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Abstract
Shear modulus imaging, often called elastography, enables detection and characterization of tissue
abnormalities. In this paper the data is two displacement components obtained from successive
MR or ultrasound data sets acquired while the tissue is excited mechanically. A 2D plane strain
elastic model is assumed to govern the 2D displacement, u. The shear modulus, μ, is unknown and
whether or not the first Lamé parameter, λ, is known the pressure p = λ∇ · u which is present in
the plane strain model cannot be measured and is unreliably computed from measured data and
can be shown to be an order one quantity in the units kPa. So here we present a 2D Log-
Elastographic inverse algorithm that: (1) simultaneously reconstructs the shear modulus, μ, and p,
which together satisfy a first order partial differential equation system, with the goal of imaging μ;
(2) controls potential exponential growth in the numerical error; and (3) reliably reconstructs the
quantity p in the inverse algorithm as compared to the same quantity computed with a forward
algorithm. This work generalizes the Log-Elastographic algorithm in [20] which uses one
displacement component, is derived assuming the component satisfies the wave equation, and is
tested on synthetic data computed with the wave equation model. The 2D Log-Elastographic
algorithm is tested on 2D synthetic data and 2D in-vivo data from Mayo Clinic. We also exhibit
examples to show that the 2D Log-Elastographic algorithm improves the quality of the recovered
images as compared to the Log-Elastographic and Direct Inversion algorithms.

1. Introduction
Shear modulus imaging, often called elastography, is a non-invasive new medical imaging
technology that targets detection or classification of tissue abnormalities, such as cancer or
fibrotic tissue. Shear modulus contrast between normal tissue and abnormal tissue is high
with ratios of two or (much) more being common, enabling high resolution images of tissue
changes. The expectation is to identify and classify tissue abnormalities and to corroborate
with ultrasound or MR images enhancing medical diagnosis by imaging the elastic
properties of the tissue.

The first step toward making a shear modulus image is to obtain tissue displacement data.
To achieve this data, a broad range of experiments have been developed to displace the
tissue. These experiments are: (1) static experiment, e.g. see [38] and [45]; (2) dynamic
sinusoidal excitation, e.g. see [6], [16], [18], [21], [22], [23], [29], [48], [51]; (3) acoustic
radiation force localized impulse, e.g. see [11], [32], [33]; and (4) impulsive line source as in
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transient elastography and supersonic imaging, e.g. see [2], [3], [4], [5], [7], [15], [19], [43]
and [44]. In each of these procedures an external or internal stimulus is applied to
mechanically excite the region of interest. Then a movie of the interior displacement
response is created from successive ultrasound or MR datasets. The movie of the interior
displacement is then the data used to create biomechanical property images. The
displacement represented in these movies is on the order of tens of microns. Once the movie
is created, an inversion algorithm is developed to obtain tissue shear wave speed or shear
modulus images.

The information in these movies can be utilized in a number of different ways. In [26] and
[27], the authors developed the Arrival Time algorithm for the transient elastography
experiment and supersonic imaging to recover the shear wave speed. There the data is not
single frequency content but the arrival time of a propagating front at each point of the
image plane. They first use a cross-correlation technique to find the arrival time surface
from the displacement data. The arrival time surface satisfies the Eikonal equation. They
then apply either the distance method or the level set method to solve the inverse Eikonal
equation to find the wave speed. This new technique has also been successfully used in the
crawling wave experiment, see [29] and [30].

In this paper, we will focus on using a single frequency content that can be extracted from
the time dependent movie data obtained when the tissue is dynamically displaced either with
a sinusoidal excitation or a transient pulse. Because the displacement deformations are
small, the mathematical model we use for describing the tissue response during these
experiments is a linear elastic equation system.

To reconstruct and image the shear wave speed or the shear modulus from single frequency
content, different inversion methods have been developed. An often used method is the so-
called Direct Inversion method, where a locally constant assumption on the Lamé
parameters is made. In this Direct Inversion Method, the divergence of the displacement is
set to zero. The elastic equation system is decoupled and reduced to a system of Helmholtz
equations; each equation contains no derivatives of the shear modulus, and is for a single
displacement component. The shear modulus can then be recovered through a simple
algebraic inversion, see [2], [3], [4], [21], [22], [23], [24], [28], [36], [37] and [44]. This
approach is very straightforward to implement. Some good reconstruction results have also
been obtained. However, the locally constant assumption on the shear modulus may
introduce a level of inaccuracy, especially in the regions near the boundary of stiff
inclusions. We will make comparisons with this method in a later section of this paper.

Another kind of direct inversion method, see [46] and [47], is to take curl of the elastic
equation system first, and then neglect all the derivatives of the shear modulus. Therefore, in
this case, the reconstruction is also based on a single equation. The disadvantage of this
method is that third-order spatial derivatives of the displacement data are introduced by
taking curl and the locally constant assumption that eliminates all terms that contain
derivatives of the shear modulus is also required here. We do not make comparison with this
method; see [53] (p.107) for some of our comparison with this direct inversion method.

In [20], the authors develop two inverse algorithms: (1) an acoustic Log-Elastographic
nonlinear marching scheme; and (2) a linear finite difference based elliptic scheme. There,
inverse algorithms are derived assuming a single displacement component satisfies a
Helmholtz equation with real parameters; derivatives of the shear modulus are included. The
algorithms are tested on the Fourier Transform of synthetic data computed with a wave
equation model. The authors show that both methods are convergent and stable of first order
and do not require a very fine discretization to succeed.
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Besides the above methods, other algorithms have also been developed. Some are based on
finite element methods including iterative methods, [9], [34], [35], [49] and [50], and non-
iterative methods [39]. The finite element based iterative methods use the full elastic
equation system and the goal is to find the elastic modulus that minimizes the difference
between the computed and measured displacements in a least squares sense. Because they
require the full forward calculation and contain iterations, all the iterative methods are time-
consuming. In [39], the authors developed a non-iterative finite element based method. Their
method is also based on the full elastic equation system. There they use the weak form of the
elastic system, and then only the first order derivatives of the measured displacement data
are calculated. They then solve the remaining system for the shear modulus and pressure
with the finite element method.

Another non-iterative variational method, that has similarities with the Direct Inversion
Method in that it neglects derivatives of the shear modulus, is developed in [40] and [41].
This non-iterative variational method is obtained by integrating the weak form of the elastic
system by parts twice, and hence avoids taking derivatives of the measured displacements;
however all derivatives of the shear modulus are neglected.

In this paper, we focus on using two displacement components, u = (u1, u2), as a basis for
our inverse problem with the assumption that they satisfy the 2D plane strain elastic
equation system. The data is then the two in-plane displacement components in a single
plane. The 2D plane strain elastic system contains the hydrostatic pressure term, p = λ∇ · u,
where λ is the first Lamé parameter. Tissue is nearly incompressible so the term ∇ · u ≪ 1;
the noise in measured data makes the computation of the value of this term unreliable;
furthermore the first Lamé parameter, λ ≫ 1. The product p = λ∇ · u is, then, unreliably
computed from measured data whether or not λ is known. The hydrostatic pressure, p, can
be computed with a forward algorithm to show that, for an inhomogeneous medium, p is
approximately first order and should not be ignored. Therefore, in this paper we develop a
finite difference based 2D Log-Elastographic inverse method to reconstruct a real shear
modulus and the hydrostatic pressure with two components of the measured displacement
data. We will employ a few of the ideas already used in the Log-Elastographic algorithm or
in the fluid dynamics paper, [14]; however the application is not a straightforward use of
those ideas when our model is a first order p.d.e. system for the shear modulus and the
pressure partly because the pressure does not have fixed sign and partly because the
operations, log and exponential, used to create the algorithm are nonlinear. Since we solve a
first order p.d.e. system, we must select good approximate values for the boundary
conditions for the shear modulus. These boundary conditions are usually not known from
measurements. Inspired by the estimate given in [20], we make our choice from one of the
available direct inversion results. We compare our reconstructions, when the shear modulus
is real, with those obtained by: (1) the Direct Inversion method; and (2) the Log-
Elastographic method which uses only one displacement component. For these comparisons
we use displacement components computed with a 2D plane strain model.

We also initiate a method for reconstructing a complex shear modulus from two in-plane
displacement components. We test this method on measured data obtained from Mayo
Clinic.

The remainder of this paper is composed as follows. The mathematical model for the
forward and inverse problem is given in Section 2. Section 3 briefly discusses the Direct
Inversion method. Then, the 2D Log-Elastographic algorithm for elastography is presented
in Section 4. Next in Section 5, this new algorithm is tested on synthetic data and
experimental data.
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2. The Mathematical Model: Forward and Inverse Problem
Our target here is an appropriate 2D approximate model when our data is movies of two
displacement components in a single image plane. The medium is inherently 3D and is
assumed to be heterogeneous, isotropic and nearly incompressible. The 3D mathematical
model for these kinds of problems is based on the 3D linear hyperbolic elastic system:

(1)

where u is the 3D displacement vector, μ = μ(x1, x2, x3), is the shear modulus, or second
Lamé parameter, ρ is the density, which for tissue being imaged is usually assumed to be
constant although it can vary as much as 10%. λ is the first Lamé parameter, and f is a
source interior to the material. We assume that either there is an impulsive force (force that
acts for a very short time in a localized region), with a central frequency, ωc, or there is a
single frequency, ωc, excitation.

If we let p = λ∇ · u = λ(u1,1 + u2,2 + u3,3), the elastic system becomes

(2)

Note that p is essentially the hydrostatic stress, or the pressure. To simplify our notation, we
divide both sides of equation (2) by ρ, assumed here to be constant as mentioned above, and
make the following notation: μ̃ = μ/ρ, p̃ = p/ρ, and f ̃ = f/ρ, so that our model for the forward
problem is: given (λ/ρ)(x1, x2, x3), μ̃(x1, x2, x3), f̃(x1, x2, x3, t), find the 3D displacement
vector u(x1, x2, x3, t) and the scaled pressure p̃(x1, x2, x3, t) which satisfy

(3)

(4)

together with the initial and boundary conditions.

To obtain the 2D model, there are basically two possible choices, the plane stress model or
the plane strain model. Neither is completely satisfactory. A full discussion of the
implications of these two choices is beyond the scope of this paper. We only comment that
the plane stress assumption is more often used for thin materials. Here we use the plane
strain model where the choice is driven by the lack of data in parallel image planes. The

assumptions then are that the elements εi3 = 0, for i = 1, 2, 3, where  is the
strain matrix. That is,

In addition, in the plane strain assumption, we ignore the third equation

. Hence we obtain a system that can also be written as (3)–(4) if
we use the notation that u is now the 2D displacement and p̃ is the scaled pressure, p̃ = p̃(x1,
x2, t).
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In the 2D forward problem, we are given (λ/ρ)(x1, x2), μ̃(x1, x2), f̃(x1, x2, t), together with
initial and boundary conditions, and the goal is to find u(x1, x2, t) and p̃(x1, x2, t).

In the inverse problem, the 2D displacement vector u = u(x1, x2, t) is given and f ̃ = f ̃(x1, x2,
t) is given. The goal is to solve the 2D elastic system (3) for the scaled shear modulus μ̃. In
our formulation of the inverse problem, we add the additional goal of finding p̃ as even
when it is assumed that λ/ρ is given the product (λ/ρ)∇ · û is unreliably computed with
measured data as described in the introduction. In this paper, we will focus on the inverse
problem and use the Fourier Transform û(x1, x2, ω) of u, evaluated at the central frequency,
ωc, where û has significant amplitude, or the frequency of excitation which we also refer to
as ωc.

Taking the Fourier transform in time of the system (3), we arrive at the following Fourier
transformed system at a single frequency, where û, , and  are the transformed u, p̃, and f ̃,

(5)

For the reasons above, we do not use equation (4) or its transform. In this paper, our main
objective is to solve the equation system (5) simultaneously for the scaled shear modulus μ̃
and the scaled pressure  given the 2D displacements u throughout the image plane. A 2D
Log-Elastographic method will be presented to solve this equation system for μ̃ and . This
method utilizes finite difference approximations of derivatives of μ̃ and .

We will show that computing  simultaneously with μ̃, as opposed to setting ,
significantly improves the accuracy in our reconstruction of μ̃. Note also that it can be
difficult to reconstruct  accurately, see [39], in an inverse algorithm, and this inaccuracy
may effect the shear modulus reconstructions. We show that with the 2D Log-Elastographic
algorithm we obtain good agreement between the  recovered with the inverse algorithm
and the  simulated with the forward algorithm.

All of our synthetic examples are for real μ̃. We will image our reconstruction of μ̃ which is
the square of the shear wave speed when μ̃ is real. For our in-vivo data, a more accurate
model includes a viscoelastic term. For example we could use a linear solid model which is

(6)

where

μ0, μ1, τ1 depend on x, y, and τ1 is the relaxation time. When we take a Fourier transform in
time for this model we obtain equation (5) again with the property that here, for this model,
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which is a complex quantity. The coefficients η1 = τ1μ1, μ1 are the viscosity and elasticity,
respectively, of a Maxwell body, i.e., the coefficients corresponding to the dashpot and
spring element. The coefficient μ0 is the coefficient for the spring element that is parallel to
the Maxwell element ([12]). In the linear solid model, our algorithm computes complex
valued μ̃; we image the real quantities,

(7)

with in-vivo data. The biomechanical properties, (7), are the square of the shear wave speed
and the attenuation, respectively, for a plane wave propagating in a homogeneous
viscoelastic medium modeled by (6), see [13].

3. Direct Inversion Method in Elastography
Before we present the 2D Log-Elastographic Method, we first briefly explain the Direct
Inversion Method for computing the shear modulus when a single displacement component
satisfies a Helmholtz equation. In later sections, we will compare the shear modulus
obtained by the 2D Log-Elastographic method with the shear modulus obtained from this
method. This comparison is not the same as the comparison given in [20] as here our model
for the forward algorithm is a 2D plane strain elastic system. By comparison, in [20], the
simulated data is based on a wave equation model.

In the Direct Inversion Method, the shear modulus is assumed to be locally constant, and
hence all the terms including the derivatives of the shear modulus are neglected.
Furthermore, ∇ · u is assumed to be identically zero. With these assumptions, the 2D elastic
system can be decoupled. After taking the Fourier transform in time, a Helmholtz equation
is obtained at single frequency as follows:

(8)

where û is the Fourier transform of any single component of the displacement vector û. Note
that we denote the Direct Inversion approximation of μ̃ by μ ̂. The method then is to solve
this algebraic equation for the approximate scaled shear modulus μ̂. The frequency, ω, is
usually chosen to be the central frequency, ωc.

4. 2D Log-Elastographic Algorithm for Elastography
In this section we consider the 2D system (5). We develop a 2D Log-Elastographic
algorithm to recover a real scaled shear modulus and the scaled pressure with the given 2D
displacement data using an equation system based on system (5). We show that this
algorithm effectively controls the exponential growth in the error of the numerical solution
without a fine grid requirement. To begin, we rewrite system (5) as

(9)

where we have set  as our imaging domain usually does not contain the source
location. Note that (9) contains the term μ̃∇(∇ · û) and as ∇ · û ≪ 1, and μ̃ generally satisfies
1 ≤ μ̃ ≤ 20 in units m2/s2, the term μ̃∇(∇ · û) is generally very small. Hence we will consider
two cases: (1) where we eliminate μ̃∇(∇ · û), and (2) where we keep μ̃∇(∇ · û). We compare
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the reconstructions with simulated data where we can accurately compute ∇(∇ · û), and
exhibit that the difference is small. We are motivated to establish this result with simulated
data since, as mentioned in the introduction, this term is unreliably computed with measured
data due to noise in that data.

Before developing our algorithm we give examples in Subsection 4.1 to show that when μ̃ is
real, we can have exponential growth in the numerical error and when μ̃ is complex valued
the exponential growth can be arbitrarily large.

4.1. Exponentially Growth in the First Order P.D.E. System: Examples
To exhibit the exponential growth we look at the canonical form of a homogeneous first
order system. Let v̂ be the solution of

(10)

where for purposes of the example we assume the matrices Ê1, Ê2 are constants. Then
consider a solution of the form v̂ = ŵ(x1)einx2. Therefore ŵ(x1) satisfies

(11)

Suppose Ê1 is diagonalizable and the associated eigenvector matrix, Ŝ, yields ŜÊ1 Ŝ−1 = D, a
diagonal matrix of the eigenvalues. Then  satisfies

(12)

The solution can be represented by

If D has real eigenvalues,  can have exponential growth if −ŜÊ2 has at least one eigenvalue
with positive real part. If this occurs we can have exponential growth but not of arbitrarily
high order. To control the corresponding exponentially growing numerical error, a very
small discretization, which is not the CFL condition, may be needed when a standard
upwind or stable central difference scheme [8] are used.

If D has complex eigenvalues with at least one eigenvalue, , with positive imaginary part

then  grows exponentially of order . As n can be arbitrarily large we can obtain
arbitrarily large exponential error in our computed solution.

This example inspires our 2D Log-Elastographic algorithm. We develop the main ideas
under the assumption that Ê1 has real eigenvalues and test them when μ̃ is real. Then we
propose a change in the algorithm for the case when Ê1 has complex eigenvalues and apply
this latter algorithm to in-vivo data where μ̃ is expected to be complex valued.

Note that these examples are not the same as those given in [14].

4.2. Case 1: Neglect the μ̃∇(∇ · û) Term
If we neglect the μ̃∇(∇ · û) term from system (9) we arrive at
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(13)

To see the structure of this first order system of equations, we rewrite it as the following
equation system in matrix form

(14)

Denoting

Multiplying A−1 on both sides of (14), we obtain another system of first order equations of
the form

(15)

where

Here, to obtain the linear system (15), we have assumed that the complex quantity û2,1 + û1,2
≠ 0 which is almost always satisfied. With this assumption, we can interpret, for the purpose
of solving the first order p.d.e. system (15) with a marching method, that the x direction is a
time-like direction. In keeping with this interpretation we assume that v(0, x2) is known.
Later in this paper we will address how to get good approximations for v(0, x2). We also
select one of the components û1 or û2 of û, which we call the leading component. Usually it
is the component that is larger, e.g. the component orthogonal to the direction of
propagation.

To develop this algorithm, we first rewrite system (15) back in scalar form as

(16)

(17)

where Ek(i, j) is the component of matrix Ek at ith row and jth column, k = 1, 2, and E3(j) is
the jth component of the vector E3. Next for our first step we divide equation (16) by μ̃, and
introduce a new variable υ = log μ̃, where we note that for our targeted υ the values are
always positive since for our application requirement μ̃ ≥ 1 m2/s2. Then equations (16) and
(17) become, in the variables υ, ,

McLaughlin et al. Page 8

Inverse Probl. Author manuscript; available in PMC 2011 August 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(18)

(19)

Note that at this intermediate step it appears that in the new variable, υ, we have an
exponentially growing term, eυ. This term will not be present in the final form of the
algorithm.

Now we have a coupled system for υ and . The first step is to discretize (18) and (19) with

the standard upwind scheme. Writing (18) and (19) in system form designating , we
obtain

(20)

where

(21)

both depend nonlinearly on υ. We assume that the eigenvalues of Ẽ1 are real.

Our first step in case 1 is to apply the standard upwind scheme, [25] (p. 417–421), to
discretize (20) and obtain

(22)

where  are the approximated values of w, Ẽ1,±, Ẽ3, respectively, at the point
(iΔx, jΔy), and W0,j are the discretized values of the known initial conditions. Here, we
decide the finite difference approximation direction according to the sign of the eigenvalues
of the coefficient matrix Ẽ1. We write Ẽ1 as Ẽ1 = Ẽ1,+ + Ẽ1,−, where Ẽ1,+ = S̃Λ+S̃−1 and Ẽ1,−

= S̃Λ−S̃−1. The symbol Λ+ has all the nonnegative eigenvalues of Ẽ1 on its diagonal, Λ− has
all the negative eigenvalues of Ẽ1 on its diagonal, and S̃ is the eigenvector matrix. This
discretization appears to require that at each step we need to recalculate the eigenvalues and
eigenvectors of Ẽ1, which contains the computed value of υ. To avoid this extra calculation
which can lead to additional inaccuracies, we establish relationships between the matrix E1

in (15) and the matrix Ẽ1 in (20) and between E1,± and Ẽ1,±.

We write
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(23)

in its undiscretized form and assume the eigenvalues of E1 are λ1 and λ2. λ1 denotes the
nonnegative eigenvalue and λ2 denotes the negative eigenvalue when they have opposite
signs. It is then straightforward to establish that the eigenvector matrix S of E1 together with
its inverse matrix S−1 can be expressed as

where α = bc − λ1λ2 + aλ2 + dλ1 − ad. And hence

(24)

Note that when the eigenvalues are both positive (negative), then E1,− (or E1,+) is zero and
E1,+ = E1 (or E1,− = E1).

From (21) and (23) we have that

A straightforward calculation yields that E1 and Ẽ1 have the same eigenvalues and that the
eigenvector matrix S̃ of Ẽ1 and its inverse (S̃)−1 are

So we can write

(25)

So the following relationships between the components of E1,± and the components of Ẽ1,±

hold:
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Because the above relationships are either linear in eυ or e−υ, we can then write the standard
upwind scheme for (20) as follows

(26)

(27)

where υ̃ and  are the approximate values of υ and  determined by the discretized system.

The second step in Case 1 is to take the exponential of the first discretized equation (26).
This step is similar to the one taken in [20] for the inverse problem for the acoustic equation.
Here we also have a pressure term and a second equation in our discretized system, but here
we do not exponentiate the second equation. We obtain

(28)

(29)

where in equations (28) and (29) we replace  by the equivalent expressions

 and , respectively. We have also replaced eυ̃i,j by
the computed value of μ̃, , so that (28) and (29) are now equations for  and .

Now we apply the approximation exp (bΔx) ≈ 1 + bΔx to the first exponential term in the
first equation as our experience is that this approximation controls exponential error growth
due to error in the approximation of . Then we get

(30)
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where on the second line of (30) we have also approximated

which is essentially accomplished by here approximating  by . In (30) we have not
approximate the second exponential term

The reason is that the term in the exponent is often near zero and so in practice does not
appear to contribute to exponential numerical error.

For Case 1 then we solve the above two discretized equations (29) and (30) in the following
way. Our solution methods differ since one equation is linear and the other one is nonlinear.
First we solve the discretized equation (30) for the discretized solution  with the
starting condition for  as , and then we solve the discretized equation (29) for the
discretized solution  using the results of the previous calculation for . Then we repeat
the procedure using the previously calculated value of  when solving equation (30). We
call this method the 2D Log-Elastographic method for the reduced 2D elastic system.

4.3. Case 2: Include the μ̃∇(∇ · û) Term
In this case, the 2D elastic system including the μ̃∇(∇ · û) term, which was set to zero in
Case 1, can be rewritten as

(31)

where the only change from Case 1 is that now

In Case 2 then we can apply the same 2D Log-Elastographic algorithm for μ̃ and  except
that we replace E2 by Ē2.

We now apply our 2D Log-Elastographic method for the 2D elastic system with and without
the μ̃∇(∇ · û) term and demonstrate that the difference in the recovered  images is very
small. We demonstrate the small difference in the recovered  using synthetic data where
there is one round inclusion and one elliptic inclusion inside the computational domain. The
scaled shear modulus of the background is 2 m2 /s2. The maximum scaled shear modulus
inside the inclusion is 12 m2 /s2. The exact formula is

McLaughlin et al. Page 12

Inverse Probl. Author manuscript; available in PMC 2011 August 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where r = 0.003, r1 = 0.005, r2 = 0.009, b = 2, a = 10, , and
. Figure 1 shows the recoveries obtained with and without the μ̃∇(∇ ·

û) term, and also the difference between them. From these images, you can see that the
recoveries, in this case where the contrast is 6, are very similar, and the error here is of order
10−5 which is one order less than that of Δx = Δy. For these calculations we use λ/ρ = 106

m2/s2 which is the right order of magnitude for this ratio in tissue. While we do not show it
here we observe that the error is of order 10−6 when the contrast ratio is 4 and 10−6 when
the contrast ratio is 2. The error is of the same order when we add 10% and 20% noise to the
data. In our remaining examples, we thus ignore the term μ̃∇(∇ · û). Note that our method
for creating the simulations is described in Section 5.

5. Numerical Results with Synthetic Data and Experimental Data
In the previous section we introduced the 2D Log-Elastographic finite difference algorithm
to reconstruct the scaled shear modulus and the scaled pressure simultaneously using a 2D
plane strain elastic system and neglecting a small nonlinear term. In this section, we test this
inversion algorithm with some numerical examples using synthetic data. We also use
experimental data: the MR measured displacement data, taken during harmonic excitation,
in the liver and the spleen. We obtained this data from Mayo Clinic. In all reconstructions,
we apply the 2D Log-Elastographic method using the reduced equation. Even in the
synthetic data examples cases where μ̃ is real, the eigenvalues of the coefficient matrix E1 in
the first order p.d.e. system (15) can be complex. When this occurs we determine the
separation of the eigenvalues of E1 according to the sign of the real parts of the eigenvalues.

To obtain synthetic data, we need to do the forward simulation. To do this the scaled shear
modulus μ̃ and the first scaled Lamé parameter λ̃ are given; in all of our examples λ̃ will be a
constant. Furthermore we derive a hyperbolic second order partial differential equation
system for u and p̃ − 2∇ · u/(1 + μ̃/λ̃) and solve this system of three equations for u and p̃ in
the time domain. The creation of this hyperbolic system of three equations in u and p̃ − 2∇ ·
u/(1 + μ̃/λ̃) eliminates making the multiplication λ̃∇ · u from a computed u. To compute u
and p̃, we apply a second order finite difference method. In addition, since we are simulating
experiments implemented in a much larger region of tissue, we assume outgoing boundary
conditions on all boundaries of our domain. This allows only outgoing waves without
reflection. To achieve this outgoing boundary condition, we apply the idea of the Perfectly
Matched Layer method in [10]; see [53] for our application. We use this forward algorithm
to compute synthetic data for a selection of shear moduli, which are each represented by a
C1 function. We compute for a total time of 0.054 seconds and the total number of time
steps is 1800. After obtaining the space and time dependent displacement, we take the
Fourier transform of the displacement data in time using Matlab’s function FFT. We then
have the Fourier Transforms, û,  of the displacement u(x1, x2, t) and the scaled pressure p̃
(x1, x2, t). Our inverse algorithms will be applied using the synthetically calculated û(x1, x2,
ω) and the computed  will be compared to the exact μ̃ for each example. Furthermore we
will for at least one example compare the  computed with inverse algorithm to the 
computed with forward algorithm.

5.1. Imaging μ̃ with Synthetic Data
In all the examples with synthetic data, the frequency for simulation and inversion is 100Hz;
the units that we are using to display the results are seconds for time, meters for length and
m2/s2 for the scaled shear modulus; the computational domain is
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and for the discretization, we use a 100 × 100 spatial grid. In the forward simulation, λ/ρ =
106 m2/s2, which is of the same order as that in [39]. We add a source in the x2 direction,
that is, the first component of the source function, f̃, is zero while the second component of
the source function f̃ is given by

where σ = 0.005, ω = 200π and . The rapid decay of the Gaussian functions makes
it possible to simulate a short duration wave pulse temporally and to simulate a line source
spacially. Since, in our synthetic example, μ̃ is real, (see specific formulas below), in the
images we display only the real part of the recovered scaled shear modulus .

Recall that we assume in the experiment that the wave propagation direction occurs
primarily in one direction, say the x1 direction. And following our algorithmic development
we assume that the x1 direction is a time-like direction. If the x2 direction is the horizontal
direction, then we require a Dirichlet boundary condition on the top of the computational
domain. We also need a Dirichlet condition on the left and right boundaries of the
computational domain when the inflow condition holds. By inflow condition we mean that
at any boundary point xb,  for any unit vector n directed out of the
computational domain at xb. When we need boundary values, we choose the boundary
values to be the results obtained from applying the Direct Inversion Method to equation (8)
where û is the component of û that is orthogonal to the wave propagation direction.

First we show recoveries from synthetic data without noise. Since there is no noise, we use
standard second order finite difference approximations to calculate the derivatives of the
solution û; those derivatives become coefficients in our 2D Log-Elastographic method.

I. Example 1: In this example, the scaled shear modulus μ̃ is given by the following
function:

where r = 0.006, b = 2, a = 16 and . So there is one round
inclusion inside the computational domain. The scaled shear modulus of the
background is 2 m2/s2. The maximum scaled shear modulus inside the inclusion is
18 m2/s2. Figure 2 shows the recovery.

II. Example 2: In this example, the scaled shear modulus μ̃ is given by the following
function:
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where r = 0.003, r1 = 0.005, r2 = 0.009, b = 2, a = 2, , and
. So there are two elliptic inclusions placed one in front of

the other with respect to the time like x1 direction in the computational domain. The
scaled shear modulus of the background is 2 m2/s2. The maximum scaled shear
modulus inside the inclusions is 4 m2/s2. Figure 3 shows the recovery.

III. Example 3: In this example, the scaled shear modulus μ̃ is given by the following
function:

where r = 0.003, r1 = 0.005, r2 = 0.009, b = 2, a = 10, ,
, and . So there are two elliptic

inclusions and one round inclusion inside the computational domain. The scaled
shear modulus of the background is 2 m2/s2. The maximum scaled shear modulus
inside the inclusions is 12 m2/s2.

We compare the recovered scaled shear modulus obtained with the 2D Log-Elastographic
method with: (i) the exact scaled shear modulus; (ii) the recovered scaled shear modulus
obtained by solving equation (8) with the Direct Inversion Method using the component of
displacement in the direction orthogonal to the propagation direction; (iii) the recovered
scaled shear modulus obtained with the (acoustic) Log-Elastographic method, [20], applied
with data from only the component of displacement in the direction orthogonal to the
propagation direction; note that in this method both the pressure p and the term ∇ · (μ̃∇ûT)
are set to zero. Figure 4 shows the recoveries.

From these examples, we can see in Figure 2(b), 3(b) and 4(d) that the 2D Log-
Elastographic nonlinear algorithm recovers the scaled shear modulus very well in shape and
size when we have either a single inclusion or multiple inclusions. This performance occurs
when we have either low or high contrast between the background medium and the
maximum value in the inclusion. Comparing the images in Figure 4, we can also see that the
maximum value of  in the recovery from the Direct Inversion Method and from the
(acoustic) Log-Elastographic method exhibit undershooting. The shape and size of the
inclusions are not recovered as well as in the 2D Log-Elastographic method. Here we have
not shown the comparison with the images obtained with a standard upwind scheme. We
refer the reader to [53] (p.81–84, p.86–89, and p.93–100) for those comparisons.

Besides the scaled shear modulus in the 2D Log-Elastographic method, we also recover the
scaled pressure. In Figure 5 we compare the Fourier transformed pressure, obtained by first
doing the forward calculation and then taking the Fourier transform in time for the example
in Figure 1, to the scaled pressure we recover in the 2D Log-Elastographic method for the
same example. These images show that besides the scaled shear modulus we can also
recover the pressure at the same time, and the recovered pressure is similar to the pressure
obtained from the forward simulation. This has been shown to be difficult to accomplish, see
[39].

To test the stability and robustness of our full inversion algorithm, we add 10% and 20%
Gaussian random noise to the displacement data respectively
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where umax is the maximum displacement amplitude, γ is the noise level, and rand(x1, x2, t)
is a random vector generated in Matlab from the normal distribution with mean zero and
variance one. We apply the 2D Log-Elastographic algorithm to this data set with 10% and
20% noise (γ = 0.1 and 0.2) for the examples (I) and (III) in this section.

Again we need to differentiate the data. But if there is noise in the data, the errors can be
strongly amplified in the standard differentiation process, which means that the
differentiation process is ill-posed. Since we now have noise in the data, we apply an
averaging method introduced by Anderssen and Hegland, see [1], to compute the derivatives
of noisy displacement. This method averages the displacement over local windows and
following that averaging procedure is then essentially based on a central difference scheme
(or mid-point rule) to approximate the derivatives. The step size for the central difference is
related to the local window sizes and acts as a regularization parameter to control the
tradeoff between the accuracy and smoothness of the derivatives.

The recovered scaled shear moduli are shown in Figure 6. From these results, it is seen that
the 2D Log-Elastographic nonlinear algorithm still performs well, which shows that it is
robust with respect to noise.

5.2. Examples with Experimental Data
Next, we apply the 2D Log-Elastographic algorithm to recover the scaled shear modulus
with the MR measured displacement data in the liver and the spleen. This data set is
provided by R. L. Ehman’s lab from Mayo Clinic. In their experiment, low-amplitude
mechanical waves at 60 Hz were generated in the abdomen, during aquisition of sequences
of MR data sets, by using an acoustic driver device placed on the anterior body wall. The
waves propagate along the diagonal direction of the field of view (FOV). 3D displacement
data was then obtained by using a 2-dimensional gradient echo MR elastography sequence
to collect axial wave images in three different orthogonal directions, see [42] and [52]. The
FOV is a single 2D plane, whose size is 38 × 38 cm with 96 × 96 pixels. This displacement
is given at 4 equally spaced times in a single period. The amplitude of the wave is measured
in terms of microns.

In the MR measured displacement data of the liver and spleen and the regions bounding
them, there exist very noisy regions, particularly in the area surrounding those two organs.
Therefore we separate the regions where we will do recovery, eliminating the surrounding
regions and separately recovering the scaled shear modulus μ̃ in the liver and spleen. Figure
7 shows the MR images of these two organs where we do our recovery.

The 3D displacement vector contains three components: two in-plane components u1, u2 and
one out-of-plane component u3. We first apply a coordinate transformation to obtain two
new components from u1 and u2. One of these new components is along the wave
propagation direction, say up, and the other one is orthogonal to the wave propagation
direction, say um. They both are still in the plane and hence are assumed to satisfy the 2D
plane strain elastic system. Moreover, for this data set the amplitudes of all the components
are approximately the same. Therefore, in our inversion method, we first assume one of the
two components, up, is the leading component and then the other, um. In our 2D Log-
Elastographic inversion algorithm, we treat the variable in the wave propagation direction as
a time like variable. But here the wave propagates along the diagonal. Therefore, we do the
inversion in two different ways: first we treat the x1 variable as a time like variable and then

McLaughlin et al. Page 16

Inverse Probl. Author manuscript; available in PMC 2011 August 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



we treat the x2 variable as a time like variable. Altogether there are 4 different possible
combinations to do the inversion with the 2D Log-Elastographic algorithm. Afterwards, we
take the geometric average of all these recoveries.

As for the boundary, we still require Dirichlet boundary conditions on the boundaries of the
computational domain when we have the inflow condition. As before we choose the
boundary values to be the results obtained from the Direct Inversion Method. Here the
boundaries of the above two computational domains are curved and we compute only inside
the boundary curves. Since the 2D Log-Elastographic method is a marching method, when
we compute at the next line we need to add or neglect grid points along the curved boundary
because of the boundary curvature. When we add grid points we set the values of μ̃ at those
points to be the values obtained from the Direct Inversion Method.

In order to solve for the scaled shear modulus, we need to calculate the derivatives of the
magnitudes and the phases of the in-plane components of the 3D displacement vector.
Relatively speaking, from our observations, the magnitudes and the phases of those two
components throughout our selected computational regions change smoothly, except at some
places where the wrapped phase has discontinuities. Therefore, we take the following steps
to calculate the derivatives of the magnitude and the phase for each component. First, for the
phase, we shift the interval for the definition of the phase to produce an unwrapped phase;
second, we do local median filtering of the magnitude and the phase; third, we calculate the
derivatives at each interior point by taking the median of the second order central difference
approximation and two second order one-sided approximations; then on the boundary we
use only a one-sided second order approximation to the derivative at each point.

For the experimental data, the expected shear modulus is complex valued. In this case, as
our example in Subsection 4.1 has shown, we could have arbitrarily high exponential error
growth in our computations if the imaginary part of one of the eigenvalues of the coefficient
matrix E1 is positive. To control this unwanted growth, we apply an additional filtering step
after each sweeping step. Basically, we filter out the high frequency content of the computed
solution at the end of each sweeping step. Our preliminary realization is as follows: first at
each sweeping step we take the Fast Fourier Transform with respect to the transverse space
variable, in the direction orthogonal to the sweeping direction. This transform is taken of the

computed solution . We obtain the vector ; then we
filter it with the formula given below

where L is half of the total length, and  is the computed FFT at present step.
Lastly we take the inverse Fast Fourier Transform of fVi to obtain the final solution at the
present step. Repeat this procedure at the next step, etc.. Generally, the frequency content ω
and the total length l of the vector under FFT have the relationship given by ω(k) = 2π(k −
1)/l, where k is the index, therefore by keeping half of the total length of the vector under
FFT is equivalent to keeping up to the same frequency content at each step.

Figure 8 shows the recovered wave speed squared (see Section 2) in the liver and the spleen
for a patient obtained by implementing the 2D Log-Elastographic method, with the
additional filtering step, and the Direct Inversion Method. Figure 9 shows the recovered
wave speed squared in the liver and the spleen for a healthy volunteer from the 2D Log-
Elastographic method and the Direct Inversion Method. The Direct Inversion recovery is the
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geometric average of the three Direct Inversion recoveries obtained by using each of the
three components separately. To compare the results from different methods, we have also
calculated: (1)Average Difference: The average value of the difference between the Direct
Inversion result and the 2D Log-Elastographic result; (2)L1 Difference: The L1 norm (sum
of the absolute value of the differences, pixel by pixel divided by the number of pixels) of
the difference between the Direct Inversion result and the 2D Log-Elastographic result;
(3)L2 Difference: The root mean square difference between the Direct Inversion result and
the 2D Log-Elastographic result. The results are tabulated for the in-vivo data in Table 1
when no cutoff is applied to the imaging functionals. We only have two data sets so the data
is too limited to draw firm conclusions from the tables. However, the small differences in
average values indicate that diagnoses made by average values obtained from images
produced with either Direct Inversion or the 2D Log-Elastographic method might be very
similar. However the L1 and L2 differences indicate that the two algorithms yield different
spacial distribution of disease progression as indicated by shear wave speed squared values.
More data is needed to obtain further conclusions.

In Figure 8, we have put all the images on the same scale, i.e., we cut off the values larger
than 7. In this case, we also calculated the three differences mentioned above. Table 2 shows
the results, where the differences between the recoveries from the 2D Log-Elastographic
algorithm and the Direct Inversion Method become smaller than those when there is no
cutoff. This shows that most of the differences occur in the places where values are larger
than 7.

The scaled shear wave speed we obtained with the data from the healthy volunteer is
comparable with the recoveries in [17], where their results are obtained with the liver of five
healthy volunteers. In [42] and [52], the authors have recovered the shear modulus for the
liver and spleen of patients and healthy volunteers. The mean values of our recoveries with
the 2D Log-Elastographic algorithm are 3.7171 m2/s2 for the liver of the patient, 3.4319 m2/
s2 for the spleen of the patient, 2.6390 m2/s2 for the liver of the healthy volunteer and 1.8437
m2/s2 for the spleen of the healthy volunteer. These values times the density ≈ 103 Kg/m3

are in the range, 1.77–2.85 kPa, of those in [52] for the healthy volunteers, and in the range,
2.76–12.01 kPa, for the group of patients, and also are comparable with those for the
patients with fibrosis stage 2, where the range is 3.2±0.8 kPa.

Besides the scaled shear wave speed squared, we have also calculated the attenuation with
formula in [13]. In Figure 10, we show the attenuation in the liver obtained with the 2D Log-
Elastographic algorithm for the patient and the volunteer. But we do not include here
additional comparisons for this biomechanical property.
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Figure 1.
(a) The exact scaled shear modulus; The exact contrast between the background and the
maximum value inside the inclusion is 2 to 12; (b) The recovery using the system without
the μ̃∇(∇ · û) term; (c) The recovery using the system with the μ̃∇(∇ · û) term; (d) The error
between recoveries obtained from neglecting the μ̃∇(∇ · û) term and including the μ̃∇(∇ · û)
term. The units are m2/s2.
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Figure 2.
(a) The exact scaled shear modulus; (The contrast between the background and the
maximum value in the inclusion is 2 to 18.); (b) The recovered scaled shear modulus
obtained from the 2D Log-Elastographic scheme. The units are m2/s2.

McLaughlin et al. Page 23

Inverse Probl. Author manuscript; available in PMC 2011 August 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
(a) The exact scaled shear modulus; (The contrast between the background and the
maximum value in the inclusions is 2 to 4.); (b) The recovered scaled shear modulus
obtained from the 2D Log-Elastographic scheme. The units are m2/s2.
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Figure 4.
(a) The exact scaled shear modulus; (The contrast between the background and the
maximum value in the inclusions is 2 to 12.); (b) The recovered scaled shear modulus
obtained from the Direct Inversion Method; (c) The recovered scaled shear modulus
obtained from the (acoustic) Log-Elastographic method; (d) The recovered scaled shear
modulus obtained from the 2D Log-Elastographic scheme. The units are m2/s2. Note that the
colorbar in each of these figures is different.
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Figure 5.
(a) is the real part of the pressure simulated with the forward problem algorithm and then
taking the Fourier transform; (b) is the real part of the recovered scaled pressure  from the
2D Log-Elastographic scheme; (c) is the imaginary part of the pressure simulated with the
forward problem algorithm and then taking the Fourier transform; (d) is the imaginary part
of the recovered scaled pressure  from the 2D Log-Elastographic scheme.
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Figure 6.
(a) The recovery for example I. The contrast here between the background and the
maximum value in the inclusion is 2 to 18 and the noise level is 10%; (b) The recovery for
example III. The contrast between the background and the maximum value in the inclusions
here is 2 to 12 and the noise level is 10%; (c) The recovery for example I. The contrast here
between the background and the maximum value in the inclusion is 2 to 18 and the noise
level is 20%; (d) The recovery for example III. The contrast here between the background
and the maximum value in the inclusions is 2 to 12 and the noise level is 20%. The units are
m2/s2.
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Figure 7.
(a)–(c) are images of the patient: (a) The MR image of the tissue in the image plane cross
section; (b) The MR image in the liver; (c) The MR image in the spleen; (d)–(f) are images
of the healthy volunteer: (d) The MR image of the tissue in the image plane cross section;
(e) The MR image in the liver; (f) The MR image in the spleen. Note that the grid labeling
on the axes in (b), (c) and in (e), (f) are consistent with grid labeling in (a) and (d)
respectively.
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Figure 8.
(a) The recovered speed squared in the liver for the patient with the 2D Log-Elastographic
method; (b) The recovered speed squared in the spleen for the patient with the 2D Log-
Elastographic method; (c) The recovered speed squared in the liver for the patient with the
Direct Inversion Method; (d) The recovered speed squared in the spleen for the patient with
the Direct Inversion Method.
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Figure 9.
(a) The recovered speed squared in the liver for the healthy volunteer with the 2D Log-
Elastographic method; (b) The recovered speed squared in the spleen for the healthy
volunteer with the 2D Log-Elastographic method; (c) The recovered speed squared in the
liver for the healthy volunteer with the Direct Inversion Method; (d) The recovered speed
squared in the spleen for the healthy volunteer with the Direct Inversion Method.
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Figure 10.
(a) The recovered attenuation in the liver for the patient with the 2D Log-Elastographic
method; (b) The recovered attenuation in the spleen for the patient with the 2D Log-
Elastographic method; (c) The recovered attenuation in the liver for the healthy volunteer
with the 2D Log-Elastographic method; (d) The recovered attenuation in the spleen for the
healthy volunteer with the 2D Log-Elastographic method.
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Table 1

Average difference, L1 and L2 differences between the Direct Inversion image and the 2D Log-Elastographic
image when no cutoff is applied to the imaging functional (which is  in equation (7)).

Cases Average Difference L1 Difference L2 Difference

liver of the patient 0.0066 1.3556 4.2302

spleen of the patient −0.1970 1.2790 1.6796

liver of the healthy volunteer 0.1522 0.8766 1.6815

spleen of the healthy volunteer 0.0432 0.8175 1.1846
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Table 2

Average difference, L1 and L2 differences between the Direct Inversion image and the 2D Log-Elastographic
image when cutoff is applied to the imaging functional (which is  in equation (7)).

Cases Average Difference L1 Difference L2 Difference

liver of the patient −0.2435 1.0607 1.3880

spleen of the patient −0.2082 1.1675 1.5105

liver of the healthy volunteer 0.1108 0.8352 1.1161

spleen of the healthy volunteer 0.0413 0.8156 1.1796
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