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Abstract
In vivo molecular imaging has a great potential to impact medicine by detecting diseases in early
stages (screening), identifying extent of disease, selecting disease- and patient-specific therapeutic
treatment (personalized medicine), applying a directed or targeted therapy, and measuring
molecular-specific effects of treatment. Current clinical molecular imaging approaches primarily
use PET- or SPECT-based techniques. In ongoing preclinical research novel molecular targets of
different diseases are identified and, sophisticated and multifunctional contrast agents for imaging
these molecular targets are developed along with new technologies and instrumentation for
multimodality molecular imaging. Contrast-enhanced molecular ultrasound with molecularly-
targeted contrast microbubbles is explored as a clinically translatable molecular imaging strategy
for screening, diagnosing, and monitoring diseases at the molecular level. Optical imaging with
fluorescent molecular probes and ultrasound imaging with molecularly-targeted microbubbles are
attractive strategies since they provide real-time imaging, are relatively inexpensive, produce
images with high spatial resolution, and do not involve exposure to ionizing irradiation. Raman
spectroscopy/microscopy has emerged as a molecular optical imaging strategy for ultrasensitive
detection of multiple biomolecules/biochemicals with both in vivo and ex vivo versatility.
Photoacoustic imaging is a hybrid of optical and ultrasound modalities involving optically-
excitable molecularly-targeted contrast agents and quantitative detection of resulting oscillatory
contrast agent movement with ultrasound. Current preclinical findings and advances in
instrumentation such as endoscopes and microcatheters suggest that these molecular imaging
modalities have numerous clinical applications and will be translated into clinical use in the near
future.

INTRODUCTION
Molecular imaging is defined as the ability to visualize and quantitatively measure the
function of biological and cellular processes in vivo.1, 2 While anatomical imaging plays a
major role in medical imaging for diagnosis, surgical guidance/followup, and treatment
monitoring, the rapidly evolving field of molecular imaging promises improvements in
specificity and quantitation for screening and early diagnosis, focused and personalized
therapy, and earlier treatment follow-up. The main advantage of in vivo molecular imaging
is its ability to characterize pathologies of diseased tissues without invasive biopsies or
surgical procedures, and with this information in hand, a more personalized treatment
planning regimen can be applied. For example, recent strategies for treatment of breast
cancer involve combinations of several chemotherapeutic drugs that target epidermal growth
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factor receptor types I and 2 (EGFR and HER2/neu), mammalian target of rapamycin
(mTor), estrogen receptor, and/or histone deacetylase, among others; however, the most
effective strategy is dependent on the molecular profile of the tumor (e.g., HER2/neu-
targeted therapy is only effective in HER2-positive breast cancers).3 In vivo molecular
imaging can be used to identify and quantify the molecular marker profile (e.g., EGFR,
HER2) of the tumor without the invasiveness of a surgical biopsy and time associated with
pathological characterization. The personalized medicine approach is especially important
for determining the best care for patients with advanced stage cancers and poor prognosis -
in this case, the risk of exposure to unwanted side-effects of therapy may outweigh the
quality of remaining life.

Recent preclinical advances in molecular imaging contrast agents have demonstrated the
ability to multiplex nano- and/or microparticles with several entities (Figure 1): 1) a
molecule for targeting to a specific tissue/disease marker (binding ligand); 2) a molecule that
allows detection of the agent with different imaging modalities; and, 3) a direct attachment
or system (e.g., Doxel is a liposome encapsulation of doxirubicin, a cytotoxic drug which
inhibits DNA replication), for targeted delivery of a therapeutic drug at the site of interest.
For example, Blanco et al.4 describe the direct attachment of the chemotherapy drug,
Doxirubicin, to a superparamagnetic iron oxide (SPIO) nanoparticle, which is then
encapulated in liposomes coated with RGD-peptides; thus, these particles specifically attach
to tumor angiogenic vessels expressing high levels of αVβ3-integrins (protein receptors
which bind RGD peptides), and the localization of these magnetic particles can be visualized
using magnetic resonance imaging (MRI).

In addition, molecular imaging can be used to measure the response to therapy. Current
practices in measuring tumor response to chemotherapy are governed primarily by the
Response Evaluation Criteria in Solid Tumors (RECIST) approach, which uses anatomical
imaging methods such as computed tomography (CT) or magnetic resonance imaging (MRI)
to measure changes in tumor size; however, measurable effects of therapy on tumor volume
may take considerable time (weeks to months), indicating that tumor volumetric changes are
not an accurate reflection of therapeutic efficacy for some therapties.5 Molecular imaging
has the potential to improve therapeutic monitoring by for example measuring the direct
effect of a drug at an earlier time point before overt morphological-anatomical changes
become visible on imaging. Most chemotherapeutic/anti-cancer drugs are either directed at
specific molecular targets such as epidermal growth factor receptor (EGFR; drugs include
erlotinib, cetuximab, and gefitnib), VEGFR (drugs include bevacizumab, sunitinib, axitinib,
and vatalanib), estrogen receptor (such as tamoxifen), and EGFR type 2 (also known as
ErbB2 or HER2/neu; drug such as trastuzamab), or, they are cytotoxic (drugs include
paclitaxel/taxol, fluoruracil, or gemcitabine, among others) to promote tumor cell death.
Molecular imaging agents have been designed and tested preclinically in rodent models to
image all of the aforementioned molecular targets as well as cellular events such as
metabolic activity or apoptosis 6 and, therefore, may be used in the future to monitor
treatment effect at the molecular level at earlier time points after treatment initiation than
with current imaging strategies.

This article reviews current clinical practices of molecular imaging and highlights promising
strategies using optical and acoustic techniques that may be translated into clinical
applications in the near future.

Current Clinical Molecular Imaging Strategies
Various imaging modalities are used for medical imaging, including positron emission
tomography (PET), single photon emission computed tomography (SPECT), magnetic
resonance imaging (MRI), magnetic resonance spectroscopy (MRS), ultrasound (US), and
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computed tomography (CT) (Table 1). The majority of molecular imaging in the clinic is
currently performed only with PET, SPECT, and MRS imaging. Several PET (Table 2) and
SPECT (Table 3) radiotracers are used for medical imaging applications, including
oncology, cardiology, and neurology, and are discussed in detail elsewhere (YY et al. and
ZZ et al. for PET; AA et al. for SPECT in this issue). MRS is a technique of MRI that
measures changes in proton/nuclei excitation/relaxation associated with various metabolites,
such as choline, pyruvate, lactate, lipids, and polyamines, among others.7, 8 Several MRS
techniques, including 1H, 19F, 31P, and 13C MRS, have been developed and are reviewed
elsewhere (see BB et al. in this issue, and reviews9, 10). Clinical applications of MRS
include oncology,9 neurology,8 and musculoskeletal diseases,11 among others (Table 4).

Current clinical applications of real-time in vivo optical imaging techniques are limited to
surface (e.g., skin12, 13) or ocular14, 15 imaging since they suffer from limited depth
penetration through human tissue (Tables 1 and 4). However, increasing technological
advances in endoscopic (e.g., monitoring Barrett’s esophagus) and catheter devices (e.g.,
imaging of atherosclerosis or bladder cancer) for optical coherence tomography(OCT)15, 16

as well as microscopy hold promise for novel clinical applications (e.g., Wang et al. 17 used
a confocal microendoscope with topically-administered fluorescein to image abnormal
lesions and colonic pathology THIS IS NOT A CLINICAL TERM – PLEASE WRITE
WHAT COLONIC PATHOLGOIES THEY WERE ADDRESSING in patients undergoing
colonoscopy). Furthermore, a multi-photon NIRF source, where two or more photons are
used to excite the fluorescent dye/nanoparticle, has been integrated in a tomographical
scanner and microendoscope; this approach has been used for clinical optical imaging of
skin cancer and other dermatological pathologies.18

Most of these devices operate by applying photons for excitation, and measuring reflected
light. Alternatively, detection can occur by measuring light scattering effects, as in change
of energy before and after the photon collides with a molecule – known commonly as the
Raman effect19 (described in detail below). Since the change in energy is dependent upon
the strength of the molecular bond which is colliding with the photon, the Raman signal is a
series of peaks representing a specific molecular bond.19, 20 Thus, Raman
spectrophotometry is an emerging molecular imaging technique that can acquire multiple
molecular signatures with a single image. Raman spectroscopy and other optical imaging
techniques have been used in a few clinical applications; however, they are limited in
number since fluorescent-based and Raman-spectra contrast agents, including near-infrared
fluorescent (NIRF) (advantageous for deeper penetration and low background
fluorescence12) dyes, quantum dots (NIRF nanoparticles that are very bright and have long
life-span12), and nanoparticles with surface enhanced Raman scattering (SERS) properties,20

have not yet been fully evaluated for human use. So far, Raman spectroscopy for analysis of
different molecular signatures has been used in the clinic for identifying atherosclerosis 21 as
well as for cancer imaging (e.g., breast,22 colon23). Clinical applications of optical imaging
are summarized in Table 4 and include: 1) monitoring atherosclerosis-associated
inflammation with protease-activated fluorescent probes (representing capthesin-B and
matrix metalloprotease (MMP)-2/9 expression);24 and, 2) imaging of porphyrin (fluoresces
blue light) accumulation in highly-proliferating cancer cells. Therefore, agents that can be
chemically converted to porphyrin in cells can be added to “highlight” neoplastic cells. For
preclinical applications, optical imaging is frequently used for assessment of many
molecular contrast agents, drug testing, and for better understanding basic biological
processes. However, clinical translation of the large array of preclinical optical molecular
imaging strategies (discussed below) will require significant improvements in
instrumentation, contrast agent evaluation, and data analysis for molecular quantification.
Contrast-enhanced molecular ultrasound is a very attractive molecular imaging strategy
since ultrasound imaging 1) is already a clinical imaging modality; 2) is relatively
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inexpensive and portable; 3) offers real-time, high resolution imaging; 4) can separate
contrast and morphological imaging (with use of harmonics); and, 5) does not involve
ionizing irradiation (Table 1). Contrast agents for current use with ultrasound are
microspheres – gas-filled (e.g., perfluorobutane), lipid-shelled bubbles that are 1–4 μm in
diameter (see Deshpande et al. in this issue). Microbubbles have been used for imaging
primarily the micro- and macrovasculature,25 since their micron size limits them to vascular
compartments. Several commercially available microbubbles include: Luminity®/Definity®
(Bristol Myers Squibb), Optison™ (GE Healthcare), Sonovue® (Bracco), and Sonozoid™

(Amersham Health).26 A common clinical application of contrast-enhanced ultrasound
imaging with microbubbles involve characterization of focal lesions (e.g. in the liver) based
on vascular enhancement patterns using non-targeted microbubbles.27, 28 Currently,
contrast-enhanced ultrasound is not yet advanced to imaging molecular markers in the
clinical realm, although ongoing research is directed towards clinical translation of
molecularly targeted ultrasound imaging.29, 30

In summary, current clinical molecular imaging is mostly performed with PET and SPECT,
and several targeted radiopharmaceuticals for both imaging and dual-imaging/therapy are
available. Optical, ultrasound, and other hybrid acoustic imaging strategies (e.g.,
photoacoustic imaging) offer real-time and inexpensive approaches, which may be well
suited for routine clinical applications such as early disease detection and screening
protocols involving frequent imaging. The following section reviews emerging preclinical
developments in optical, ultrasound, and hybrid acoustic imaging.

PRECLINICAL DEVELOPMENTS IN MOLECULAR IMAGING AND
POTENTIAL CLINICAL APPLICATIONS

Preclinical molecular imaging in small animals is an invaluable part of evaluating new
molecular targets and contrast agents, as well as developing drugs prior to clinical
translation.31, 32 Figure 2 shows the time intensive and expensive preclinical steps involved
in molecular target identification, validation, chemical synthesis, and characterization (in
vitro and in vivo testing for activity, specificity, biodistribution, pharmacokinetics, off-target
effects, toxicity, etc) for new molecular imaging agents. In fact, the majority of current
molecular imaging agents used in the clinic were discovered through these exhaustive
preclinical experiments at academic institutions.32 It is estimated that a molecular imaging
agent costs about $150 million over 10 years to create, test, and move to the clinic, ending
with a $200–400 million per year revenue for successful contrast agents.32 The first step(s)
for identifying a molecular target begins with understanding and characterizing the biology
to find the differences between a healthy and diseased state. For example, since there is an
intricate relationship between inflammation and cancer (i.e., chronic inflammation can often
promote cancer and cancer onset can promote an inflammatory response), the differences
between inflamed and cancer states must be characterized. In general, much focus is directed
towards cancer imaging, and several preclinical studies have identified new molecular
targets for imaging cancer (Table 5). In addition to imaging the cancer phenotype such as
increases in metabolism, proliferation, angiogenesis, hypoxia, and apoptosis, agents have
been developed to target specific protein markers expressed on cancer cells or cancer-
associated cells (e.g., tumor angiogenic vessels, stroma). These include tumor cell receptors
(EGFR, HER2/neu, ER, folate receptor, somatostatin receptor, VEGFR2, urokinase-
plasminogen activator (uPA)/receptor (uPAR), among others), integrins, proteases, and
prostate-specific membrane antigen (PSMA) (Table 5 and see BB et al. in this issue), among
others. Notably, many chemotherapeutic drugs also target these markers, and have been
radiolabelled for assessment of biodistribution and pharmacokinetics using non-invasive
molecular imaging (Table 5).31 Continuing preclinical research has not only exploded in
molecular target discovery and imaging probe developments, but also in new strategies for
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imaging methodologies, especially in the areas of optical and acoustic imaging. With the
advent of new, smaller instruments/devices for insertion into the body, molecular imaging
strategies with optical and acoustic devices and specific molecular-targeted contrast agents
have great potential for translation into the clinic (Figure 3), which is reviewed in the
following sections.

Optical Molecular Imaging
A plethora of optical-based molecular imaging techniques are used in preclinical research
for evaluating molecular targets of contrast agents (Table 5) and/or of therapeutics as well as
characterizing and understanding biology.16 Although optical imaging currently is not used
in many clinical applications, there are several emerging technologies that foster clinical
translation.15 In terms of novel contrast agent development for optical imaging, Weissleder
and colleagues pioneered NIRF-protease-activatible probes for imaging cancer and
inflammation (e.g., in colon33, 34 and lung cancer,35 as well as in atherosclerosis36). These
“smart” probes involve a dye-quencher system where the fluorescent dye is connected to a
quenching molecule by a short linker peptide. When proteases cleave the peptide, the dye
and quencher molecules separate by a distance > 100 Ǻ, and the dye transfers energy to the
quencher resulting in a release of light.37 The “smart” probe strategy has great potential for
clinical translation since light is only released when the probe has reached its target and is
activated; thus, high signal-to-noise ratios can be obtained due to low background signal and
minimal non-specific enzymatic cleavage, which is of paramount importance for imaging
weak optical imaging signals in the human body.38 On the microscale device end, optical
imaging is progressing towards integrating confocal microscopy with endoscopes and
catheters for real-time ”biopsies”.16 Contag and colleagues have developed techniques for
early detection of colon cancer using a confocal endomicroscope and a fluorescein-
conjugated heptapeptide (VRPMPLQ), which bound to dysplastic colonocytes with high
affinity, resulting in a sensitivity of 81% and specificity of 82% for detection of colonic
neoplasia in patients undergoing colonoscopy.39 These confocal microscopy techniques with
cancer-specific optical probes can be used for in vivo early detection of various cancers in
the clinic, including, skin, colon, bladder, prostate, and esophageal cancer, among others.16

Real-time confocal microscopes can also assist in ex vivo analyses of tissue biopsies, such as
instantaneous quantification of HER2/neu expression in human breast tumors with 3D
microscopy and fluorophore-conjugated anti-HER2/neu antibodies.40

Another area of optical imaging that is emerging as a promising tool for clinical optical
imaging is Raman spectroscopy/microscopy, which measures inelastic light scattering
effects to determine molecular signatures.20 Optical energy in the form of lasers (typically
near-infrared range for increased penetration depth) is applied in pulses resulting in an
excitation of molecules to an elevated energy level (laser “on” – absorbing a photon) and a
relaxation to a new energy level (laser “off” – releasing a photon); this shift in energy is
related to the vibrational energy of a molecular bond, and “fingerprints” of molecules can be
created by measuring Raman shifts.19 The vibrational component is a measure of the
changing shape of the electron cloud during the shift (“on”/“off” or molecule excitement/
relaxation). For an example of molecular Raman imaging, the specific Raman shift or
“fingerprint” of carbon nanotubes is known as G-band (~1593 cm−1), and carbon nanotubes
conjugated to RGD peptides have been used for in vivo molecular Raman spectrographic
imaging of human glioma tumor xenografts in mice.41 The most commonly used methods of
Raman spectroscopy/microscopy are Surface-enhanced Raman Scattering (SERS) and
Coherence Anti-Stokes Raman Scattering (CARS); both SERS and CARS involve methods
to obtain a higher Raman signal. 20, 42 The SERS technique involves adding metal
nanoparticles (e.g., gold43), which absorb the optical energy and create an enhanced Raman
signal whereby the metal surface can transfer energy to nearby molecules, and also exhibit
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an excited energy (due to metal surface ions absorbing and releasing photons). Like carbon
nanotubes, SERS nanoparticles have unique Raman “fingerprints”; however, the Raman
signal enhancement due to the localized interactions with the metal surface of the
nanoparticle enable picomolar sensitivity, which is ideal for in vivo imaging applications.
Furthermore, labeling several different SERS nanoparticles with molecular ligands (Figure
1) can provide a measurement of multiple molecules with a single Raman image.43 CARS is
a nonlinear method which involves applying two or more photons to 1) excite the molecule
from the ground state to an excited state (higher energy level), and then 2) the second photon
can excite the molecule from its relaxed state (i.e., energy level after releasing photon during
“off” pulse after first photon absorption) to a new higher energy level; this second tier of
vibrational energy is typically ~5 times stronger than Raman signal after only one photon
pulse. The CARS technique is often used for high resolution, 3-dimensional microscopy; the
advantages are that there is no need for fluorescent markers to label molecules and images
can be acquired relatively quickly.44 Several preclinical studies (Table 5) have utilized
SERS (Figure 4) or CARS techniques for in vivo molecular imaging of cell receptors (e.g.,
RGD-carbon nanotubes that bind to αVβ3 integrin-expressing tumors/tumor microvessels45),
enzyme activity,46 changes in pH,20, 47 lipid composition,48 and myelin composition.49

Acoustic Molecular Imaging
While contrast-enhanced ultrasound is gaining popularity and support for a variety of
clinical applications in both cardiology and radiology 28, 50–55 (Table 1), preclinical research
is focused on improving this technology to a molecular-based approach. Microbubbles can
be molecularly targeted to disease-specific markers expressed on tissue vasculature
(Deshpande et al. in this issue and 56), such as microvessels in tumors or inflamed tissues.
Most preclinical molecular ultrasound imaging studies utilize microbubbles that have a
streptavidin, avidin, or biotin moiety incorporated into the lipid shell via a polyethylene
glycol (PEG) arm for conjugation of an antibody via a strept(avidin)-biotin chemistry
(Figure 5). However, strept(avidin) is immunogenic, and therefore, these microbubbles
cannot be used in humans.50, 57 Nonetheless, the wide availability of antibodies and ease of
conjugation to microbubbles provide a basis for proof-of-principle pre-clinical studies.
Several studies have utilized antibody- or peptide-biotin-strept(avidin)-conjugated
microbubbles to image tumor angiogenic markers, including VEGFR2,58–64 integrins,59, 65,
and endoglin61 (see Deshpande et al. article in this issue; Table 5). Other studies have used
molecular-targeted microbubbles to image molecular adhesion molecules overexpressed in
microvessels of inflamed tissues; these include mucosal addressin cellular adhesion
molecule (MadCAM1),66 vascular cellular adhesion molecule (VCAM1),54, 67 intracellular
adhesion molecule (ICAM1)68–70, and P-selectin71–73 (also see Deshpande et al. in this
issue). Clinical translation of molecular ultrasound imaging with microbubbles requires
several important steps, including development of molecular-targeted microbubbles without
the toxic strept(avidin)-biotin chemistry, implementation of quantitative software on clinical
ultrasound machines, and a standardized technique for quantification of attached
microbubbles (Figure 5). A novel microbubble targeted to kinase insert domain receptor
(KDR), the human analog of VEGFR2, was recently developed by fusing a heteropeptide
(found to bind KDR with high affinity) to a hydrophilic spacer and lipid to form a
heterolipopeptide for attachment to the PEG arm of the microbubble shell (Figure 5).29, 30

Preclinical evaluation of this KDR-targeted microbubble demonstrated cross-reactivity with
mouse VEGFR2, and the ability to monitor anti-angiogenic therapy in human colon tumor-
bearing mice,30 providing the groundwork for a translation of this contrast microbubble into
future clinical applications, such as monitoring anti-angiogenic cancer therapy.
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Hybrid Molecular Acoustic Imaging: Energy in, and sound out
The photoacoustic (PA) effect was first described in 1880 by Alexander Graham Bell,74, 75

who noted that illuminated objects emit sound waves; however, the application of the PA
effect in biomedicine has not taken shape until the last decade.75, 76 The main advantage of
this molecular imaging technique is that a wide variety of contrast agents - from small
molecules (e.g., dyes77) to nanoparticles (e.g, SWNT45) - can be utilized for attachment to
molecular ligands (Figure 1) provided that they are highly light absorbent (Figure 6).75

Nanoparticles and small molecules are very stable in the body; have the ability to
extravasate leaky vessels; bind to targets in high densities due to their small size; and, the
unbound fraction can clear from circulation relatively rapidly.78 Furthermore, recent
developments have shown that various forms of energy, including optical sources (e.g.,
lasers; conventional PA; also called optoacoustics),75 radiofrequency waves (RF; also called
thermoacoustics),75 microwaves,75, 79 and magnetic field pulses (for detection of magnetic
nanoparticles with ultrasound; also called magnetoacoustics),80, 81 can be used to result in
contrast agent “activation” – meaning, the energy input heats the contrast agent causing
thermal expansion and increased acoustic pressure.75 Short pulses of energy are applied to
result in time variant pressure changes, and higher signal to noise ratios.75

PA sensing instruments include microscopy (PAM), tomography (PAT, or thermoacoustic
tomography (TAT)), spectroscopy (PAS), and flow cytometry (PAFC)82 for high-resolution
molecular imaging at surfaces, in circulation (e.g., contrast agents in blood flow (PA
Doppler)83, 84 or cells labeled with contrast agents in blood82), and in deep-tissues;75 thus,
PA molecular imaging techniques are promising for a wide range of micro- and macro-
scaled applications (Figure 6). Strategies for detection of sound waves can be acoustic-based
(e.g., use of ultrasound transducers75) or optical-based (e.g., a device that measures changes
in thickness of an optical film as a result of acoustic pressures generated by PA85) and are
reviewed elsewhere.75 In addition to measuring signal from activated contrast agents, PA
imaging can also be used to measure local temperature (by relating PA pressure to
temperature with high, sub-degree sensitivity86, 87) and chemical environments, such as
oxygenation88 and pH.89 Wang et al.76 describes several potential applications of PA
molecular imaging for clinical translation, including: 1) real-time PAM imaging as
complimentary to optical-based microscopy methods (mentioned above); 2) real-time PAM
imaging and/or PAM-Doppler (blood flow imaging – see Fang et al.83) imaging of
melanoma; 3) PA endoscopy for more sensitive and early detection of gastrointestinal
cancer; 4) cancer detection at the molecular level (e.g., RGD-targeted SWNTs for detection
of vascularized gliomas45); 5) high-resolution PAT imaging of reporter genes; 6) PA
Doppler flow measurements of blood velocity (more sensitive than conventional Doppler
US, which suffers from noise artifacts generated by red blood cells); 7) PAT imaging of
blood oxygenation; 8) real-time PAT staging of breast cancer with sentinel lymph node
mapping; 9) Multiscale (i.e., both microscopic and macroscopic; Figure 6) in vivo imaging
(compared with PET, SPECT, MRI, CT, and US, which are only used for macroscopic
imaging); 10) PAT and/or TAT for high-resolution and high-specificity breast cancer
diagnosis/screening to replace x-ray mammography; 11) PAT and/or TAT for functional
brain imaging; and, 12) RF-TAT molecular imaging once specific RF-activated contrast
agents are developed. Infinitely more applications are possible with PAM, PAT, and TAT,
as more sophisticated device technology and contrast agents are developed. As with
ultrasound transducers for non-invasive (abdominal, transcranial, breast) and more invasive
(transvaginal, endoscopic, intravascular) imaging strategies, PAT/TAT imaging devices
equipped with both contrast agent activation (e.g., optical or electromagnetic source) and
acoustic pressure measurement can access most tissue. Various types of nanoparticles,
including nano-rods, -cages, -spheres, -tubes, -shells, and other nanoparticles consisting of
gold,78 iron oxide,80, 81, cobalt,90 silica (e.g., photonic explorers for bioanalysis with

Pysz et al. Page 7

Clin Radiol. Author manuscript; available in PMC 2011 August 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



biologically localized embedding (PEBBLES)91, 92 filled with near-infrared-red absorbing
dyes, such as the FDA-approved dye, iodocyanine green (ICG); see Yang et al.93 for review)
or carbon,45 have been tested preclinically as PA imaging contrast agents (Table 5).
Furthermore, they can be easily conjugated to targeting moieties (e.g., antibodies, peptides,
small molecules) for molecular imaging as well as drugs for targeted therapy.75, 93, 94

The advantages of PA imaging are numerous: 1) target-specific signal can be obtained
without interference from background tissues (similar in respect to PET modality), and can
be overlaid on top of an ultrasound anatomical image for cross-referencing with morphology
(similar to PET signal overlaid on CT); 2) does not involve ionizing irradiation; 3) can
visualize targeted nanoparticles with high sensitivity and resolution; and, 4) can image both
on the macroscopic (with PAT imaging) and microscopic (with PAM imaging and other
molecular detection methods including PA flow cytometery and spectrophotometry) levels.
Additionally, PAT imaging has similar advantages to US imaging (Table 1) in that it can
provide real-time, inexpensive, and quantitative molecular imaging at high resolution. This
preclinical molecular imaging approach has a large potential; however, several steps are
needed to fully translate PA imaging techniques (not listed in order). First, PA imaging
detection hardware and computation software for real-time imaging must be integrated with
clinical imaging systems. Most current preclinical devices are home-made and designed for
small animal imaging; therefore, future work should focus on integrating this technology on
a clinically relevant device and establishing proof-of-principle studies in small animals (for
example, as for molecular ultrasound imaging as shown in Figure 5, where a clinical
ultrasound machine was used to image breast cancer-bearing mice). Secondly, nanoparticles
must be fully characterized for toxicity, biodistribution, and pharmacokinetics94 to take full
advantage of the highly specific and sensitive molecular imaging tool that PA represents.
Thirdly, further developments in contrast agent “activation” by RF, microwaves, and
magnetic fields can extend the applications limited by the minimal depth penetration of
optical sources. Currently a few in-human studies have used PA techniques: 1) PA
spectroscopy to measure oxygenation levels in hyper- and hypo-ventilating healthy
volunteers;95 2) PA flow cytometry to quantify circulating melanoma cells in a stage IV
melanoma patient’s blood sample;96 and 3) in vivo PAT imaging to examine human breast
tumors to visualize tumor vascularity based on optical contrast characteristic of breast
tissue.97, 98 Further developments in instrumentation and evaluation of contrast agents for
photoacoustic imaging will move toward a molecular approach in the clinic.

CONCLUSIONS
Molecular imaging can be applied to all avenues of medical imaging: early detection/
screening, diagnosis, therapy delivery/monitoring, and treatment follow-up. The current
status of clinical molecular imaging is limited, with most current applications using PET and
SPECT imaging, and a small number of highly specific applications for MRI/MRS, optical,
and ultrasound. Current demands and trends are calling for new strategies to focus on early
disease detection through improved imaging and screening protocols, as well as patient-
specific treatment selection (personalized medicine), delivery (possibly through targeted
therapy), and therapy-specific (i.e., therapeutic target) monitoring. It is hoped that these new
strategies of early diagnosis and immediate treatment monitoring will improve success rates
for curing diseases with high mortality rates such as cardiovascular disease and cancer, as
well as providing more specific treatment for other diseases (for example, neurological
disorders such as Alzheimers and/or Parkinsons). Preclinical research has resulted in the
identification of a large number of molecular targets and the development of novel
molecular imaging contrast agents as well as device, hardware, and software technologies. It
is expected that molecular imaging with imaging modalities other than PET and SPECT,
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including MRI/MRS, optical (Raman), molecular ultrasound and photoacoustic tomography,
will be integrated into more frequent clinical use in the near future.
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Figure 1.
Contrast agents used for molecular imaging are composed of at least 2 entities: one
component such as an antibody, peptide, nucleic acid, or a small molecule for binding to the
molecular target, and a label for readout by an imaging modality (see also Table 1). More
sophisticated contrast agents can include multiple parts for targeting several molecules at
once, as well as, several labels for multimodality imaging. Drugs can also be attached/
encapsulated for targeted therapy.
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Figure 2.
Molecular contrast agent design and clinical use involve a series of steps similar to those
used in drug development (Adapted from Willmann et al.31). Preclinical steps (green-shaded
boxes) involve target identification, validation, chemical labeling, in vitro cellular
characterization, and in vivo animal testing. After many optimization steps (arrows between
boxes 1, 2, and 3), the agent can be tested in humans after FDA applications for
investigatory new drug (IND) or exploratory IND (eIND). Clinical testing (orange boxes)
involves rigorous testing for agent properties (effectiveness, specificity, toxicity, off-target
effects, kinetics, etc.) before potential approval by the FDA for routine clinical use, which is
also heavily monitored for outcomes assessment.
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Figure 3.
Timeline representation of current and future utilization of molecular imaging in the clinic.
Current approved molecular imaging techniques are mostly PET and SPECT, which are
expected to continue for use in diagnosing advanced stage diseases. With a plethora of
molecular targets identified preclinically for various diseases (e.g., cancer: Table 5) and
advances in material engineering for nano- and micro-particle contrast agents, a large
potential exists to expand clinical molecular imaging beyond nuclear medicine approaches.
Molecular imaging techniques that do not expose patients to ionizing irradiation, such as
MRI/MRS, optical, ultrasound and hybrid acoustic imaging approaches are ideal for early
disease detection and screening. Hardware and software implementations for sensitive and
quantitative detection of targeted contrast agents will also pave the way for targeted
therapeutic delivery (tracking) and response monitoring. Optical, ultrasound, and hybrid
acoustic imaging are expected to be forerunners in screening methodology since they can
provide real-time, inexpensive, and high-resolution images.
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Figure 4.
Raman Spectroscopy/Microscopy techniques are an emerging molecular imaging tool for
potential translation to clinical applications with endoscopes or catheters. Left to right:
Nanoparticles with specific Raman signatures (a), including quantum dots, metal (gold (Au)
or silver (Ag)) nanoparticles which can be coated for several different spectra (e.g., SERS
nanoparticles such as silica coated gold nanoparticles), and carbon nanotubes/fullerenes, can
be used for attaching specific moieties to bind to molecular targets (as in Figure 1 where the
label is the nanoparticle). The nanoparticles (when excited with an optical laser) produce
specific Raman spectra (b), which can be used to generate in vivo imaging signal (c), ex vivo
imaging signal (d), and for ex vivo biosensing assays (e). Image in (c) represents in vivo
imaging of SERS nanoparticles (S421 and S441) injected subcutaneously in nude mice, and
the spectra obtained for S421, S441, and an equal mix of both S421 and S441. Reprinted
with permission from Keren et al.99 Image in (d) represents ex vivo Raman imaging of
excised subcutaneous tumor xenografts that were pre-injected (in mouse prior to
euthanization) with either plain, non-targeted single-walled carbon nanotubes (Plain SWNT)
or SWNT’s conjugated to RGD peptide (binds to αVβ3 integrin); note that RGD-targeted
SWNTs show high Raman signal compared to non-targeted, plain SWNTs. SWNT structure
and Raman image were reprinted with permission from de la Zerda et al.45 Image in (e)
represents a schematic for using Raman Spectroscopy for analyzing blood samples with
nanoparticles (a) targeted to specific biomarkers (DNA, RNA, or proteins); this technique
can be advantageous for ultrasensitive, rapid screening for early detection of cancer. Not
shown: Raman imaging can also be used for resolution microscopy (e.g., CARS).
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Figure 5.
Contrast-enhanced ultrasound imaging with molecularly-targeted microbubbles (MBs;
molecular ultrasound imaging) is moving rapidly towards clinical translation. Left to right:
Proof-of-principle preclinical studies include testing targeted MBs constructed by
conjugating an antibody (blue “Y” molecule) to a MB using strept(avidin)-biotin (green
line-red circle) binding chemistry (a) for endothelial cell target specificity and validation.
Then, MBs using peptides (purple lines) with high binding affinity for the human targets can
be constructed with direct conjugation to lipid MB shell (b), and after further rounds of
preclinical testing (see Figure 2), peptide-conjugated MBs can progress to clinical testing.
Functional ultrasound imaging methods including perfusion analysis with assessment of
first-pass time-intensity curves (c) and maximum intensity persistence (MIP) (d) can provide
levels of tissue vascularity. Molecular ultrasound imaging with KDR-targeted MBs 30 can
be used to measure KDR expression levels (e; for more details on calculating the attached
MB signal, refer to Willmann et al.59). (f) A clinical ultrasound system was used to acquire
B-mode images (right side) and contrast images (see Deshpande et al. in this issue for a
more detailed review of contrast imaging) of breast cancer in a transgenic mouse model.
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Figure 6.
Photoacoustic (PA), thermoacoustic, and magnetoacoustic imaging techniques are emerging
as a highly sensitive and versatile tool for molecular imaging. Left to right: Contrast agents
for use with hybrid acoustic imaging methods are optically-absorbing nanoparticles, such as
small molecule dyes, nanoparticles made of silica, gold, or cobalt, and carbon nanotubes/
fullerenes, for use with photoacoustic imaging; and, magnetic nanoparticles for use with
magnetoacoustic imaging. Energy is applied to the nanoparticles in the form of near-infrared
light, radiofrequency, microwaves, or magnetic field; this energy causes the contrast agent
nanoparticles (a) to oscillate and produce sound waves for measurement with ultrasound. PA
imaging devices have been developed for imaging at the microscale (b), and macroscale (c)
levels. In vivo and in vitro micromolecular analyses can be performed with PA imaging
devices such as PA microscopy, PA flow cytometry, and PA spectrophotometry (b). Image
represents an in vivo PA spectrophotometry system used to image surrounding vascularity
and sentinal lymph node with gold nanorods (activated with 807 nm laser) in male rats
(Reprinted with permission from Song et al.100). Macromolecular analyses can be performed
with PA tomography for in vivo imaging applications (c). Images (reprinted with permission
from de la Zerda et al.45) represent the device setup of a PA imaging system for small
animals; this system was used to generate the adjacent, lower right image of subcutaneous
glioma tumor xenografts in nude mice. Plain (non-targeted)- or RGD- (targeting αVβ3
integrin) single-walled carbon nanotubes (a) were injected in the mouse tail vein, and PA
signal (green) was imaged with B-mode US imaging (grey).
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Table 1

Advantages and disadvantages of imaging modalities used with molecularly targeted or non-targeted contrast
agents in a clinical setting. Adapted from references:31, 101

Modality Advantages Disadvantages Common Contrast agents/Readout Example Clinical Applications

CT • Unlimited
depth
penetration

• High spatial
resolution

• Whole-body
imaging
possible

• Short
acquisition
time
(minutes)

• Moderately
expensive

• Anatomical
imaging

• Irradiation
exposure

• Poor soft
tissue
contrast

• Probably
not used for
molecular
imaging –
currently
only
anatomical
and
functional
imaging

• barium

• iodine

• krypton

• xenon

• Tumor perfusion102

PET • Unlimited
depth
penetration

• Whole-body
imaging
possible

• Quantitative
molecular
imaging

• Can be
combined
with CT or
MRI for
anatomical
information

• Irradiation
exposure

• Expensive

• Low spatial
resolution
(1–2 mm;
4–8 mm3)

• Long
acquisition
times
(minutes to
hour)

• 11C

• 18F

• 64Cu

• 68Ga

• 18F-FDG-PET for
cancer staging 103

• Diagnosis of various
diseases (see Table
2)

SPECT • Unlimited
depth
penetration

• Whole-body
imaging
possible

• Quantitative
molecular
imaging

• Theranostic:
Can combine
imaging &
radiotherapy

• Can be
combined
with CT for
anatomical
information

• Irradiation
exposure

• Low spatial
resolution
(0.3–1 mm;
12–15
mm3)

• Long
acquisition
time

• 99mTc

• 123I

• 111In

• 177Lu

• Diagnosis of various
diseases (see Table
3)

• Radiotherapy for
NHL: 90Y-Bexxar
or 131 I-Zevalin104

• Radiotherapy of
thyroid carcinoma
with 131I-iodide105

MRI • Unlimited
depth
penetration

• Expensive

• Long
acquisition

• Gadolinium (Gd3+)

• iron oxide particles
(SPIO, USPIO)

• SPIOs for detection
of lymph node
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Modality Advantages Disadvantages Common Contrast agents/Readout Example Clinical Applications
• Whole-body

imaging
possible

• No ionizing
irradiation

• Excellent
soft tissue
contrast

• High spatial
resolution

time (min-
hours)

• Limited
sensitivity
for
detection of
molecular
contrast
agents

• manganese oxide

• 19F

metastases of
prostate cancer106

• Characterization of
focal hepatic
lesions107

• Perfusion imaging of
the heart108

MRS • Whole-body
imaging
possible

• No ionizing
irradiation

• Expensive

• Long
acquisition
time (min-
hours)

• Low
sensitivity

• choline

• creatine

• lactate

• lipids

• polyamines

• N-acetyl-aspartate

• Metabolite levels in
brain tumors 109

• Treatment
monitoring of
Alzheimers110

US • No ionizing
irradiation

• Real-time
imaging/
short
acquisition
time (min)

• High spatial
resolution

• Can be
applied
externally or
internally
(endoscopy)

• Inexpensive

• Highly
sensitive

• Whole-
body
imaging not
possible

• Contrast
agents
currently
limited to
vasculature

• Operator
dependency

• Contrast Microbubbles • Characterization of
focal liver lesions28

• Echocardiography111

• Tumor perfusion of
cancer27

Optical • No ionizing
irradiation

• Real-time
imaging/
short
acquisition
time (sec-
min)

• Relatively
high spatial
resolution

• Can be
applied
externally or
internally
(endoscopy)

• Inexpensive

• Highly
quantitative
& sensitive

• Limited
depth
penetration
(≤ 1 cm)

• Whole-
body
imaging not
possible

• Fluorescent molecules &
dyes

• Light absorbing
nanoparticles

• OCT imaging of
artherosclerosis112

• OCT imaging for
colonoscopy
screening17

• Raman imaging of
skin cancer113

Clin Radiol. Author manuscript; available in PMC 2011 August 4.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Pysz et al. Page 24

Modality Advantages Disadvantages Common Contrast agents/Readout Example Clinical Applications
• Multiplexing
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Table 2

Commonly used PET tracers for clinical molecular imaging of diseases. Adapted from references:114–122

Medical Imaging Molecular Target Radiotracer(s) Clinical Applications

Oncological Imaging Protein synthesis 11C Methionone, Protein synthesis in tumors

Glucose transporter 11C-DG, 18F-FDG Glucose metabolism in tumors

Choline transporter 11C-choline Tumor phospholipid synthesis

thymidine uptake in DNA/RNA synthesis 18F-FLT, 18F-FMAU; 18F-FU Tumor cell proliferation

αVβ3 integrin 18F-galacto-RGD Tumor angiogenesis

HSV1-tk 18F-FHBG Suicidal gene therapy

Hypoxia 18F-FMISO; 64Cu-, 60Cu-ATSM Tumor hypoxia

Somatostatin receptor 64Cu-TETA-octreotide Neuroendocrine tumors

Estrogen receptor 18F-FES Breast Cancer

Androgen receptor 18F-FDHT Prostate Cancer

Cardiovascular Imaging Cell metabolism 11C Acetate Cardiac metabolism

Fatty acid metabolism 11C Palmitate Ischemia

Adrenergic neurotransmission 11C Metahydroxy-ephedrine Heart failure

Cardiac Sympathetic Neurons 18F Norephinephrine Cardiac sympathetic innervation

Neurological Imaging Dopamine post synaptic receptors 11C Raclopride Schizophrenia, Addiction

β-amyloid 11C-PIB Alzheimer’s disease

NK-1 Receptor 18F SPARQ; 11C-R116301 Depression, Anxiety

Dopamine transporter 18F FECNT Schizophrenia, Addiction

Dopamine metabolism 18F DOPA Schizophrenia, Addiction

Abbreviations: DG: 2-deoxyglucose; FDG: fluoro-2-deoxy-D-glucose; FLT: fluoro-L-thymidine; FMAU: 1-(2′-deoxy-2′-fluoro-β-D-
arabinofuranosyl)thymine; FU: fluorouracil; galacto: galactose; RGD is a peptide sequence of arginine-glycine-aspartic acid; HSV1-tk: herpes

simplex virus 1 – thymidine kinase; FHBG: fluoro-3-[hydroxymethyl]butyl)guanine; FMISO: fluoromisonidazole; ATSM: N4-
methylthiosemicarbazone; TETA: 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid; FES: Fluoro-17-β-Estradiol; FDHT: Fluoro-5α-
Dihydrotestosterone; PIB: 2-(4′-(methylamino)phenyl)-6-hydroxybenzothiazole (Pittsburgh Compound-B); NK-1: neurokinin-1; SPARQ: 2-
fluoromethoxy-5-(5-trifluoromethyl-tetrazol-1-yl)-benzyl]([2S,3S]2-phenylpiperidin-3-yl)-amine); R116301: neurokinin-1 receptor antagonist

hydroxybutanedioate; 18F FECNT: 2β-carbomethoxy-3β-(4-chlorophenyl)-8-(2-[(18)F]-fluoroethyl)-nortropane; DOPA: dopamine.
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Table 3

Commonly used SPECT tracers for clinical molecular imaging of diseases. Note, many agents image blood
vessels and perfusion and/or excretion (labelled N/A for Molecular Target). Adapted from references:105, 123

Medical Imaging Molecular Target/Localization Radiotracer(s) Clinical Applications

Oncological Imaging Carcinoembryonic antigen 111In altumomab pentetate Colon Cancer

Prostate-specific membrane
antigen (PSMA)

111In capromab pendetide/ProstaScint® Prostate cancer

Somatostatin receptor 111In pentetreotide/Octreoscan® Neuroendocrine cancers,
gastroenteropancreatic
tumors

Tumor-associated glycoprotein 111In satumomab pendetide/OncoScint® Colorectal or Ovarian
cancer metastasis

Carcinoembryonic antigen 99mTc Arcitumomab/CEA-Scan® Colorectal cancer

Somatostatin receptor 99mTc Depreotide/Neotect® Pulmonary and lung
cancer

CD20 90Y Ibitumomab tiuxetan/Zevalin® Non-Hodgkins lymphoma

CD20 131I Tositumomab/Bexxar® Non-Hodgkins lymphoma

NK-1 Receptor 90Y-labelled substance P Glioma

Albumin 90Y-MAA Liver cancer

N/A – (localizes in adrenergic
tissue)

123I-/131I-MIBG Neuroendocrine tumors

N/A - Perfusion 99mTc-sulfur colloid Sentinel lymph node
metastasis/biopsy

N/A - Perfusion 99mTc Sestamibi/Cardiolite®, Miraluma® Breast cancer, lymph
node metastasis

Cardiovascular Imaging N/A - Perfusion 99mTc Teboroxime/Cardiotec® Myocardial Perfusion

N/A - Perfusion 99mTc Tetrofosmin/Myoview® Myocardial Perfusion

N/A - Perfusion 99mTc Sestamibi/Cardiolite®, Miraluma® Myocardial Perfusion

Neurological Imaging N/A - Perfusion 99mTc Bicisate (ECD)/Neurolite® Cerebral Perfusion

N/A - Perfusion 99mTc Exametazine (HMPAO)/Ceretec® Cerebral Perfusion

N/A - Perfusion 111In pentetate/111In DTPA® CSF Kinetics

Amphetamine receptor 123I-iodoamphetamine Neurodegenerative
disorders; regional
cerebral blood flow

Phosphatidylserine 99mTc-HYNIC-annexin V Dementia124

Gastrointestinal and
Genitourinary Imaging

N/A – Perfusion/clearance 99mTc Disofenin (DISIDA)/Hepatolite® Hepatobiliary

N/A – Perfusion/clearance 99mTc Lidofenin (HIDA)/Technescan® HIDA Hepatobiliary

N/A – Perfusion/clearance 99mTc Gluceptate/Glucoscan® Renal

N/A – Perfusion/clearance 99mTc Mertiatide/Technescan® MAG3 Renal

N/A – Perfusion/clearance 99mTc Pentetate (DTPA)/Techneplex®, Technescan® Renal

N/A – Perfusion/clearance 99mTc Succimer (DMSA)/DMSA Renal, brain

N/A – Perfusion/clearance 99mTc labelled red blood cells Gastrointestinal bleeding
and associated disorders;
splenosis
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Medical Imaging Molecular Target/Localization Radiotracer(s) Clinical Applications

N/A – Perfusion/clearance 99mTc-sulfur colloid Splenosis

Adrenal gland 131I-6-β-iodomethyl-19-norcholesterol or 131I-norcholesterol Adrenocortical disorders

Musculoskeletal Imaging Bone 153Sm EDTMP/Quadramet®, or 99mTc-MDP Palliative treatment of
bone pain and bone
metastases

Hydroxyapatite crystals 99mTc Oxidronate (HDP)/Osteoscan® HDP Bone

Abbreviations: CEA: carcinoembryonic antigen; CD20: leukocyte surface antigen; NK-1: neurokinin-1 receptor; MAA: macroaggregated albumin;
MIBG: metaiodobenzylguanidine; ECD: ethyl cysteinate dimer; HMPAO: hexamethylpropyleneamine oxime; DTPA: diethylenetriamine-
pentaacetic-acid; HYNIC: hydrazinonicotinamide; DISIDA: Di-isopropyliminodiacetic Acid; HIDA: N-(2,6 diethylphenylcarbomoylmethyl)
iminodiacetic acid; Mag-3: mercaptoacetyltriglycine; DMSA: dimercaptosuccinic acid; EDTMP: ethylene diamine tetramethylene phosphonate;
MDP: methylene diphosphonate; HDP: hydroxymethylene diphosphate. AGA: antigranulocyte antibody.
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Table 4

Clinical applications with molecular MRI/MRS and Optical/Raman in vivo imaging.

Imaging Modality Molecular Target Contrast Agent Example Clinical Application

MRS8, 125–127 Metabolites (e.g., lactate,
choline, lipids, etc.)

N/A – spectroscopic
measurement

Neurological diseases and
abnormalities, metabolic disorders, and
various cancers

Optical Tomography Porphyrin hexaminolevulinate (Hexvix);
aminolevulinic acid

Bladder, laryngeal cancer15

Optical Tomography Proteases capthesin B- or MMP2/9-
activated “smart” fluorescent
probes

Atherosclerosis24

Optical Multiphoton Tomography NAD(P)H, collagen N/A – endogenous fluorescence Skin cancer/diseases13

Raman Spectroscopy N/A – Tissue specific
spectra

N/A – Tissue specific spectra Atherosclerosis;21 colon cancer;20, 128

breast cancer;22 skin cancer;113

Abbreviations: MMP: matrix metalloprotease; NAD(P)H: nicotinamide adenine dinucleotide phosphate.

Clin Radiol. Author manuscript; available in PMC 2011 August 4.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Pysz et al. Page 29

Ta
bl

e 
5

M
ol

ec
ul

ar
 ta

rg
et

s, 
im

ag
in

g 
pr

ob
es

, a
nd

 d
ru

gs
 id

en
tif

ie
d 

pr
ec

lin
ic

al
ly

 fo
r i

m
ag

in
g 

ca
nc

er
 w

ith
 v

ar
io

us
 m

od
al

iti
es

.

Im
ag

in
g 

M
od

al
iti

es

M
ol

ec
ul

ar
 T

ar
ge

t/E
ve

nt
PE

T
SP

E
C

T
M

R
I/

M
R

S
U

S
H

yb
ri

d 
A

co
us

tic
O

pt
ic

al

A
po

pt
os

is
 a

nd
/o

r C
yt

ot
ox

ic
ity

R
ev

ie
w

:12
9

18
F-

Pa
cl

ita
xe

l (
m

ic
ro

tu
bu

le
 fo

rm
at

io
n)

;13
01

24
 I-

A
nn

ex
in

V
; 18

F-
A

nn
ex

in
 V

99
m

Tc
-A

nn
ex

in
 V

M
R

I: 
A

nn
ex

in
 V

-Q
D

s w
ith

pa
ra

m
ag

ne
tic

-li
pi

d 
co

at
in

g;
13

1  M
R

S:
C

H
2/C

H
3 r

at
io

A
nn

ex
in

 V
-C

y5
.5

; C
y5

.5
-C

as
pa

se
ac

tiv
ity

; R
am

an
: S

ER
S 

N
Ps

co
nj

ug
at

ed
 to

 a
nt

i-B
A

X
 A

b 
or

 a
nt

i-
B

A
D

 A
b13

2

Ep
id

er
m

al
 g

ro
w

th
 fa

ct
or

re
ce

pt
or

 (E
G

FR
)

R
ev

ie
w

:13
3,

 1
34

11
C

-G
ef

itn
ib

; 11
C

-E
rlo

tin
ib

/T
ar

ce
va

; 64
C

u-
C

et
ux

im
ab

12
5 I

-A
nt

i-E
G

FR
-F

ab
13

5
A

nt
i-E

G
FR

 a
nt

ib
od

y-
IO

 N
Ps

an
ti-

EG
FR

 A
b-

go
ld

 n
an

or
od

s13
6

C
y5

.5
-C

et
ux

im
ab

; R
am

an
: a

nt
i-

EG
FR

 A
b-

go
ld

 N
Ps

13
7

Ep
id

er
m

al
 g

ro
w

th
 fa

ct
or

re
ce

pt
or

 ty
pe

 II
 (H

ER
2/

ne
u)

R
ev

ie
w

:13
4,

 1
38

90
Y

, 86
Y

, o
r 68

G
a-

Tr
as

tu
za

m
ab

11
1 I

n-
Tr

as
tu

za
m

ab
; 11

1 I
n-

, 13
1 I

-,
or

 99
m

Tc
-la

be
le

d 
an

ti-
H

ER
2

an
tib

od
ie

s/
fr

ag
m

en
ts

Tr
as

tu
za

m
ab

-M
nO

 N
P;

 A
vi

di
n-

G
d3+

-a
nt

i-H
ER

2 
an

tib
od

y;
H

er
ce

pt
in

-I
O

 N
Ps

an
ti-

H
ER

2 
A

b-
go

ld
 n

an
or

od
s;

13
6

A
le

xa
 fl

uo
r 7

50
-h

er
ce

pt
in

13
9

C
y5

.5
-T

ra
st

uz
am

ab
; C

y5
.5

-a
nt

i-
H

ER
2 

A
b;

 R
am

an
: a

nt
i-H

ER
2 

A
b-

SE
R

S 
N

Ps
14

0

Es
tro

ge
n 

re
ce

pt
or

 R
ev

ie
w

:13
4

18
F-

Ta
m

ox
ife

n;
 94

m
Tc

-c
yc

lo
fe

ni
l; 

18
F-

es
tra

di
ol

(F
ES

)
13

1 I
-T

am
ox

ife
n;

tri
de

nt
at

e 
99

m
Tc

(I
)-

es
tra

di
ol

-
py

rid
in

-2
-y

l h
yd

ra
zi

ne

Fo
la

te
 re

ce
pt

or
 R

ev
ie

w
:13

4
66

G
a,

 68
G

a-
de

fe
ro

xa
m

in
e-

fo
la

te
; 18

F-
fo

lic
 a

ci
d

11
1 I

n-
D

TP
A

-f
ol

at
e;

 99
m

Tc
-f

ol
at

e
PE

G
-G

3-
(G

d-
D

TP
A

)1
1-

(f
ol

at
e)

5
SW

N
T-

fo
lic

 a
ci

d14
1

Py
ro

ph
eo

ph
or

bi
de

-p
ep

tid
e-

fo
la

te

H
yp

ox
ia

 R
ev

ie
w

s:
14

2–
14

4
12

4 I
-a

nt
i-c

G
25

0 
(C

A
IX

 A
b)

; 18
F-

FM
IS

O
; 12

4 I
-

FI
A

U
; 18

F-
FA

ZA
, C

u-
A

TS
M

M
R

I: 
19

F 
ox

im
et

ry
, 19

F-
FM

IS
O

;
M

R
S:

 la
ct

at
e 

m
ea

su
re

m
en

t
ox

yh
em

og
lo

bi
n:

de
-o

xy
he

m
og

lo
bi

n14
5

H
IF

-1
α-

re
po

rte
r w

ith
 G

FP
; R

am
an

:
la

ct
at

e 
se

ns
in

g14
6

In
te

gr
in

s (
Tu

m
or

 a
ng

io
ge

ne
si

s)
R

ev
ie

w
s:

14
7,

 1
48

64
C

u-
R

G
D

 (S
W

N
T)

; 64
C

u-
R

G
D

 (Q
D

); 
64

C
u-

R
G

D
(S

PI
O

); 
64

C
u-

kn
ot

tin
 p

ep
tid

es
14

9
11

1 I
n-

pe
rf

lu
or

oc
ar

bo
n 

N
P-

R
G

D
R

G
D

 p
ep

tid
e-

G
d 

co
nt

ai
ni

ng
pa

ra
m

ag
ne

tic
 a

nd
 fl

uo
re

sc
en

t
lip

os
om

es
; R

G
D

 p
ep

tid
e-

SP
IO

s

K
no

tti
n-

R
G

D
co

nj
ug

at
ed

M
B

s;
65

 R
G

D
M

B
s;

 A
nt

i-β
3

A
b-

M
B

;
Ec

hi
st

at
in

-
co

at
ed

 M
B

s;
β 3

-ta
rg

et
ed

pe
rf

lu
or

o-
ca

rb
on

 N
P

SW
N

T-
R

G
D

;45
 α

V
β 3

 p
ep

tid
e-

IC
G

15
0

R
G

D
-Q

D
70

5;
 R

G
D

-R
ho

da
m

in
e/

PE
-

lip
os

om
es

; C
y5

.5
-k

no
tti

n 
pe

pt
id

es
;

R
am

an
: S

W
N

T-
R

G
D

41

M
et

ab
ol

is
m

/P
ro

lif
er

at
io

n
18

F-
FD

G
; 18

F-
FL

T;
 18

F-
FE

C
15

1
C

y5
.5

-2
D

G
15

2

Pr
ot

ea
se

s R
ev

ie
w

:15
3

R
ad

io
la

be
le

d 
sm

al
l m

ol
ec

ul
e 

M
M

P 
in

hi
bi

to
rs

15
4

R
ad

io
la

be
le

d 
sm

al
l m

ol
ec

ul
e

M
M

P 
in

hi
bi

to
rs

15
4

M
M

P2
-s

pe
ci

fic
 p

ep
tid

e-
G

d3+
-

D
O

TA
 “

sm
ar

t p
ro

be
”15

5
C

ya
ni

ne
-p

ep
tid

e 
to

 c
ap

se
si

n;
 C

y5
.5

-
pe

pt
id

e 
to

 M
M

P

Pr
os

ta
te

 S
pe

ci
fic

 M
em

br
an

e
A

nt
ig

en
 (P

SM
A

)
64

C
u-

an
ti 

PS
M

A
 A

b15
6

12
3 I

-la
be

lle
d 

gl
ut

am
at

e-
ur

ea
-ly

si
ne

an
al

og
ue

s;
15

7 
99

m
Tc

-c
he

la
te

s15
8

M
R

I: 
an

ti-
PS

M
A

 A
b-

IO
 N

Ps
 15

9
Y

C
-2

7(
3)

 fl
uo

re
sc

en
t p

ro
be

;16
0  Q

D
-

an
ti 

PS
M

A
 A

b16
1

R
ep

or
te

r g
en

e 
ex

pr
es

si
on

16
2,

 1
63

H
SV

1-
tk

: 18
F-

FH
B

G
, 18

F-
FH

PG
, 18

F-
FM

A
U

, 18
F-

FE
A

U
H

SV
1-

tk
: 12

3 I
-F

IA
U

βg
al

 (E
ga

dM
e)

; T
ra

ns
fe

rr
in

 re
ce

pt
or

(T
ra

ns
fe

rr
in

-M
IO

N
); 

Fe
rr

iti
n 

(ir
on

);
ly

si
ne

 ri
ch

 p
ro

te
in

βg
al

16
4

lu
ci

fe
ra

se
s (

bi
ol

um
in

es
ce

nc
e)

;
flu

or
es

ce
nt

 p
ro

te
in

s (
Fl

uo
re

sc
en

ce
)

Clin Radiol. Author manuscript; available in PMC 2011 August 4.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Pysz et al. Page 30

Im
ag

in
g 

M
od

al
iti

es

M
ol

ec
ul

ar
 T

ar
ge

t/E
ve

nt
PE

T
SP

E
C

T
M

R
I/

M
R

S
U

S
H

yb
ri

d 
A

co
us

tic
O

pt
ic

al

V
as

cu
la

r e
nd

ot
he

lia
l g

ro
w

th
fa

ct
or

 (V
EG

F)
 re

ce
pt

or
(V

EG
FR

) (
Tu

m
or

an
gi

og
en

es
is

) R
ev

ie
w

s:
14

7,
 1

48

89
Zr

-A
va

st
in

; 64
C

u-
D

O
TA

-V
EG

F;
 64

C
u-

D
O

TA
-V

EG
F

(p
ep

tid
e)

11
1 I

n-
A

va
st

in
; 12

5 I
-V

EG
F 1

65
, (

12
5 I

or
 99

Tc
)-

V
EG

F 1
21

, 11
1 I

n-
hn

Tf
-

V
EG

F

A
nt

i-
V

EG
FR

2 
A

b-
M

B
;59

 K
D

R
pe

pt
id

e-
co

nj
ug

at
ed

M
B

s30

V
EG

F-
C

y5
.5

; V
EG

F-
Q

D

A
bb

re
vi

at
io

ns
: Q

D
s:

 q
ua

nt
um

 d
ot

s;
 S

ER
S:

 su
rf

ac
e-

en
ha

nc
ed

 R
am

an
 sc

at
te

rin
g;

 N
Ps

: n
an

op
ar

tic
le

s;
 A

b:
 A

nt
ib

od
y;

 B
A

X
: p

ro
te

in
 in

vo
lv

ed
 in

 m
ito

ch
od

ria
l s

tre
ss

-a
ss

oc
ia

te
d 

ap
op

to
si

s;
 B

A
D

: a
 B

C
l-2

 fa
m

ily
 m

em
be

r p
ro

te
in

 th
at

 p
ro

m
ot

es
 a

po
pt

os
is

; F
ab

: f
ra

gm
en

t a
nt

ib
od

y;
 IO

:

iro
n 

ox
id

e;
 D

TP
A

: d
ie

th
yl

en
et

ria
m

in
e-

pe
nt

aa
ce

tic
-a

ci
d;

 P
EG

: p
ol

ye
th

yl
en

e 
gl

yc
ol

; G
d/

G
d3

+ :
 G

ad
ol

in
iu

m
; M

nO
: M

an
ga

ne
se

 o
xi

de
; F

ES
: f

lu
or

oe
st

ra
di

ol
; S

W
N

T:
 si

ng
le

-w
al

le
d 

na
no

tu
be

s;
 C

A
IX

: c
ar

bo
ni

c 
an

hy
dr

as
e 

IX
; F

M
IS

O
: f

lu
or

om
is

on
id

az
ol

e;
 F

A
ZA

: 1
-α

-D
-(

2-
de

ox
y-

2-

flu
or

oa
ra

bi
no

fu
ra

no
sy

l)-
2-

ni
tro

im
id

az
ol

e;
 A

TS
M

: N
4 -

m
et

hy
lth

io
se

m
ic

ar
ba

zo
ne

; H
IF

-1
α:

 h
yp

ox
ia

 in
du

ci
bl

e 
fa

ct
or

 ty
pe

 1
α;

 G
FP

: g
re

en
 fl

uo
re

sc
en

t p
ro

te
in

; R
G

D
: i

s a
 p

ep
tid

e 
se

qu
en

ce
 o

f a
rg

in
in

e-
gl

yc
in

e-
as

pa
rti

c 
ac

id
; S

PI
O

: s
up

er
pa

ra
m

ag
ne

tic
 ir

on
 o

xi
de

; M
B

s:
 m

ic
ro

bu
bb

le
s;

IC
G

: i
od

oc
ya

ni
ne

 g
re

en
; P

E:
 p

hy
co

er
yt

hr
in

; F
D

G
: f

lu
or

o-
2-

de
ox

y-
D

-g
lu

co
se

; F
LT

: f
lu

or
o-

L-
th

ym
id

in
e;

 F
EC

: f
lu

or
oe

th
yl

ch
ol

in
e;

 2
D

G
: 2

-d
eo

xy
gl

uc
os

e;
 M

M
P:

 m
at

rix
 m

et
al

lo
pr

ot
ea

se
; D

O
TA

: 1
,4

,7
,1

0-
te

tra
az

ac
yc

lo
do

de
ca

ne
-1

,4
,7

,1
0-

te
tra

ac
et

ic
 a

ci
d;

 Y
C

-2
7(

3)
: s

pe
ci

fic
 n

am
e

fo
r a

 sm
al

l m
ol

ec
ul

e 
N

IR
F-

im
ag

in
g 

ag
en

t s
yn

th
es

iz
ed

 fr
om

 a
 N

-h
yd

ro
xy

su
cc

in
im

id
e 

po
rti

on
 o

f P
SM

A
-b

in
di

ng
 u

re
a 

an
d 

a 
N

IR
 d

ye
 (I

R
D

ye
 8

00
);1

60
 H

SV
1-

tk
: h

er
pe

s s
im

pl
ex

 v
iru

s 1
 th

ym
id

in
e 

ki
na

se
; F

H
B

G
: 9

-[
(3

-f
lu

or
o-

1-
hy

dr
ox

y-
2-

pr
op

ox
y)

 m
et

hy
l] 

gu
an

in
e;

 F
H

PG
: 9

-[
(3

-
flu

or
o-

1-
hy

dr
ox

y-
2-

pr
op

ox
y)

m
et

hy
l]g

ua
ni

ne
; F

M
A

U
: 1

-(
2′

-d
eo

xy
-2
′-f

lu
or

o-
β-

D
-a

ra
bi

no
fu

ra
no

sy
l)t

hy
m

in
e;

 F
EA

U
: f

lu
or

o-
5-

et
hy

l-1
-β

-D
-a

ra
bi

no
fu

ra
no

sy
lu

ra
ci

l; 
FI

A
U

: 9
-[

(3
-f

lu
or

o-
1-

hy
dr

ox
y-

2-
pr

op
ox

y)
 m

et
hy

l] 
gu

an
in

e;
 β

ga
l: 
β 

ga
la

ct
os

id
as

e;
 E

ga
dM

e:
 (1

-(
2-

(b
-

ga
la

ct
op

yr
an

os
yl

ox
y)

pr
op

yl
)-

4,
7,

10
-tr

is
(c

ar
bo

xy
m

et
hy

l)-
1,

4,
7,

10
-te

tra
az

ac
yc

lo
do

de
ca

ne
)g

ad
ol

in
iu

m
(I

II
); 

M
IO

N
: m

on
oc

ry
st

al
lin

e 
iro

n 
ox

id
e;

 h
nT

f: 
n-

lo
be

 o
f h

um
an

 tr
an

sf
er

rin
; V

EG
FR

2:
 V

EG
FR

 ty
pe

 2
; K

D
R

: k
in

as
e 

in
se

rt 
do

m
ai

n 
re

ce
pt

or
 (h

um
an

 V
EG

FR
2)

.

Clin Radiol. Author manuscript; available in PMC 2011 August 4.


