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Abstract
This paper presents a very effective numerical method for the solution of the two-compartmental
pharmacokinetic model for oral drug administration. This model consists of a set of two fractional
order differential equations which connect the two compartments. The first compartment
represents the gut while the second compartment corresponds to the drug concentration in the
target tissue. For ease of computation, the numerical solution is also created as a Matlab function.
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1 Introduction
Compartmental analysis initially developed from studies of the uptake and distribution of
radioactive tracers, but today it plays a fundamental role in many parts of medicine,
bioengineering and environmental science. The specialized fields of pharmacokinetics and
pharmacology, for example, rely on compartmental models to predict the safe and most
effective way to administer drugs [1]. In its classical version, compartmental analysis is
based on mathematical models, typically in the form of systems of ordinary differential
equations, that are widely used to characterize the time of uptake/elimination of a drug.

Compartmental models of pharmacokinetics were recently generalized using fractional
calculus to extend the governing systems to the form of fractional-order differential
equations with specified initial conditions [2, 9]. In particular, the fractional-order model
proposed by [9] was used recently to describe a 24-hour bio-equivalence trial in twelve
healthy adults following oral administration of the drug diclofenac in two slow release tablet
formulations.

Generally, mutli-compartmental models are used to describe the transport of a drug through
the body (gut, intestines, blood, liver, kidney, urine) as it accumulates in different tissues,
sometimes, with novel or anomalous uptake or clearance (e.g. power-law wash-out kinetics).
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In these cases fractional-order models have been proposed to improve the correspondence
between the model predictions and the experimental data.

In this contribution we will consider a two-compartmental fractional-order model of the
biological system (gut, target tissue), which is described in Sec. 4. The analytical solution in
this simple case will be compared with the numerical solution of this model and a stability
analysis will be performed as well.

2 Fractional Calculus
Fractional calculus is a topic in mathematics that is more than 300 years old. The idea of
fractional calculus was suggested early in the development of regular (integer-order)
calculus, with the first literature reference being associated with a letter from Leibniz to
L'Hospital in 1695. In this letter the half-order derivative was first mentioned.

Recently, fractional calculus has played an increasing role in modeling complex phenomena
in the fields of physics, chemistry, biology, and engineering [5, 6, 8]. The main
characteristic of fractional derivatives, or more precisely derivatives of positive real order, is
so called the “memory effect”. It is well known that the state of many systems (biological,
electrochemical, viscoelastic, etc.) at a given time depends on their configuration at previous
times. The fractional derivative takes into account this history in its definition as a
convolution with a function whose amplitude decays at earlier times as a power-law. Thus,
the fractional derivative is natural to use when modeling biological or adaptive systems.
Here we use of fractional derivatives in modeling the uptake, distribution and elimination of
a drug in a living biological system.

Several alternative definitions of the fractional derivative exist [8]. We will consider just
two of them, the Caputo's definition and the Grünwald-Letnikov.

The Caputo's definition of fractional derivatives can be written as [8]:

(1)

for (n − 1 < α < n). The initial conditions for the fractional order differential equations with
the Caputo's derivative are in the same form as for the integer-order differential equations.

If we consider , where a is a real constant, which expresses a limit value, we can
write the Grünwald-Letnikov (GL) definition as

(2)

where [x] means the integer part of x, a and t are the bounds of operation for . This
form of definition is very helpful for obtaining a numerical solution of the fractional
differential equations.
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A function, which plays a very important role in the fractional calculus, was in fact
introduced by Humbert and Agarwal in 1953. It is a two-parameter function of the Mittag-
Leffler type defined as [8]:

(3)

For the numerical calculation of fractional-order derivatives we can use the relation (4)
derived from the GL definition (2). This approach is based on the fact that for a wide class
of known functions, the two definitions - Caputo's (1) and GL (2) - are equivalent [8]. The
relation for the explicit numerical approximation of the α-th derivative at the points kh, (k =
1, 2, …) has the following form [4, 8]:

(4)

where Lm is the “memory length”, tk = kh, h is the time step of calculation and  are

the binomial coefficients . For the calculation of  we can use the following
expressions [4]:

(5)

The general numerical solution of the fractional differential equation

can be expressed as

(6)

For the memory term expressed by the sum, the “short memory principle” can be used.
Then, the lower index of the sums in equation (6) will be v = 1 for k < (Lm/h) and v = k −
(Lm/h) for k > (Lm/h), or without using the “short memory principle”, we put v = 1 for all k.

3 Stability Analysis of Fractional LTI System
The fractional-order linear time-invariant (LTI) system which can be represented by the
following state-space model:
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(7)

where x ∈ Rn, u ∈ Rr and y ∈ Rp are the state, input and output vectors of the system and A
∈ Rn×n, B ∈ Rn×r, C ∈ Rp×n, and α = [α1, α2, …, αn]T are the fractional orders. If α1 = α2 =
… αn ≡ α, system (7) is called a commensurate-order system, otherwise it is an
incommensurate-order system.

Our two-compartment fractional-order model (12) is a particular case of the fractional
commensurate order (autonomous) system (7) in the following form:

(8)

where matrix A is given as

(9)

It has been shown that commensurate system (8) is stable if the following condition is
satisfied [7]:

(10)

where 0 < α < 1 and eig(A) represents the eigenvalues of matrix A.

4 Fractional-Order Compartmental Model of Biological System
Let us consider the two-compartmental model depicted in Fig. 1. Assume that qi(t) = vict, for
i = 1, 2 denote the amount of a drug in a specific compartment. Here ct is the concentration
of a drug and vt is the volume of the i-th compartment and Kij is the fractional rate of
transfer to compartment i from compartment j.

A simple two-compartment model where the complete amount of drug from the first
compartment enters into the second compartment can be written as [9]:

(11)

where we assumed K01 = 0, K12 = 0 and with the initial conditions q1(0) = d1 = dose, and
q2(0) = d2 = 0.

The fractional compartment form of (11) is
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(12)

with k21 = K21/τα1−1, k21 = K21/τα2−1, k02 = K02/τα2−1, τα1−1 = τα2−1, and for mass balance,
α1 = α2.

The analytical solution of the model (12) has the following form [9]:

(13)

where we assume  if α ∈ (0, 2].

The solution for q1(t) and q2(t) can be obtained for initial conditions d1 and d2, which
correspond to the amounts of drug in the two compartments, with d2 = 0. The concentration
c2 in the second compartment is given as c2(t) = q2(t)/v2 and it has the form

(14)

where we consider the quotient d1/v2 = d as a parameter that depends on each subject
separately. Note that d1 (dose) is equal for all subjects and that α1 = α2 = α.

5 Numerical Solution and Simulations
The numerical solution of the fractional-order two-compartment model (12) is obtained by
using relation (6) and it has the following form:

(15)

where Tsim is the simulation time, k = 1, 2, 3 …, N, for N = [Tsim/h], and (q1(0), q2(0)) is the

start point (initial conditions). The binomial coefficients , ∀i, are calculated according to
relation (5) and v = 1, ∀k.

The experimental results from [9] show that for all subjects the drug concentration appeared
in the blood only after some time, i.e., there was a time lag before the concentration started
to rise. Also, for all subjects the drug concentration in the blood dropped to zero c2(t) = 0, t
> t* after some characteristic disappearance time t* ∈ [0, 24]. The study by [9] of 12 healthy
female and male subjects followed the blood (plasma) level of diclofenac for 24 hours after
a single dose oral administration of either the test formulation of (Hemofarm) tablets 100
(mg diclofenac/tab) or the reference formulation of (Geigy) tablets 100 (mg diclofenac/tab).

In [9] the kinetic parameters were determined through a least square numerical procedure
applied to the measured data. The results are shown in Table 1. Here, subjects 1, 3, 6 and 9
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were given the test formulation (Hemofarm), while subject 8 was given the reference
formulation (Geigy).

In addition, for each subject, [9] plotted a comparison between the measured results and the
fitted fractional-order model. In order to compare our model with the results of the [9] study,
we first calculated the drug concentration using the Matlab function given in Appendix A
and the relationship c2(t) = q2(t)/v2. Note that d1 (dose) is equal to 100 mg for all subjects.

In Fig. 2 - Fig. 6 are shown the diclofenac concentration profiles from the test formulation
and the reference formulation as a function of time for 5 subjects. From the results presented
in Table 1 and Figures 2-6, we can see that the kinetics of the test formulation of diclofenac
(Hemofarm) corresponds to a fractional order of less than one (0.93, 0.90, 0.60, and 0.68),
while the reference formulation (Geigy) has an order of 1. These curves are very similar to
those given by [9] where he found that while the kinetics of the test formulation of
diclofenac depends both on the subject and the formulation. The peak blood concentrations
in our curves are slightly different from those in the Popović study [9] because we estimated
the parameter depending v2, and hence the dose d in a different way d = d1/v2 for every
subject.

Stability analysis of the fractional-order two-compartment model for each particular subject
can be done by calculation of matrix (9) eigenvalues and by using a condition (10) for
parameters given in Table 1. The stability analysis results can be summarized as follows:

As we can observe in Fig. 2 - Fig. 6, the results of stability analysis given in Table 2 confirm
that solution of the fractional-order two-compartment model for each test subject is stable.

6 Discussion
The recent application of fractional calculus to multi-compartmental analysis [2, 9] is
surprising in at least two ways. First, it is surprising that the fields of pharmacokinetics and
pharmacodynamics, which are largely based upon systems of ordinary differential equations,
have not been previously examined from the perspective of fractional calculus. Fractional
calculus excels at simplifying the dynamics of complex, heterogeneous systems, and there is
perhaps no more complicated system than one that tries to describe the uptake, distribution
and elimination of drugs by animals and humans. Second, the application of fractional
calculus to multi-compartmental drug distribution models is surprising to the degree that
fundamental questions are just now arising about the dynamics of such processes [3, 10, 11].

In the field of fractional calculus, current workers are familiar with the difficulty in applied
problems of pinning down the proper definition of the fractional derivative, its initial
conditions, and its numerical evaluation for each situation. However, in multi-compartment
pharmacokinetics, it is not these problems that confound, but the more basic question of how
to configure the models in a correct and consistent manner so as to simplify the overall
kinetic description without violating linearity, causality, consistency of units, and mass
balance, as well as determining the physical meaning of fractional order rate constants.
Fractional calculus has one of its strongest roots in modeling heat and mass transfer
problems where diffusion is dominant. In pharmacokinetics the transfer of material - usually
a drug - from one compartment to another (say, clearance from the blood to the urine in the
kidney), is governed by selective filtration, glomerular permeability, bulk fluid flow and
diffusion. Thus, we should anticipate success in this application, but not without - as the
recent remarks [3, 10, 11] have presented - much discussion of the essential underlying
assumptions of linearity, fractional order and mass conservation.
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Nevertheless, even without a complete consensus on the proper models for multi-
compartmental analysis, it is pleasing to see that all the key researchers are capturing useful
information on drug kinetics by way of fractional order models of drug uptake and
elimination kinetics [2, 9]. In the present study, we have added new Matlab tools to this
analysis and shown that the simplest of cases (two-compartment model) can be solved in
multiple ways (analytical, numerical, and via series expansions); all of which can provide
essentially complete and useful information on drug kinetics and dynamics.

7 Conclusion
In this article we presented a numerical solution to a specific two-compartment fractional-
order model with fractional derivatives of same order. The pharmacokinetics of diclofenac
were consistent with the new model proposed by [9]. The numerical solution given in this
article suggests possibilities for further investigations of the fractional-order model for
various parameters and derivative orders. A Matlab function of the fractional kinetics for
this model is presented in Appendix A, and it gives an interesting toolbox for the
pharmaceutical scientist.
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A Matlab function
function [T,Y]=FO2CM(d1,k21,k02,d,orders,TSim)

% Numerical solution of two compartments model

%

% Input: d1: dose

% d: d1/v2

% k21, k02: rate of compartment transfer

% orders [alpha1,alpha2]: derivatives

%

% Output: T: simulation time (0 : Tstep : TSim)

% Y: solution of model (q1=Y(1),q2=Y(2))

%

% Authors: (c) Ivo Petras (ivo.petras@tuke.sk)

% (c) Richard L. Magin (rmagin@uic.edu)

%

% Date: April, 2010.

% time step of calculation:

h=0.0025;

% number of calculated points:

n=round(t/h);

% derivative orders:

alpha1=orders(1); alpha2=orders(2);

% binomial coefficients:
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cp1=1; cp2=1;

for j=1:n

 c1(j)=(1-(1+alpha1)/j)*cp1; cp1=c1(j);

 c2(j)=(1-(1+alpha2)/j)*cp2; cp2=c2(j);

end

% initial conditions:

q1(1)=d1; q2(1)=0.0;

% calculation of the numerical solution:

for i=2:n

 q1(i)=(−k21*q1(i−1))*hˆalpha1 − memo(q1, c1, i);

 q2(i)=(k21*q1(i)−k02*q2(i−1))*hˆalpha2 − memo(q2, c2, i);

end

for j=1:n

Y(j,1)=q1(j);

Y(j,2)=q2(j);

end

T=0:h:TSim;

%

function [y] = memo(r, c, k)

%

temp = 0;

for j=1:k-1

temp = temp + c(j)*r(k−j);

end

y = temp;

%
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Figure 1. Two-compartment model system with the definition of model parameters
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Figure 2. Simulation for subject 1 parameters
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Figure 3. Simulation for subject 3 parameters
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Figure 4. Simulation for subject 6 parameters
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Figure 5. Simulation for subject 8 parameters
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Figure 6. Simulation for subject 9 parameters
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Table 1
Parameters of the models

Subject α k21 (h−α) k02 (h−α) d (mg/l)

1 0.93 2.89 2.74 30.17

3 0.90 1.58 2.65 42.68

6 0.60 0.90 1.68 35.00

8 1.00 0.34 0.37 4.00

9 0.68 1.37 1.27 21.98
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Table 2
Results of stability analysis

Subject α eig(A) |arg(eig(A))| Result

1 0.93 −2.74, −2.89 π stable

3 0.90 −2.65, −1.58 π stable

6 0.60 −1.68, −0.90 π stable

8 1.00 −0.34, −0.37 π stable

9 0.68 −1.37, −1.27 π stable
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