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SUMMARY
Nonsense-mediated mRNA decay (NMD) is a well-studied cellular quality-control pathway. It
decreases the half-lives of eukaryotic mRNAs that aberrantly contain premature termination
codons and additionally regulates an estimated 10–20% of normal transcripts. NMD factors play
crucial roles during embryogenesis in many animals. Here, we review data indicating that NMD
factors are required for proper embryogenesis by discussing the abnormal developmental
phenotypes that result when the abundance of individual NMD factors is either downregulated or
completely eliminated. We conclude that while NMD per se affects the embryogenesis of all
animals, it is required to avoid embryonic lethality in only some animals. The critical roles of
many NMD factors in other metabolic pathways undoubtedly also contribute to embryonic
development if not viability.

INTRODUCTION
Nonsense-mediated mRNA decay (NMD) protects many heterozygous carriers of defective
genes that encode premature termination codons (PTCs) from manifesting dominantly
inherited disorders that would result if the encoded truncated proteins were expressed ([1]
and references therein). It is very important for cells to remove PTC-containing mRNAs,
whether they are somatically acquired or genetically inherited, because the encoded
truncated proteins have the potential to manifest dominant-negative or gain-of-function
activities. Thus, NMD plays a key protective role in a long list of human diseases that are
due to frameshift or nonsense mutations and result in the premature termination of mRNA
translation, including β0-thalassemia, cystic fibrosis, Duchenne muscular dystrophy and a
number of cancers that involve PTCs within, e.g., BRCA1 or WT1 tumor suppressor
mRNAs ([1] and references therein).

NMD typifies all eukaryotes that have been examined, including budding yeast, fission
yeast, kinetoplastids, ciliates, nematodes, fish, flies, birds, mice, humans and plants. While
NMD functions largely to protect cells from the potentially deleterious effects of routine
inaccuracies in gene expression that accidentally generate PTCs, it also helps to maintain
cellular homeostasis by degrading physiologic transcripts. In mammals, routine inaccuracies
occur during transcription initiation, pre-mRNA splicing or the somatic-cell rearrangement
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and hypermutation of immunoglobulin or T-cell receptor genes that generate immune
diversity, to name a few examples (reviewed in [1,2]). NMD targets in Saccharomyces
cerevisiae and Paramecium tetraurelia are primarily the result of inefficient pre-mRNA
splicing (see, e.g., [3,4]) and a large number of NMD targets in Caenorhabiditis elegans
consist of the pseudogenes that are estimated to exist for 6–12% of functional genes [5].

In every eukaryote, NMD depends on the RNA helicase and RNA-dependent ATPase called
up-frameshift suppressor (UPF)1, whose activities are activated by UPF2 and UPF3 ([6] and
references therein). UPF2 binding to the cysteine-histidine-rich (CH) domain of human or S.
cerevisiae UPF1 was recently shown to promote helicase activity by converting UPF1 from
a closed conformation, in which the CH-domain occupies the helicase region and has a
tightened hold on RNA, to an open conformation, in which the helicase domain has a looser
and less extensive hold on RNA ([7], in press), presumably allowing UPF1 to slide in the 5′-
to- 3′ direction on an NMD target and remove proteins as it progresses [8●]. Remarkably,
overexpressing UPF1 in S. cerevisiae overrides the need for UPF2 [9], indicating that
unphysiologically high levels of UPF1 assume an active conformation at a sufficient level to
support NMD. Additionally, UPF2 siRNA-insensitive or UPF3 (also called UPF3a) siRNA-
and/or UPF3X (also called UPF3b) siRNA-insensitive NMD targets have been reported for
mammalian cells [10–13], suggesting that UPF1 can function in some instances with
abnormally low levels of one or more of the other UPF proteins. The two mammalian UPF3
paralogues derive from two distinct genes, one of which is X-linked as the name UPF3X
implies [14–16]. Two UPF3 paralogues also exist in Danio rerio (zebrafish) [17●●], as well
as, e.g., Anolis carolinensis (Anole lizard) and Xenopus tropicalis (Ensembl Genome
Browser).

The composition of an mRNP that is targeted for NMD can vary depending on the organism
and, as implied above, depending on the particular mRNA. NMD in mammalian cells
requires the cap-binding protein (CBP) complex that consists of CBP80 and CBP20 and
typifies newly synthesized mRNAs [18]. Generally, exon-junction complexes (EJCs), which
are comprised of proteins deposited upstream of the exon-exon junctions of newly
synthesized mRNAs as a consequence of pre-mRNA splicing, are also critical for
mammalian-cell NMD [1,18,19]. EJCs generally contain not only UPF2 and UPF3 or
UPF3X but also the RNA-binding-motif protein Y14, the cancer susceptibility candidate
gene 3 protein Barentsz (BTZ, also called MLN51), a homologue of Drosophila
melanogaster mago nashi named MAGOH, and the eukaryotic translation initiation factor
(eIF)-like protein eIF4AIII, among other proteins (reviewed in [1,18,19]).

EJC-dependent NMD generally requires that translation terminates sufficiently upstream of
an EJC so that the EJC is not removed by the terminating ribosome. EJCs reside ~ 20–24-
nucleotides upstream of splicing-generated exon-exon junctions, explaining the rule that in
mammalian cells NMD targets transcripts containing PTCs that are situated more than ~50–
55-nucleotides upstream of an exon-exon junction [24]. Notably, exceptions to the rule exist.
For example, a PTC can trigger NMD if it resides closer than ~50–55-nucleotides upstream
of an exon-exon junction in the case of T-cell receptor and immunoglobulin mRNAs ([1,2]
and references therein; [25]). Possibly analogously, for a number of mRNAs that derive
from experimenter-generated constructs in mammalian cells, NMD can occur in the absence
of an EJC situated downstream of a PTC although an intron has to exist upstream of the PTC
([26] and references therein; [27,28]). NMD in S. pombe can also target naturally occurring
mRNAs if a PTC exists either upstream or downstream of an intron, but the mechanism is
EJC-independent [29]. As in mammals, NMD in fish appears to utilize EJCs since mRNA
decay is triggered by PTCs in a zebrafish reporter transcript provided they are situated more
than ~50–55-nucleotides upstream of an exon-exon junction [17●●].
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It is important to point out that at least in mammals and D. melanogaster, and probably in all
organisms that have them, EJCs are heterogeneous in composition and do not typify every
exon-exon junction [11,30,31]. Despite their presence, EJCs are dispensable for NMD in D.
melanogaster [32,33]. Consistent with this, the core EJC constituent eIF4AIII does not
contribute to NMD in D. melanogaster Schneider cells [34] even though Drosophila
eIF4AIII is 84% identical to human eIF4AIII. eIF4AIII also does not contribute to NMD in
C. elegans [35], where it is 88% identical to human eIF4AIII. An eIF4AIII-like protein that
is 78% identical to human eIF4AIII exists in S. pombe, in which EJCs do not function in
NMD as noted above. eIF4AIII-like proteins that are 74.5% and 78% identical to human
eIF4AIII, respectively, also typify Nicotiana benthamiana and Arabidopsis thaliana, in
which EJC-dependent and EJC-independent mechanisms coexist [36,37] but will not be
discussed further. Other differences among NMD pathways in different organisms pertain to
their dependence on suppressor with morphological effect on genitalia (SMG) proteins.
SMG proteins are conserved in many multicellular organisms but are absent from ciliates
and kinetoplastids as well as single-cell organisms such as baker’s and fission yeast [38].

The molecular dynamics of UPF and SMG proteins on an NMD target are presently best
understood for mammals (Figure 1). A transient or weak interaction of the UPF1 helicase
region with mRNA cap-associated CBP80 augments NMD by promoting the association of
UPF1 and its phosphatidylinositol 3-kinase-related kinase, SMG1, (i) with the translation
termination factors eRF1 and eRF3 to form SURF (SMG1, UPF1, eRF1 and eRF3) at a PTC
and (ii) subsequently downstream with EJC-bound UPF2 [20–22]. While the kinase activity
of SMG1 in SURF is silenced by SMG8-SMG9 [39], SMG1 phosphorylates UPF1 once it
associates with EJC-bound UPF2 [22]. Phosphorylated UPF1 represses further rounds of
translation initiation on the NMD target by binding to the translation initiation factor eIF3 of
the 43S preinitiation complex that is situated at the translation initiation codon, and it also
recruits mRNA decay activities [40]. These activities consist of SMG5-and SMG7-mediated
activities that degrade an NMD target from either or both ends (i.e., decapping followed by
5′-to-3′ exonucleolytic degradation and/or deadenylation followed by 3′-to-5′ exonucleolytic
degradation) and also the SMG6-mediated endonucleolytic activity (reviewed in [19]).
While the UPF1 ATPase, presumably together with its helicase, has been shown to promote
degradation of the 3′-endonucleolytic cleavage product that results from SMG6-mediated
decay [8●], it is currently uncertain how these UPF1 activities contribute to decay from
either mRNA end. Data indicate that SMG5, SMG6 and SMG7 at some point recruit protein
phosphatase 2A to dephosphorylate UPF1 ([41–43]; J.H. and L.E.M., unpubl. data).

EJC-independent NMD mechanisms, like EJC-dependent mechanisms, envision the UPF
proteins joining eRF1 and eRF3 at a PTC at least in part because the efficiency with which
poly(A) binding protein joins the eRFs at a PTC is compromised when compared to the
efficiency of joining to a termination codon that does not trigger NMD [44]. Hence, the
splicing- and EJC-independent NMD mechanism that typifies S. cerevisiae has been called
the ‘faux’ 3-untranslated region (3′UTR) mechanism. However, since NMD in S. cerevisiae
can target mRNA in the absence of either a poly(A) tail or poly(A)-binding protein (PAB)
[45], a PAB-independent mechanism that distinguishes PTCs and normal termination
codons must exist.

In this review, we discuss the abnormal embryonic phenotypes and/or embryonic lethality
that result when individual NMD factors are downregulated or completely eliminated in
animals. Since a number of NMD factors do not function exclusively in NMD (Table 1;
[1,19,46,47]), it can be difficult to attribute a developmental defect to the lack of NMD per
se. Thus, we have organized our review by organism so as to point out those defects that are
in common or lacking when the abundance of individual NMD factors is compromised.
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Nematodes
As their SMG names imply, C. elegans SMG2 (UPF1 in other organisms), SMG3
(otherwise UPF2), SMG4 (otherwise UPF3), SMG1, SMG5, SMG6 and SMG7, each of
which was identified in genetic screens, are not essential for development but result in
morphogenic defects in the male bursa and the hermaphrodite vulva [48,49]. Thus, NMD is
not an essential process in C. elegans development. Nevertheless, SMGL-1 and SMGL-2,
which were found in a reporter-based genome-wide RNAi screen to be critical NMD factors,
are required for organismal viability: when depleted, each results in early embryonic
lethality prior to morphogenesis [35]. SMGL-1 and SMGL-2 are absent from yeast but have
readily identifiable orthologues in, e.g., fruitfly, zebrafish, pufferfish, mouse and human,
where they are called, respectively, NAG/NBAS (neuroblastoma-amplified sequence) and
DHX34 [DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 34] [35]. Therefore, while
NMD per se is not necessary for embryonic viability in C. elegans, the NMD factors
SMGL-1 and SMGL-2 are. SMGL-1 and SMGL-2 functions that do not pertain to NMD but
are required to preclude embryonic lethality have yet to be identified.

Fruitflies
UPF1 and UPF2 are broadly expressed during D. melanogaster development [33]. Loss-of-
function mutants demonstrated that UPF1 and UPF2, unlike UPF3 or SMG1, are required
for larval development since each, e.g., provides a competitive growth or survival advantage
to proliferating imaginal cells [33,50●●–52]. Unlike UPF1 and UPF2, UPF3 plays only a
peripheral role in the NMD of most NMD targets [50●●]. Furthermore, SMG1 appears to
have a variable role in NMD depending on the particular transcript [33,51,52], from which it
can be concluded that the SMG1-mediated phosphorylation is dispensable for the NMD of at
least some NMD targets. In the case of these targets, it remains to be determined if another
kinase functions on behalf of SMG1. However, from those targets analyzed to date, SMG6
appears to be the major nuclease [53]. Notably, no identifiable SMG7 orthologue exists in
D. melanogaster [32].

Taken together, these findings indicate that the embryonic lethality resulting from the
absence of UPF1 or UPF2 must be due to UPF1 or UPF2 function in the NMD of particular
transcripts and/or in one or more pathways other than NMD. Both UPF1 and UPF2 are
necessary for D. melanogaster Schneider-cell progression through the G2/M phase of the
cell cycle [52], which may or may not be due to their roles in NMD. The finding that
depletion of UPF3, SMG5 or SMG6 has a less severe but nevertheless detectable increase in
the percent of G2/M phase-cells [52] suggests that each is less critical to cell-cycle
progression than is either UPF1 or UPF2. It will be important to determine if SMG5 and
SMG6 are critical for embryonic viability in D. melanogaster.

Zebrafish
Whole-mount in situ-hybridization of NMD factors during zebrafish development
demonstrated that UPF1, UPF2, the two paralogues of UPF3, SMG1, SMG5, SMG6 and
SMG7 are maternally derived and ubiquitously expressed at 2- to 8-cell stages, during
gastrulation and at one-day post-fertilization [17●●,54●●]. DHX34 and NAG/NBAS, which
are orthologous to C. elegans SMGL-1 and SMGL-2, respectively, are likewise expressed
ubiquitously during development [54●●]. Downregulating UPF1 using one of several
antisense morpholino-modified oligonucleotides (MOs) showed a range of developmental
delays and morphological abnormalities that depended on the degree to which UPF1
function was impaired [17●●]. Abnormalities included aberrant eye and brain patterning, the
latter especially at the midbrain-hindbrain boundary, faulty somitogenesis and mortality
rates as high as 80–85% by 5- days post-fertilization [17●●,54●●]. Essentially the same
results were observed using UPF2, SMG5, SMG6, DHX34 or NBAS MOs; however,
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downregulating SMG7 resulted primarily in patterning defects in the brain, i.e., a visible but
altered midbrain-hindbrain boundary and an elongated hindbrain. In contrast,
downregulating either SMG1 or UPF3b had no detectable consequence, downregulating
UPF3a had only minor effects on brain development, and downregulating both UPF3a and
UPF3b was less severe than downregulating either UPF1 or UPF2, causing only 19% of
morphants to die at 5-days post-fertilization [17●●].

Of course, the failure to observe a phenotype when a factor is only downregulated rather
than completely absent does not rule out the importance of factor function. Furthermore, it is
unclear if SMG1 and UPF3a or UPF3b are critical for NMD in zebrafish, especially since
neither SMG1 nor UPF3 is critical for NMD in fruitflies. Thus, while NMD undoubtedly
contributes to a normal embryonic phenotype in zebrafish, whether NMD per se or NMD
factor function in one or more processes other than NMD is necessary for embryonic
viability remains unclear.

Mouse
Mouse embryos completely lacking UPF1, which manifest no NMD, resorb soon after
uterine implantation, and pre-plantation UPF1-null blastocysts isolated at 3.5 days post-
coitum ultimately undergo apoptosis in culture [55]. The abnormal developmental processes
caused by the lack of UPF1 are undoubtedly exacerbated by the failure of UPF1 to
participate in non-NMD pathways such as Staufen1-mediated mRNA decay(SMD), which is
in competition with NMD [12], and histone mRNA decay at the end of S phase of the cell
cycle ([56] and references therein). However, data demonstrating that other NMD factors are
required to preclude profound developmental defects can be used to argue for the
importance of NMD. For example, SMG1-null embryos lack a vascular system and die by
embryonic day 8.5, undergoing massive apoptosis and resorption [57●●]. As another
example, the complete knock-out of UPF2 in hematopoietic stem cells results in stem-cell
death and, after uterine implantation, lethality before embryonic-day 9.5 [58]. The
conditional ablation of UPF2 expression during liver development beginning around
embryonic-day 10 leads to perinatal lethality that is not due to an abnormally small liver or
changes in tissue morphology but to abnormal nuclei that are arrested in mitosis and are
typified by an activated DNA damage pathway [59●●].

At least in humans, while UPF1 and SMG1 have major roles in telomere maintenance and
genome stability, the role of UPF2 appears to be less significant [60]. Since NMD-factor
function in pathways other than NMD is probably (but not certainly) conserved between
human and mouse, the less significant role of UPF2 compared to UPF1 in telomere
maintenance could be used to argue that the importance of all three NMD factors to
embryonic viability reflects their role in NMD per se. Nevertheless, it is difficult to tease
apart the relative contributions of NMD and chromatin organization to viability considering
that mouse embryonic stem cells lacking either UPF1 or UPF2 fail to form Xist RNA-
mediated domains and undergo X inactivation [61]. In search of possible contributions made
by NMD per se either directly or indirectly to embryonic viability, microarray analyses of
cellular transcripts in primary cells that were derived from SMG1-null embryos or after the
liver-specific loss of UPF2 revealed, respectively, major changes in the transcriptome and
the failure of the transcriptome to undergo massive reprogramming following partial
hepatectomy [57●●,59●●]. Since many of the affected transcripts appear to be NMD targets,
NMD per se plays a significant role in embryonic development if not viability. However, it
is difficult to imagine that NMD factor function in pathways other than NMD is not also
critical for embryonic development if not viability. Besides functioning in, e.g., SMD and
histone mRNA decay, UPF1, unlike UPF3X or the EJC constituent Y14, associates with the
small interfering RNA-induced silencing complex and appears to promote complex binding
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to mRNA targets and accelerate mRNA decay [62]. Furthermore, there are likely to be other
functions for NMD factors in pathways other than NMD that have yet to be discovered.

Humans
All factors shown to function in NMD in other organisms also function in NMD in humans.
Of the two UPF3 paralogues, UPF3X thought to play a more significant role in NMD than
UPF3 since UPF3X more efficiently binds the EJC and activates NMD in assays that
directly tether either protein to mRNA at a position that resides downstream of a termination
codon [14]. As noted above, NMD-factor dependence can vary depending on the particular
transcript, some of which are insensitive to UPF2 downregulation and others of which are
insensitive to UPF3 and/or UPF3X downregulation.

To date, the only NMD-factor deficiency known to affect humans is attributable to
mutations within UPF3X. These mutations cause mild to severe X-linked mental retardation
in males that is often accompanied by facial dysmorphism and other physical anomalies
[63]. At least some affected males survive embryogenesis without any detectable UPF3X.
They have different degrees of mental retardation depending on the amount of UPF3 [63],
the levels of which are tightly upregulated by a post-transcriptional switch [10]. The
existence of mental retardation in males who are deficient in functional UPF3X indicates
that the degree of UPF3 upregulation is insufficient to completely compensate for the lack of
UPF3X. As in mouse, NMD per se undoubtedly plays a significant role in human embryonic
development if not viability.

NMD vs. NMD-factor function in other pathways: Conclusions about contributions to
animal embryogenesis

We conclude that NMD factors and NMD per se are not essential for C. elegans
development but NMD factors, if not NMD per se, are required not only for embryonic
viability in D. melanogaster and in vertebrates but also for a normal embryogenesis. It is
currently difficult to attribute specific developmental defects to a deficiency in NMD due to
the roles of a number of NMD factors in one or more cellular processes in addition to NMD.
Furthermore, in cases where NMD is essential for proper embryonic development, if not
embryonic viability, it is difficult to know which is more important – the NMD-mediated
elimination of transcripts generated in error due to either gene-derived or RNA processing
defects, which could result in the production of toxic truncated proteins, or the NMD-
mediated regulation of physiologic transcripts. Since NMD functions with different
efficiencies in different mouse- and human-cell types [64–66] – and, not surprisingly, in
different HeLa-cell strains considering their long culture time under varying conditions [67]
– variabilities in the efficiency of NMD among different tissues and even the same tissue of
different individual organisms will further confound determining the importance of NMD to
embryogenesis in animals that are significantly higher along the evolutionary path than C.
elegans.
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Highlights

> We present EJC-dependent and faux 3’-UTR mechanisms of NMD in
eukaryotes.

> We highlight embryogenesis in animals: particularly worm, fly, fish, mouse and
man.

> Abnormal embryonic phenotypes with particular NMD factor deficiencies are
noted.

> We present evidence for NMD factor function in pathways other than NMD.

> We weight NMD vs. such non-NMD pathway roles in embryogenesis/embryo
viability.
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Figure 1. Models for NMD
(A) EJC function in mammalian-cell NMD. NMD is a consequence of PTC recognition
during the pioneer-round of translation [18]. This round utilizes newly synthesized mRNA
bound by the cap-binding protein heterodimer CBP80-CBP20 and, provided the mRNA
derived from splicing, at least one exon-junction complex (EJC) situated ~ 20–24-
nucleotides upstream of such a junction. The direct, but weak or transient interaction of
CBP80 with the central NMD factor UPF1 promotes at least two steps during NMD [21●].
The first step is the joining of UPF1 and its kinase SMG1 to eRF1 and eRF3 at a PTC to
form the SURF complex. During NMD, this step is thought to compete effectively with
joining of the PABPC1 to eRF3, the latter of which is specified as a dotted line [28]. The
second is the joining of UPF1 and SMG1, presumably from SURF, to a downstream EJC,
which leads to UPF1 phosphorylation by SMG1 [22]. SMG5 and SMG7 form a complex
with phosphorylated UPF1, as does SMG6 [42,76–79]. It is uncertain if SMG5/SMG7 and
SMG6 bind multiple phosphates on the same UPF1 molecule or, as shown, different
phosphorylated UPF1 molecules. In favor of the first possibility, SMG6 co-
immunoprecipitates with SMG5 and SMG7 in an RNase A-resistant manner [77●]. Since
SMG7-mediated mRNA decay occurs independently of SMG6 [79], it is plausible that
SMG5/SMG7-mediated NMD leads to deadenylation and/or decapping followed,
respectively, by exosome-mediated 3′-to-5′ and XRN1-mediated 5′-to-3′ exonucleolytic
activities (reviewed in [80–82]). An alternative or additional mRNA degradation pathway
involves SMG6, whose binding to hyperphosphorylated UPF1 competes with UPF3X and
may replace the interaction of UPF3X with Y14-MAGOH EJC constituents [77●]. The
endonuclease activity of SMG6 cleaves the NMD substrate into 5′- and 3′-cleavage
products. Activation of the RNA-dependent ATPase activity of UPF1 subsequently results
in the XRN1-mediated 5′-to-3′ decay of the 3′ fragment, which presumably depends on
UPF1 helicase activity [8●]. PAPBC1, poly(A) binding protein C1. (B) Faux 3′-UTR
function in S. cerevisiae NMD, where CBP80 and CBP20 are alternatively referred to as,
respectively, CBC1 and CBC2. When a ribosome reaches a PTC that is situated abnormally
upstream of the mRNA poly(A) tail, UPF1 can effectively compete with PAB for
association with eRF3 so as to trigger NMD [28,44]. How and when the other UPF proteins
associate with an NMD target and contribute to NMD remains uncertain, as does whether
UPF1 undergoes phosphorylation during NMD. CBC, cap-binding complex constituent.
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Table 1

Key NMD factors and their cellular functions in other pathways in animals

Factor in humans
Non-NMD functions in
humans Embryonic lethality* Other comments References

UPF1 Staufen (STAU)1- mediated
mRNA decay; histone mRNA
decay at the end of S phase;
DNA replication; telomere
maintenance; small RNA-
induced mRNA downregulation

Fruitfly, zebrafish, mouse Called SMG2 in
nematode

[17●●,50●●,52,55,62,68–72]

UPF2 Telomere maintenance (minor
role relative to UPF1)

Fruitfly, zebrafish, mouse Called SMG3 in
nematode

[17●●,33,58,59●●,69]

UPF3 (UPF3a) or
UPF3X (UPF3b)

None reported None Called SMG4 in
nematode; UPF3a has
peripheral role in
NMD for most NMD
targets in fruitful; no
UPF3b orthologue in
fruitfly

[14,32, 50●●]

SMG1 DNA-damage response to
ionizing radiation; nutrient-
dependent signaling; telomere
maintenance

Mouse NMD factor for only
certain NMD targets
in fruitfly

([33,51,52,57 ●●,69,73];
reviewed in [74])

SMG5, SMG6 and
SMG7

Telomere maintenance Zebrafish No SMG7 orthologue
in fruitfly

[17●●,32,69,72]

NAG/NBAS Amplified in neuroblastoma Nematode, zebrafish Called SMGL-1 in
nematode; no
orthologue in fruitfly

[35,54●●]

DHX34 Putative ATP-dependent RNA
helicase that probably functions
in non-NMD pathways

Nematode, zebrafish Called SMGL-2 and
CG32533 in nematode
and fruitfly,
respectively

([35,54●●]; reviewed in [75])

*
when downregulated (nematode or zebrafish) or completely absent (fruitfly, mouse)
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