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Abstract
Multiplex DNA profiles are used extensively for biomedical and forensic purposes. However,
while DNA profile data generation is automated, human analysis of those data is not, and the need
for speed combined with accuracy demands a computer-automated approach to sample
interpretation and quality assessment. In this paper, we describe an integrated mathematical
approach to modeling the data and extracting the relevant information, while rejecting noise and
sample artifacts. We conclude with examples showing the effectiveness of our algorithms.
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Introduction
Our purpose is to describe a new approach to computer examination of multiplex STR DNA
profiles. The approach is the foundation for the OSIRIS software program, or Open Source
Independent Review and Interpretation System [1], [2], which we developed at the National
Center for Biotechnology Information. It is based on a collection of mathematical algorithms
inspired by a combination of theoretical and empirical understandings of the DNA analysis
process. To facilitate a discussion of this approach, we now describe the uses and physical
aspects of the multiplex STR DNA analyses processes in broad detail. For a more in depth
exposition, see [3].

1. Background
a. Uses of DNA Profiles

Multiplex analyses of Short Tandem Repeats (STRs) are used extensively for biomedical
and forensic purposes. Commercially available kits now permit the simultaneous
interrogation of up to 20 genetic markers in a single examination. Automated analysis
platforms can screen hundreds of samples per day per machine. This constellation of
technological advances is used to support the high throughput generation of DNA profiles
that can be stored in large databases and screened for matches of biomedical or forensic
significance. Multiplex STR profiles for biomedical applications include cell-line
authentication important to pathology and fertility investigations and population genetic
assays in drug development studies. Large-scale forensic DNA data banking of multiplex
STR profiles allows law enforcement to check convicted offenders’ profiles against DNA
evidence from unsolved crimes to provide investigative leads. Forensic applications further
cover civil paternity investigations, estimated at nearly half a million annually in the US.
Medico-legal and humanitarian uses of DNA profiling include victim identification in mass
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fatalities where proof of death may be needed for insurance purposes as well as providing
tangible proof to support the grieving process. When sufficient and appropriate DNA
markers are used, a DNA profile can establish identity to statistical certainty, even among
closely related individuals, although not between identical twins.

b. Analytic Processes
The analytic procedures leading to a multiplex STR DNA profile are the same whether for
biomedical, forensic or humanitarian use. DNA is extracted from a biospecimen and
examined for the genetic markers in question using the mainstay biochemical methods
briefly described below. Besides providing a general framework for understanding multiplex
STR DNA profiling, the reader should be aware that each of the steps can introduce
artifactual variations in the signal output which we are mathematically modeling.

A sample is processed thermo-chemically using a technique known as the “polymerase
chain reaction”, or PCR, that creates sample-dependent fragments of different sizes [3, pp.
63 – 75]. The mixture of fragments is driven electrochemically through an apparatus, or
analytical platform, that separates liquid phase fragments by size using a method called
electrophoresis. Finally, a human analyst examines the graphical output of electrophoresis
generated by the analysis platform, often with the assistance of an expert system. The output
allows the analyst to determine the genetic profile revealed by the analysis and to assess the
quality of the test for reliability. The characteristics the analyst observes, called alleles,
make up the profile for each genetic marker – or locus - examined. Typically, profiles are
stored in databases for future mining.

For both the biomedical and forensic communities, the human element is the bottleneck in
these high throughput environments. A delayed result can cause real human suffering in
each arena. Misread or poor quality DNA profiles stall criminal investigations jeopardizing
public safety while public health suffers when individuals’ diagnostic odysseys are
confounded or delayed. We now briefly describe the uses and physical aspects of DNA
profiles and associated artifacts that impact their quality and utility. For a more in depth
exposition, see [3].

c. Characteristics of DNA Profiles
Multiplex DNA profiles reflect a small fraction of an individual’s genome (i.e. their entire
genetic code) to identify specific landmarks. While the number and specifics of the
landmarks chosen may vary between biomedical and forensic applications, the current US
standard to declare identification in court or for medico-legal victim identification purposes
is a core of 13 genetic loci specified by the FBI and sanctioned by law. These 13 core loci
are independently inherited and each locus has a number of known variants within all known
populations. These 13 core loci are required for analysis of convicted offender DNA and
form the basis of the National DNA Index System (NDIS); the DNA equivalent of the
federal fingerprint database [3, pp. 440 – 441]. Typically there are from 5–25 different
alleles associated with each locus that are common to all known human populations,
although the frequencies of these alleles may differ in different populations. Each person
inherits two alleles per locus – one from each parent. The calculation of the individuality of
a specific DNA profile is based on the binominal expansion of the frequency of the two
alleles at a locus multiplied across all the independent loci used in the multiplex analysis.
Depending on the subpopulation, the likelihood that two unrelated people would share
alleles at all 13 of the required loci has been shown to be at least 1 in 2.77 × 1014 [3, p. 505].
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d. Quality Concerns in DNA Profiling
By and large, DNA is a stable molecule that behaves predictably when exposed to the
reagent kits and analytical platforms described above. The development of multiplex kits
and robust electrophoresis platforms were the pivotal breakthroughs providing opportunities
for automation and economies of scale which made high throughput analyses possible. The
nearly 8 million DNA profiles of convicted offenders added to the National DNA Index
System (see [4]) in the past five years alone, speak to the power of the system.

Nevertheless, optimizing a reaction so that 13 or more loci can be analyzed simultaneously
on nanograms of target DNA is not without tradeoffs. The quality of the target DNA,
techniques used to amplify (PCR) and separate the target DNA at the appropriate landmarks
(electrophoresis), combined with accidental introduction of extraneous inhibiting materials
and variations in the stability, separation, and balance of the different loci in the multiplex
reaction, can all introduce artifacts in some – and sometimes many – of the loci that can
render the profile, at best, difficult to interpret properly and, at worst, unusable. To be sure,
the vast majority of DNA profiles generated for use in biomedicine and forensics are robust
and uncomplicated, but discriminating sound profiles from ambiguous results requires
automated assistance for those human reviewers charged with public health or public safety
responsibilities.

2. Artifacts
The details of the causes of the artifacts are beyond the scope of this paper. However, our
approach must encompass the identification of specific artifact types. The development of
the profile into a usable “electropherogram” of peaks, accurately measured against control
samples that can be relied upon, is not trivial. This is the central problem of multiplex DNA
profiling: how to interpret the peaks that are output from electrophoresis in terms of the
(STR) alleles of the original DNA sample versus the peaks that are the result of artifacts.
The remainder of this paper details our mathematical and computational approach to solving
this problem.

a. PCR Effects
PCR is the process of copying the target sequences of DNA by adding synthetic template
DNA to the original sample in such a way that the synthetic template is incorporated into the
original sample to recreate a copy of the original double helix. PCR is an amplification
process. Changing the quantity of input DNA correspondingly changes the quantity of each
amplified STR fragment and superposing two (or more) alleles in the input DNA, whether
from the same or different loci, results in a bath with all the corresponding STR fragments.
This superposition property is particularly important because it implies that an STR
fragment detected following electrophoresis can be properly associated with a sample’s true
genetic allele. We will see that there can be exceptions, but the exceptions can be inferred
from other data.

Since there is an abundance of template DNA, in addition to the “target” original DNA more
than one fragment for a given sample allele can occur. PCR can cause an artifact called
“stutter”, in which secondary fragments are created during the PCR amplification process
that, most often, have a size that is one repeat less than the input allele [3, pp. 123–126].
More rarely, the stutter peak is one repeat more than the input allele. Stutter products can be
caused by many conditions during PCR, but they are made more likely by an increase in the
quantity of input DNA. Typically, stutter products amount to 15% or less of the primary
fragment from which they arise [3, pp. 125–126]. In a multiplex mix, different loci show
different tolerances to the formation of stutter products during PCR.
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Another PCR-induced artifact, called “non-template addition” or “partial adenylation” [3,
pp. 127–129], occurs when higher-than-optimal quantities of DNA are amplified. The
resulting artifact manifests itself as duplicate fragments, one base pair apart, corresponding
to a single input allele, although, in practice, the extraneous peak is usually “small” (in
height) compared to the primary peak. Because of their proximity to the true allele’s peak in
the electropherogram, peak morphology can be compromised with split or “crater” peaks,
explained below, confounding the analysis.

Finally, fragments of random size amplified to a lesser but non-repeatable extent produce an
effect that shows up in the output electropherogram as apparent noise. While background
noise at baseline is not difficult to identify, more extensive background noise can cause
quality concerns and profile misinterpretation.

b. Other Sources of Artifacts
While PCR of multiplex STR DNA profiles is a common opportunity for these two
important artifact classes (stutter and adenylation) to occur, there are a number of other
artifact-inducing factors. DNA extraction, electrophoresis and the interactions among
sample alleles lend themselves to other, specific artifact signatures that also must be
assessed in determining the quality of each sample.

Other artifacts associated with electrophoresis are “dye blobs” and “spikes”. A dye blob
arises when the fluorescent dye comes off its primer and migrates independently [3, p. 383].
Dye blobs have a characteristic shape that is different from an allelic peak. Spikes are sharp
peaks that appear equally intense across all channels and can arise from a variety of
conditions, such as urea crystals migrating in the buffer, that are usually not reproducible [3,
p. 383].

In case of over-amplification during PCR, the laser sensor becomes saturated in any or all of
its measured spectra during electrophoresis. This can cause artifacts because of the manner
in which the dye colors are isolated. The dyes that are used to distinguish the channels have
independent but overlapping spectra. Hence, an empirically determined color separation
matrix is used to resolve the color spectrum measured by the laser at each observation time
into the components that correspond to the dye values. This dye intensity matrix process
works well as long as none of the fragments is sufficiently amplified that its dye input
saturates the laser. Otherwise, the process falls outside the linear model range and applying
the color separation matrix has the effect that artificial peaks appear in “secondary”
channels, at virtually the same time as the over-amplified peaks in the “primary” channel.
This phenomenon is called “pull-up” or “bleed-through” [3, pp. 335–337]. The pull-up
peaks are numerical artifacts with no relationship to the physical presence of DNA in the
sample.

An over-amplified peak and the resulting saturation of the laser can lead to a further
manifestation called a “crater” or a “split peak”. Craters are often associated with pull-up,
although not necessarily.

Other possible artifacts include poor peak morphology, which can be due to many causes
beyond the scope of this article. Even if a peak has an appropriate shape, it may be either
wider or narrower than expected, which should be flagged for human review.

Finally, as will be explained in greater detail below, certain control fragments with known
sizes are routinely intermixed with the sample to help to calibrate the subsequent analysis.
Because of ambient conditions at the time of electrophoresis, it is possible for one or more
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of the resulting control peaks to migrate in a manner such that their position, if used, may
adversely effect the accuracy of the analysis.

While the in depth causes of these issues are beyond the scope of this article, nevertheless
their manifestations are part of our model. We note that a new analysis technique may
produce, as a side benefit, new metrics by which the quality of a peak may be assessed.
Later, we will point out ways in which this occurs for the algorithms we have developed.

3. Defining the Mathematical Model
While the user communities require electropherogram results to be assessed in terms of their
base-pair alleles, the data are actually time snapshots of the moment the fragment passed by
the laser that measures fragment density during electrophoresis. We emphasize that there is
no single continuous map across all loci that converts STR fragment size to an associated
allelic repeat number because, within each locus,

and both primer length and core repeat number are dependent on the particular locus. The
primers for each locus are designed to be distinguishable in a multiplex mixture. It is
customary to identify alleles within a locus either by the number of repeats or by the
fragment length.

We denote by ℓ2 [1, ∞) the space of all vectors (a1, a2, …) such that . Then,
each STR locus of a quantity of DNA (or mixture of DNA) corresponds to an element (a1,
a2, …) of ℓ2 [1, ∞), where ai is the quantity of STR fragment with fragment length i.

In typical multiplex DNA reagent kits, samples are tagged with different fluorescent dyes so
they may be separated through the application of a color matrix during electrophoresis, in
order to reveal their alleles in a multi-channeled electropherogram. The typical dye kit, with
three or four dyes, devotes one channel to a kit – a control channel consisting of a known
quantity of pre-sized fragments which are included with the unknown sample DNA [3, p.
375]. Called the “internal lane standard”, or ILS, it, too, corresponds to an element of ℓ2 [1,
∞). For example, if an ILS were to have pre-sized fragments at lengths of 75, 100, 150 and
200, then its vector would consist entirely of zero-valued components except for {a75, a100,
a150, a200}.

We note that, with some care, we could restrict ourselves to finite (but large) dimensional
vector spaces, but we will soon find ourselves dealing with outputs in infinite dimensional
spaces, so we have judged the effort not to be worthwhile.

If N is the number of loci in the multiplex reagent kit, D is the number of dyes or channels
and P is the mathematical map denoting PCR, and including the ILS control, then

4. The Electrophoresis Process
During electrophoresis, STR fragments of a given length essentially map into unimodal
peaks on the appropriate dye channels, which are then sampled discretely. Later, we will
discuss the shape and significance of these peaks. For this model, the amplification process
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of PCR, as well as electrophoresis are mapped linearly onto the observed output.
Electrophoresis preserves superposition and, up to saturation, scaling. In practice, analysis
by electrophoresis is run until some final time tf. If L2[0, tf] denotes the space of square
integrable functions on the interval [0, tf], and E is the map for electrophoresis, then

The overall PCR / electrophoresis process, S, is represented by the composition S ≡ E ∘ P,
and

Pull-up, dye blobs and spikes, in addition to other peak-specific artifacts described above, all
manifest themselves in the output in easily recognized ways and can be tested in a
straightforward manner, which we will elaborate further below..

Hence, we can conclude that a single peak in the output of the electrophoresis stage, in the
absence of clear evidence of an artifact, as above, can be linked to an STR fragment that
must have occurred in the output of the PCR stage, and therefore to an allele of genetic
origin in the original sample. Furthermore, because these peaks are unimodal, in theory we
can link a particular time, the time of a peak’s mode, with an STR fragment. We postpone
the exposition of how this is to be done until Section 7. First, we show how we can use the
time of the mode of a peak to assess the fragment sizes, which, in turn, are assigned allele
names.

It should be noted that a traditional theoretical model-based approach, in which a
mathematical model of PCR and electrophoresis is formulated, validated and inverted, may
not be practical. Even if a resolution of the difficulties of formulation and inversion were to
fall into place, both PCR and electrophoresis are highly sensitive to ambient conditions,
many of which are not measured. For example, samples are run in parallel capillary tubes
each containing the same electrophoresis substrate on several of the analytical platforms
commonly used in labs. However, there can be microhabitat differences in each of these
capillary environments that can cause subtle but distinct differences in sample analysis
outputs. Thus, validation for any particular sample run would be problematic. Before we can
discuss a possible solution to these limitations, we must introduce the issues associated with
comparing two different samples.

5. Comparing Different Samples Using the ILS
As suggested above, even if both PCR and then electrophoresis are run simultaneously on
two different samples in parallel capillaries, it is known that their time signals are not
directly comparable. Because of differences in the ambient micro-conditions within the
separate analysis locations, for unknown samples, all that is known is that, for each sample
individually, peaks are size sorted by the electrophoresis process, so that peaks occurring
later in the sample run correspond to longer STR fragments.

However, every sample is electrophoresed with the internal lane standard (ILS), which
consists of STR fragments of predetermined and known size. The ILS is assigned a unique
dye and therefore occupies a single channel in the electrophoresis output. Since the choice of
channel numbers is arbitrary, without loss in generality, we may assume that the ILS
occupies the last channel.
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Let us assume, for the moment, that for any sample ILS, we can determine the time
associated with each ILS peak. Indeed, let us assume, for now, that for any sample peak, we
can determine the time associated with that peak. We will return to the peak identification
issue later. If M is the number of ILS peaks in the multiplex kit, then the set of peak times is
an M-tuple:

Given an electrophoresis process that maps the ILS into the time M-tuple T, we write the
electrophoresis map E as ET and the corresponding overall map as the composition

In general, two different samples will give rise to two different time M-tuples, T1 and T2,
and thus, to two different maps ST1 and ST2.

Conventional approaches to forensic analysis use the ILS directly. Each peak in the ILS
arises from an STR fragment of known size or length, calibrated in units of base pairs. Thus,
the set of peak times married to the corresponding fragment sizes provides a crude map of
time into base pairs. This map can be interpolated for intermediate values to give an
approximate base pair equivalent for any peak in the sample. Traditionally, there have been
two common choices of interpolation function – the local Southern and the global Southern.
Both use linear interpolation when the true relationship between time and fragment length is
not known to be linear. Issues with the local and global Southern techniques, including
sensitivities to temperature fluctuations by different ILS peaks, are described in [3, p. 380].

Our approach, by contrast, does not use the ILS to map time into base pairs. Rather, we use
the peak times of two different sample ILS’s to build a coordinate transform that maps the
time axis of one into that of the other.

First, we define some notation. For a map c,

having square integrable second derivatives, we define a (pseudo) norm

By this definition, a map c has zero norm if and only if c is a linear function. Also, in some
sense, the smaller the norm of c, the closer c is to being linear. We denote the space of such
functions c by . We denote by  the subset of  which consists of
functions that are monotone increasing and we think of such functions as coordinate
transforms between two time frames. For an element  and an element f ∈
L2[0,tf], we define the transform
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Evidently, Wc is a linear transformation and, if |c′(t)| ≥ K > 0 for some constant K, then it is
bounded as well. We can extend Wc to vectors of functions by applying it to individual
components so, we choose not to rename the operator for use on a vector domain.

Finally, for a given peak time set T, coordinate transform c, and corresponding combined
experimental PCR/electrophoresis map ST, we define a transformed experimental map:

The new transformation defined as above maps its ILS onto the new peak time set c(T) and
the other channels of measurement functions are similarly transformed into the new time
coordinates.

If we have two different samples with ILS peak time sets T1 and T2, and we have a

coordinate transform  such that c(T1) = T2, then the map  effectively
transforms the first sample into the time frame of the second, where they are directly
comparable and, in particular, their respective ILS’s align with each other. That is, a peak in
sample one, when transformed, must have a length less than any sample two peak to its
right. We need more than just this qualitative information, however.

In general, there are many coordinate transforms in  that map T1 onto T2, and, for
quantitative comparisons between two samples, we must employ a criterion that gives us the
“best” coordinate transform for our purposes. What is desired is to find the coordinate
transform that manages to minimize a measure of the distortion, both of the transformed
signals and of the transformed spaces between signals. The shape of a signal is distorted in
proportion to the magnitude of the second derivative of a coordinate transform and therefore
we choose the coordinate transform c such that c(T1) = T2, the  norm is minimized,
effectively minimizing the average second derivative, and such that

where t11 and t1M are the first and last points of the ILS peak time set, respectively (i.e., no
distortion at the endpoints).

The solution to this minimization is known to be [5, pp. 95–96] the natural cubic spline with
knots at the peak time points

Furthermore, given two peak time sets T1 and T2, it is a straightforward computation to build
the coefficient set for the spline c.

Empirically, we have observed that, for two different samples, the natural cubic spline
mapping one set of ILS peak times onto another is very close to linear. Fortunately, and
unlike the global Southern technique, the cubic spline approach does not rely on linearity for
its accuracy. By [6], the optimal bound on the magnitude of the approximation error can be
calculated as follows. Let L be the maximum of the 4th derivative of the true time transform
and let K be the maximum distance between adjacent peak times in the peak time set that is
the domain. By the optimal bound derivation in [6], if c = 5 / 384, then, the approximation
error e is bounded by:
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As an example to illustrate the utility of this formula, for two particular ILS’s from samples
using the ABI Identifiler multiplex DNA profile kit, we have

and

where all units are in seconds.

For the map from T1 onto T2, it is estimated that L ≤ 7.2 × 10−13, and we can see that K ≤
680. We calculate that the error bound satisfies

Since, depending on the speed of the electrophoresis, a base pair is equivalent to anywhere
from 8.0 to 16.0 seconds, we conclude that our approximation is extremely accurate, easily
accurate enough for our analysis purposes.

We note that a peak (or peaks) of the ILS may be susceptible to migration, as described
above. In particular, the Applied Biosystem Corporation’s ILS “250” peak is known to
migrate readily [3, p. 380]. Clues that suggest a migratory ILS peak will be discussed below.
In our algorithm, dropping a single ILS peak would have a small effect on the overall error.
In the example above, at worst, K would be doubled, leading to a new bound for e of less
than 0.04 seconds, still easily accurate enough for our analysis purposes.

We also note that this approach to “shifting” one time frame into another could be regarded
as a particular example of a process called “time-warping”, described in [7]. There are
significant differences, however. In our algorithm, there is a well-defined rationale for
choosing corresponding times, or knots, in the two time frames and we choose to use a cubic
spline rather than piece-wise linear approximation because the spline minimizes curve
distortion.

As a final note in this section, we point out that the selection of the “correct” peaks
comprising the ILS may not be a trivial task. In general, more peaks are found in the ILS
channel than make up the ILS itself. Also, identifying the ILS peaks is the first stage in the
orientation of the fitted peaks and the assignments to loci. The only real clue that we have to
the identities of the measured ILS peaks is the spacing between them and the relationship of
that spacing with the corresponding assignments, expressed in base pairs.

Specifically, if the ILS consists of M points, whose base pair values are

we denote by ΔB the M − 1 vector whose components are the differences Δbi = bi+1 − bi.
Similarly, for a time set
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we write ΔT for the M − 1 vector whose components are the differences Δti = ti+1 −ti. We
then choose the set of M peaks such that the normalized dot product between ΔB and ΔT is
maximized. Effectively, we are choosing the peaks with the maximum correlation in spacing
with the ideal set.

In the next section, we show how to use our natural coordinate transform to make
quantitative calls using the so-called “allelic ladder” sample.

6. The Allelic Ladder
The allelic ladder, or, simply, the ladder, is a special sample, usually provided by the
manufacturer of the multiplexing kit. The ladder consists of a collection of the most
common alleles for each sample locus in the kit. For forensic work, at least one ladder
sample is required to be analyzed within each sample run and no sample can be accepted
without at least one acceptable ladder in the universe of samples analyzed in a single
electrophoresis event. Essentially, the allelic ladder sample provides a solution, or output,
given a known input. Using the technique of coordinate transform from Section 5, we will
use the ladder as a yardstick to calibrate the interpretation of unknown samples.

Within the ladder, each locus n has a designated number of alleles with repeat numbers

These are mapped to STR segments of corresponding lengths and these, in turn, are mapped
during electrophoresis individually to L2[0, tf] functions

which are added into the appropriate channel as

This sum presents as a collection of known peaks in the output of the electrophoresis process
with associated times

The ordered pairs (τi, li), for i = 1,2, …Mn, allow us to form a map from time to base pairs.
Typically, because of the relatively short interval of time spanned by a single locus, this map
is very nearly linear, but, for accuracy, we build a natural cubic spline qn(τ) with the τi as
knots. Such a spline minimizes the number of concavity changes and, as with the coordinate
transforms, minimizes distortion. We note that qn(τ) is valid only for the nth locus. To extend
the locus beyond the ladder peaks requires extrapolation and so accuracy suffers outside the
boundaries of the ladder times, but, because of the typical close spacing of the ladder locus
peaks and the near linearity, it is possible to use qn(τ) for values of τ a short distance outside
of the interval [τ1, τMn]. The extrapolated distance must be defined for each locus and will
constitute the “extended locus”. A future study will establish reasonable limits.
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We note that, for each ladder locus, we face a similar problem in choosing peaks, in the
likely event that there are too many, to represent the “true” ladder peaks. The prior existence
of the ILS helps us to localize a region within the channels for each locus. Beyond that, we
use the same strategy as for the ILS, in which we form the vector of differences of times and
compare that vector with the differences of the base pair values of the true ladder alleles. In
particular, we select the set of peaks whose times {τ1, τ2,…, τMn} give rise to the maximum
spacing correlation with the spacing of the ladder alleles.

Here, then, is our strategy for an unknown sample. We assume, for now, that we can identify
a peak and discover its peak time. We assume that we have an acceptable ladder, as above,
and that the sample has an ILS with peak times

We assume that we have constructed the ideal coordinate transform cL(t) which maps T onto
the ILS peak times for the ladder. Under the transform cL(t), each peak time t* in the sample
time frame maps to a peak time cL(t*) in the ladder time frame. Assuming this time falls
within the nth locus, then a length of qn(cL (t*)) results. Because lengths are expressed in
units of base pairs, this value must be an integer, so we accept the computed value rounded
to the nearest integer. The residual distance between a computed length and its nearest
integer can be regarded as a measure of the quality of the sample and ladder. Residuals
exceeding a specified threshold can be flagged for human review. A commutative diagram,
below, illustrates this process:

Almost all the time, the computed integer value should coincide with one of the ladder
values, in which case we have simply fit the transformed sample to the ladder. In the
comparatively rare case that the value falls between or outside the ladder peaks, the sample
allele is termed “off-ladder” and flagged for scrutiny. Using the ladder peaks, with their
known allelic sizing, as a basis for a (nearly linear) cubic spline map, intermediate values
can be sized using interpolation and, for short distances, peaks beyond the ladder in either
direction can be sized using extrapolation.

Often, more than one ladder may be associated with a given sample. In this case, we choose
the ladder file for which the ILS cubic spline time transform above has the lowest maximum
second derivative. In other words, we choose the ladder that minimizes the maximum
distortion of time transformation. Thus, in theory, each sample could have its own unique
ladder.

It now remains for us to describe the manner in which peaks are analyzed and peak times
calculated.

7. Analyzing Peaks and Calculating Peak Times
It is important to remember that the data output from the electrophoresis process is sampled
at discrete times (typically, at a 1 sec. interval) and is noisy. Therefore, any use of numerical
derivatives is inadvisable. Furthermore, while conventional approaches tend to associate a
peak with its maximum value, its mode, this may be unreliable, again because of noise.
Hence, the safest approach is to use as much data as possible, i.e., the entire peak, to try to
calculate either a mean value or a mode value. Ideally, these two values coincide.

A human reviewer, examining the output of electrophoresis, perceives a collection of
unimodal, symmetric peaks superposed over a background of low level noise that is
primarily visible at the base of the peaks. Magnifying an individual peak shows essentially a
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bell-shaped curve and comparing different peaks on the same channel shows that the
apparent width of the peaks increases with time.

The data are suggestive of Gaussian peaks with standard deviations that increase with
increasing mean. A qualitative description of the physical phenomena embodied by
electrophoresis implies that this could be a correct inference. If we imagine that, at time 0,
the sample that is to be input to electrophoresis (and that will shortly be migrating up the
capillary toward the measuring laser) contains quantities of various molecules of different
lengths. Initially, all of these fragments concentrate at the mouth of the capillary. With time,
the fragments separate by length and, for a given length, the fragments tend to migrate at
constant speed – faster for those of lesser length and slower for those of greater length. For a
given length l, the fragments of that length migrate together. But, in addition to the force of
the electric field and the counter-balancing force of the gel in the capillary, the fragments of
length l also experience inter-molecular forces and they tend to disperse around their center
of mass according to the law of diffusion (see [8] and [9]). This would result in a Gaussian
function of concentration as a function of time as the mass passes the fixed laser.
Furthermore, longer fragments, taking greater time to reach the laser, would diffuse more
than shorter fragments and therefore, the peaks would tend to spread more with passing
time, which is consistent with observation.

As a first approximation, based on this model, we attempted a Gaussian shape to fit
observed electrophoresis data and, in this case, the mean and the mode do, in fact, coincide.
The only problem is that the residuals between a fitted Gaussian and the empirical data tend
to exhibit a uniform profile, indicating that something is missing in this perhaps overly
simple model. The data suggest that the tails of a Gaussian fall off too fast compared to
actual data. A more comprehensive model is needed to account for this apparently universal
discrepancy from a pure Gaussian. Because the inadequacies of the pure Gaussian model are
manifest equally for ILS peaks and for sample peaks, and sample peaks undergo PCR while
ILS peaks do not, we conclude that a more complex model of peak broadening should be
confined to the electrophoresis portion of the overall process.

By [8, p. 726], during electrophoresis, there is a surplus of cations, which accumulate at the
inner surface of the capillary and therefore lead to the formation of a boundary layer. This,
in turn, causes electroosmotic flow (EOF), combined with electrophoretic flow (EPF). Each
type of flow contributes to band-broadening independently, as if there were two different
species migrating with the same average speed, but with different diffusion coefficients (see
[9], for example).

Formulas for the dispersion variance of the electroosmotic layer have been derived under
various restrictive assumptions, such as cylindrical capillaries of infinite length (see [9], for
example), but, in general, these conditions may not approximate real laboratory
electrophoresis.

Hence, for simplicity, we have chosen to add a second Gaussian with the same mean and
with a standard deviation that is a fixed multiple of that of the primary curve. This signature,
which we have called a “double Gaussian”, produces extremely close fits. So that we can
quantify the level of fit and provide a numerical criterion for our algorithms, we must recall
some definitions.

We recognize that it may seem that using a fixed multiple of the primary standard deviation
is an unnecessary and restrictive condition. However, it saves one dimension of search in
our function fit optimization and it appears that the effect on the results is minimal for
different choices of the fixed factor in the range of 3.0 to 5.0. If this turned out not to be the
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case, we could allow the multiple to be an output of the fit at the cost of some extra
optimization complexity.

For two real-valued elements f and g of L2[a,b], we define the inner product (f, g) in the
usual way:

and (f, g) = 0 if and only if f and g are orthogonal. Thus, as is well known,

so, for a given f, with norm 1, say, finding a g of norm 1, to minimize the norm of the
difference when g lies within some subset of L2[a, b], is equivalent to maximizing the inner
product (f, g) over that subset. We will refer to the normalized inner product,

as the correlation between f and g. When f and g each have norm 1, the correlation reduces
to the inner product. In this case, the formula for the norm squared of the difference
becomes

Hence, a perfect fit is equivalent to a correlation of 1 and the level of fit can be quantified as
the degree of correlation, i.e., how close the correlation is to 1. Finally, if we project the
element f onto its approximating g using

then, the residual Δf = f − f̃ satisfies (f, Δf) = 0, or, in other words, f is perpendicular to Δf.

Given a sampled function f in L2[a, b], and for fixed λ, we seek a function g from the
parameterized family of double Gaussian curves,

that minimizes the normalized (f, g). Once we have found such a g = g(·, μ, σ, c1, c2, λ),
provided (f, g) is sufficiently close to 1, we may repeat the process for every peak in the
sample and then analyze the sample using the projections above, with the g chosen as the
double Gaussian above. The projections f̃ then serve as substitutes for the original functions
f. The mean μ and the mode of the projections f̃ are well-defined and are then stable
functions of all of the points of the original data embodied by f. We use the mean μ as the
“peak time”, or the location, of the peak f.
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More specifically, if we write our function g in terms of its two basic functions:

so that,

then, we can normalize g1 (t, μ, σ) and call it G1(t, μ, σ). Further, since g1(t, μ, σ) and g2(t, μ,
σ) are linearly independent, we can use g1(t, μ, σ) and g2(t, μ, σ) as input to the first step in
the Gram-Schmidt orthonormalization process [10, pp. 67–68] to find a normalized G2(t, μ,
σ) that is orthogonal to G1(t, μ, σ)and such that g2(t, μ, σ) is a linear combination of G1 and
G2. We can now deal exclusively with G1 and G2.

We note that all normalization and orthonormalization is performed relative to the restricted
interval [a,b] because the function f is taken to be defined only on that interval. Therefore,
all integral calculations are done numerically on [a, b].

We write f̄ for f/‖f‖ so that f̄ is a unit vector, and we observe that, given any values of μ and
σ, there is a function n such that n is orthogonal to G1 and G2 and

We seek an approximation g to f̄ so that g‖f‖ will be an approximation to f. Because of the
mutual orthogonality of G1, G2, and n,

and

Because f̄, G1 and G2 are unit vectors, α and β are each less than 1 in absolute value. We
now connect G1 and G2 to our original function g via

where c1 and c2 can be found from α and β together with the calculated relationship between
G1 and G2 on the one hand and g1(t, μ, σ) and g2(t, μ, σ) on the other. Finally, we can
calculate the correlation between f and g as
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This, then, is the measure of fit of the properly scaled function ‖f‖ g to the original sampled
data function f.

Thus, summarizing, for every μ and σ we can calculate α and β to get a best fit to f. Now, we
can iteratively search for a pair of values (μ, σ) such that the correlation above is maximized.
This can be accomplished using any of a number of numerical procedures.

Next, we explain how we find the intervals [a,b] which delineate the individual peaks f
above.

Ideally, since we know what shape or shapes we are seeking within the sampled data, it
seems that we should be able to use a matched filter [11, pp. 156–158] based on the
expected shape, the double Gaussian. However, our situation dictates that we know only the
generic form of the expected shape. The width, or standard deviation, varies as a function of
time and is, a priori, unknown. Also, the mix of the two Gaussians in the double Gaussian is
unknown. Hence, the matched filter with double Gaussian basis will not work in our case.

Instead, for a first approximation, we simplify our “expected” shape so that, in essence, we
are searching for “pulses” of data. We use a matched filter based on a square wave. Such a
filter will exhibit peaks near the centers of regions of high data density. To be more precise,
given a window width of W seconds, we perform the convolution

where SW is defined to be the characteristic function of the interval [0, W]:

Thus, the convolution reduces to a time average of the values of f over a time window of
width W:

For a channel sample f, we evaluate the convolution F, replacing the continuous time
integral by a discrete approximation, and we look for the local maxima of F that exceed a
specified noise threshold. To delineate a local peak, we look for local minima, one on each
side of a calculated local maximum, and the resulting interval’s data proceeds to the next
level of analysis – the discovery and computation of the particular identity of the shape
within the interval.

We note that the particular convolution above is efficient to compute for sampled data, for
which we compute F(t) only for t = t0, t1,…, the sample times. For each time tn, and using
Simpson’s Rule to approximate the integral [5, pp. 126–131],
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independent of window size, where Δt is the assumed constant sample time update interval
tn − tn−1.

The square wave window and the noise threshold require some tuning. Too narrow a
window will tend to amplify noise, as will too low a threshold, and too wide a window will
tend to wash out valid signals, as will too high a threshold. The system does not appear to be
overly sensitive these values, however, and this approach has provided effective
amplification of signal to noise ratio. Furthermore, our approach tolerates somewhat
excessive amplification of noise in preference to over-damping because extracted peaks that
are “too small” can be eliminated based on that criterion directly. In fact, a standard criterion
for accepting a peak as valid is that the peak height exceed a specified minimum.

To delineate each interval [a, b] on which we perform a search for a proper double Gaussian
curve, we look for local minima of the function F, above. Specifically, we seek a and b
which are local minima of F, with a local maximum c in the interior of the interval [a, b]
such that F(c) exceeds the noise threshold. What results is a collection of intervals and, from
those, a collection of peaks.

Note that, in the sequence of the algorithm described thus far, a peak is identified, assigned
to a locus and then a base pair is calculated. Because of the data itself and the
approximations in the analysis, as a general rule, the calculated base pair is not an integer
value, as it, in fact, must be. We call the discrepancy between the calculated base pair and
the nearest integer the “residual”. The value of the residual affords an opportunity for a new
measure of quality. It is a measure that assesses the overall analytic framework as it relates
to this peak. That is, it reflects the accuracy of the curve fit, as well as the curve fits of the
ladder and ILS peaks, and the spacing of the ladder locus and that of the ILS., If the ILS
contains a migratory peak, as described above, that fact will affect the residuals, at least in
the same time frame as that of the migrating peak. Thus, a systematic manifestation of
“excessive” (according to a specified threshold) residuals – classed as a new artifact – is a
strong indication of a migrating ILS peak.

Another artifact that can indicate a migratory ILS peak is a so-called “off-ladder” allele. A
locus allele that does not coincide with a designated ladder allele is called an “off-ladder”
allele. There are some common alleles that are technically off-ladder, but are accepted
without the artifact designation. As with excessive residuals, a systematic manifestation of
off-ladder alleles is another strong indication of a migrating ILS peak.

In cases where the double Gaussian does not fit to a minimum acceptable level, alternate
signatures can be tested. For example, a so-called super Gaussian signature has been found
to represent dye blobs well and spikes are closely approximated by triangular functions. A
useful signature for craters, or split peaks, is a function consisting of a pair of double
Gaussians, with inter-peak distance determined by the sample data.

We observe that the main intent of this algorithm has been to serve in those situations when
a sample is being analyzed for comparison to another sample that is not available for
analysis, e.g., in forensic work. In these cases, a ladder is required as a template to produce
allele calls. However, when a sample is to be compared for identity to a known sample that
is on hand, both samples may be analyzed and their respective ILS channels may be mapped
by the technique described in Section 5 and the peaks of the samples may then be compared
in the same time frame. Without having to make allele calls, it would be straightforward to
validate if the two samples were from the same source.

Next, we summarize the steps we have described.
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8. Summary
The analysis of a ladder file follows the general steps below:

a. For each channel, use the square wave convolution process to delineate data
intervals with values sufficiently significant that the noise threshold is exceeded.

b. For each data interval above, attempt to fit a signature double Gaussian. If the level
of fit is below an acceptance threshold, try to improve the fit using alternate
signatures representative of different artifacts.

c. For the ILS channel, select the requisite number of peaks to represent the ILS based
on maximizing the spacing as measured by the scaled inner product between the
differences of the ideal positions (in base pairs) and the differences of the means (in
time) between adjacent selected peaks.

d. For each ladder locus, use the ILS peaks located in (c) above and a pre-specified
parameter list, which delineates the minimum and maximum ILS base pair for the
locus, to select peaks that belong to the locus. These are chosen from the channel’s
double Gaussian set found in (b).

e. For each ladder locus, select the requisite number of peaks from the set chosen in
(d) based on maximizing the spacing as measured by the scaled inner product
between the differences of the ideal positions (in base pairs) and the differences of
the means (in time) between adjacent selected peaks.

f. For each locus, build a cubic spline interpolation function mapping the mean time
of each ladder locus peak into its corresponding base pair equivalent.

The first three steps of the analysis of a sample file are essentially the same as for a ladder.
The rest differ:

a. For each channel, use the square wave convolution process to delineate data
intervals with values sufficiently significant that the noise threshold is exceeded.

b. For each data interval above, attempt to fit a signature double Gaussian. If the level
of fit is below an acceptance threshold, try to improve the fit using one or more
artifact signatures.

c. For the ILS channel, select the requisite number of peaks to represent the ILS based
on maximizing the spacing as measured by the scaled inner product between the
differences of the ideal positions (in base pairs) and the differences of the means (in
time) between adjacent selected peaks.

d. Choose an associated ladder by building cubic spline time transformations mapping
the sample ILS into each available ladder ILS, i.e., mapping the sample ILS peak
time set onto the ladder ILS peak time set. Select the ladder for which the above
time transformation has the smallest maximum second derivative (least distortion).

e. Using the time transformation and ladder selected in (e), map the peaks for each
sample locus into corresponding peaks in the ladder time frame. Based on the time
intervals for each ladder locus, assign peaks to loci.

f. Using the cubic spline interpolation function mapping ladder locus allele times into
(known) ladder locus base pairs (ladder step (f)), compute the base pair equivalent
of each transformed sample peak, rounded to the nearest integer, and convert to the
correct allele name.
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9. Examples
In Figure 2, below, the purple curve is a double Gaussian, fitted to the blue measurement
points, and the yellow is the residual noise. As is common for this program, the correlation
exceeds 0.999.

The pair of graphs below illustrates how well the techniques work in context of a ladder
analysis. Figure 3 shows the raw data from the D3S1358 locus of an ABI ProfilerPlus kit
ladder file.

Figure 4 shows the fitted signals superimposed on top of the raw data from Figure 3. Note
that in Figure 4, the fit is virtually identical to the measurements except in the low level
noise regions between peaks. Note also that a region of over 800 point measurements has
been reduced to four parameters per peak (mean, variance and scaling parameters) times 8
peaks, or 32 numbers. Given the accuracy of the fits, mean values (or peak locations) and
peak heights may be confidently calculated from the fitted curves with minimal sensitivity to
noise and time series discretization issues.

In Figure 5, a fit of the raw data for an ABI ProfilerPlus sample has been mapped into the
time space of the above ladder which has been used to quantify the size(s) of the sample
alleles. The result shows that this sample aligns accurately with the 4th and 7th ladder peaks.

In Figure 6, we show a fit of the raw data for an ABI Identifiler sample, in which the
program has identified both stutter and adenylation sites. Note the rejection of the prevalent
noise from the original sample.

In Figure 7, we show a portion of a sample with craters and pull-up identified by the
algorithm. The “A” at a peak indicates an artifact. The two uncalled peaks in the “blue”
channel have been analyzed by the algorithm to be pull-up and, if called, to have excessive
residual. Thus, they are deemed not to be true alleles. Nevertheless, they are flagged for
human review, as are the craters. The large peak in the “blue” channel has been flagged as
an artifact because it is the cause of pull-up in another (undisplayed) channel.

10. Conclusions
We have designed an integrated mathematical framework, based on function space concepts,
for modeling and processing DNA profile data from multiplexes of short tandem repeat loci.
The algorithms derived from this framework have been realized as a software package called
OSIRIS that has been demonstrated to work accurately and robustly. The software has been
tested on the 700 National Institute for Science and Technology (NIST) population samples
for concordance studies. Manufactured reagent kits from both Applied Bioscience and
Promega were used. (See [2].) From [2], “OSIRIS development also relied on thousands of
samples representing all commonly used reagent kits and analytical platforms through state
and local laboratory collaborations.” (Also, see [12].) The NIST concordance studies were
completed with perfect scores. As suggested by the examples above, OSIRIS works not only
with clean data, but with marginal data and even with highly problematic samples. An in-
depth description of OSIRIS’s ability to handle a wide range of artifacts will be the subject
of a future publication.

OSIRIS is publicly available by download from:
http://www.ncbi.nlm.nih.gov/projects/SNP/osiris/.
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Figure 1.
Commutative Diagram for Coordinate Transform
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Figure 2.
Fit of Raw Data Using Double Gaussian and Residual
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Figure 3.
Raw data from Locus D3S1358 from a ProfilerPlus Ladder File
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Figure 4.
Fitted Signals Superimposed on Top of Raw Data
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Figure 5.
Sample Superimposed on Ladder: fit typically within 0.05 bp
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Figure 6.
Sample showing rejection of noise and identification of stutter and adenylation artifacts
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Figure 7.
Sample showing craters and pull-up identified by software algorithm
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