 1 Kb

intervals across the genome of each evolved clone and the

ancestor. Log2(evolved/ancestor) ratios were then calculated and

normalized to the genome mean log2 ratio. Genome segments

were identified using a circular binary segmentation algorithm

implemented in the R software package DNAcopy [81] with

parameters as follows: data.type [logratio]; smooth.region [3];

alpha sign. cutoff [.01]; min.width [5]; undo.splits [sdundo];

sdundo [4]; nperm [10000]. Raw sequence data have been

deposited in the Sequence Read Archive (SRA) database with

accession number SRA025083.1.

Estimate of Probability of Non-Synonymous Mutations
To determine the average probability of a mutation in a coding

region effecting a non-synonymous coding change we wrote a

custom perl script that calculates the average probability that a

mutation would change the codon to encode a different amino acid.

Briefly, for each codon in the genome, every possible mutation was

generated (9 changes for each codon), and the fraction of those 9

possible mutations that created a non-synonmous codon was

recorded. For example, a four-fold degenerate site at the wobble

base of a given codon would yield a probability of 2/3 non-

synonymous (6 out of 9 mutations change the codon). We then

simply averaged this probability across all codons in the genome.

Supporting Information

Dataset S1 Gene-expression data from Figure 3.

(TXT)

Dataset S2 Gene-expression data from Figure 4.

(TXT)

Figure S1 Evolved Copy Number Variations. Depth-of-cover-

age plots for E1 through E5, relative to the ancestral diploid

CP1AB. Values plotted are log2 ratios of mean sequencing

coverage in 1 kb windows across the genome (evolved/ancestral).

Red lines represent segment means determined by DNAcopy (see

Materials and Methods).

(TIF)

Figure S2 Copy Number of HXT6/7 locus following serial

batch evolution under high glucose. Copy number of the HXT6/7

locus relative to the ancestral parent. Raw values for HXT6/7

locus were normalized to an internal control chrIV locus (UBP1) to

give DCt values. These values were then normalized to the

ancestral parent values (DDCt). Copy number was then deter-

mined as 2‘(2(DDCt)). Values are the mean of three technical

replicates with error bars showing standard deviation. ‘‘P’’

indicates CP1AB, ‘‘E’’ indicates evolved clone E1. The number

(1–5 for P and 1–10 for E) indicates replicate evolved populations,

and ‘‘a–c’’ indicate three randomly chosen end-point clones.

(TIF)

Figure S3 Specific Growth Rate of HXT6/7 Segregants in

Glucose-Rich Environments. Maximal specific growth rates of

otherwise isogenic haploid segregants containing either wild type

(4 segregants) or HXT6/7 amplification (4 segregants) loci. The

parent diploid of these strains was isogenic except for the HXT6/7

amplification, based upon high-throughput sequencing.

(TIF)

Table S1 Competition Coefficients (Relative to Common

Reference Strain) in Three Environments.

(XLS)

Table S2 Grand Means of Relative Fitness within Each

Alternative Environment.

(XLS)

Table S3 Steady State Physiological Measurements within Each

Alternative Environment.

(XLS)

Table S4 Summary of Illumina Sequence Data.

(XLS)

Table S5 Primers used.

(XLS)

Table S6 Significance Analysis of Mutations in Evolved Clones.

(XLS)
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Table S7 Significance Analysis of Mutations in Coding Regions

and Non-Synonymous Mutations.

(XLS)

Table S8 Competition Coefficients (Relative to Common

Reference Strain) in Glucose-Rich Environments.

(XLS)
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