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Abstract
Tuberculosis (TB) is one of the earliest recorded human diseases and still one of the deadliest
worldwide. Its causative agent is the bacteria Mycobacterium tuberculosis (Mtb). Cytokine-
mediated macrophage activation is a necessary step in control of bacterial growth, and early
immunologic events in lymph node and lung are crucial to the outcome of infection, although the
factors that influence these environments and the immune response are poorly understood.

Our goal is to build the next-generation two-compartmental model of the immune response to
provide a gateway to more spatial and mechanistic investigations of Mycobacterium tuberculosis
infection in the LN and lung. Crucial immune factors emerge that affect macrophage populations
and inflammation, namely TNF-dependent recruitment and apoptosis, and IL-10 levels.
Surprisingly, bacterial load plays a less important role than TNF in increasing the population of
infected macrophages and inflammation.

Using a mathematical model, it is possible to distinguish the effects of pro-inflammatory (TNF)
and anti-inflammatory (IL-10) cytokines on the spectrum of phagocyte populations (macrophages
and dendritic cells) in the lung and lymph node. Our results suggest that TNF is a major mediator
of recruitment of phagocytes to the lungs. In contrast, IL-10 is a factor in balancing the dominant
macrophage phenotype in LN and lung.
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1. Introduction
Tuberculosis (TB) is one of the earliest recorded human diseases and still one of the
deadliest worldwide (WHO, 2009). Its causative agent, Mycobacterium tuberculosis (Mtb),
primarily enters the lungs and initiates infection there. Phagocytic cells (macrophages and
dendritic cells) are central to innate and adaptive immune responses to M. tuberculosis
infection. Bacilli are inhaled into the lungs, taken up by dendritic cells and transported to a
thoracic lymph node (LN) for priming of immune responses. Within the lung, resident and
recruited macrophages engulf bacteria, and lymphocytes and more macrophages are
recruited to form a granuloma. A granuloma is the environment in tissue that is the site of
infection and functions to control bacteria and limit pathology in the lung. It is a collection
of cells and bacteria that forms typically in a spheroid shape. This is defined as an
inflammatory process, as the bacterium and host cell interactions lead to production of
cytokines and other effector molecules. However, too much inflammation can lead to
excessive pathology and a poor disease outcome for the host (Flynn, 2006). Cytokine-
mediated macrophage activation is a necessary step in the control of bacterial growth (Flynn
and Chan, 2001). In most cases, the host controls bacterial replication and dissemination,
and maintains an asymptomatic infection (termed latent tuberculosis). A small percentage of
humans do not control the infection and develop active tuberculosis, either as primary
disease or reactivation of a latent infection.

Murine models of tuberculosis have been extensively used to identify important contributors
to the immune response to this pathogen. In the mouse, it was demonstrated that the LN is
the first site of expression of effector function for T cells, followed by spleen and lung
(Chackerian et al., 2002). CD4+ T cells are recognized as the primary mediators of anti-
tuberculosis immunity (Mogues et al., 2001; Orme, 1987), although CD8+ T cells also
appear to have a role in resistance (Brookes et al., 2003; Lazarevic and Flynn, 2002). T cell
priming (CD4+ and CD8+ T cells) that occurs in lymph nodes (LNs) is key to successful
development of protective adaptive immunity and host resistance to Mtb infection (Orme,
1987). Once primed, T cells circulate to the lung to participate in the local immune response
there. Early immunologic events in LN and lung are thought to be crucial to the outcome of
infection but factors that influence these environments are poorly understood.

We previously developed a series of mathematical models that qualitatively and
quantitatively characterize the cellular and cytokine network during infection in lung
(Marino et al., 2007; Sud et al., 2006; Wigginton and Kirschner, 2001), and in lung and LN
(Marino and Kirschner, 2004; Marino et al., 2004). In this work our goal is to develop the
next-generation two-compartmental model to investigate more mechanistic details involved
in the immune response during Mycobacterium tuberculosis infection. By focusing on
cytokines important for the interplay between phagocyte populations and inflammation, we
seek to indentify the control mechanisms for immune control in the lung and LN
environments in tuberculosis.

We use a novel fitting scheme to match our updated model to experimental data (on
bacterial and cell type numbers) from M. tuberculosis-infected mice generated herein. The
mouse model was used for this study due to the availability of reagents and ability to obtain
samples from lung and LN at multiple time points.

Model fitting was performed by a generalized non-linear least squares implementation
(NLLS, see (Marino and Voit, 2006) for details). Sensitivity analyses were performed to
determine key mechanisms affecting cellular processes during infection using an approach
we have refined (Marino et al., 2008). Our results identified crucial immune factors that
affect macrophage populations, namely TNF-dependent recruitment and apoptosis, and

Marino et al. Page 2

J Theor Biol. Author manuscript; available in PMC 2011 August 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



IL-10 levels. Surprisingly, TNF plays a more important role than bacterial load in increasing
the population of infected macrophages and, together with IL-10, balancing the dominant
macrophage phenotype in the LN and lung.

2. Materials and Methods
2.1. Experimental data

Data were collected from C57BL/6 mice infected with M. tuberculosis (H37Rv or Erdman
strains) by exposure to aerosolized bacteria in an aerosolization unit (Intox, New Mexico)
for 30 minutes. The dose of bacteria for different groups of mice was modulated by the
concentration of M. tuberculosis in the nebulizer chamber (8.6e5/ml and 8.7e6/ml), resulting
in a range of doses between 3–185 cfu/lung inocula doses. At time points 1, 8, 14, 21, 28, 43
and 99 days post-infection, a total of 80 mice were sacrificed (12 mice per each time point,
except for day 1 where only 8 mice were sacrificed). Bacterial loads were measured, by
plating serial dilutions of lung and LN homogenates on 7H10 agar and colonies were
counted after incubation of plates at 37°C/5% CO2 for 21 days. Day 1 is used to determine
the inoculum dose in the lung (bacterial load at day 1 in the lymph node is 0, as well as all
the activated T cells). Bacterial load data are shown in Figure S1 of Supporting Information
online.

Total live cells in lungs and LNs were counted by trypan blue exclusion from single cell
homogenate suspensions. Macrophage and dendritic cell data were obtained in a second
experiment, where mice were sacrificed at day 9, 14, 18, 22, 28, (8 mice per time point).
Additional data were collected in separate experiments for initial estimates for baseline
(uninfected) values of macrophage, dendritic cell, and naïve CD4+ and CD8+ T cells before
infection (day 0 of the experiments, Table S3). Flow cytometry was used to identify cell
types in lungs and LN. Monocyte and lymphocyte gates, based on forward and side scatter,
were used to identify populations, and specific markers to identify each type of cell. Anti-
CD4 Alexa fluor 700 (BD, clone RM4–5) and anti-CD8 pacific blue (BD, clone 53–67) cell
surface markers were used to identify T cells, while anti-CD69 FITC (BD, clone H1.2F3)
was used as an early activation marker for T cells. Anti-GR-1 APCCy7 (BD, clone RB6–
8C5), anti-CD11b PerCP (BD, clone Mac-1a) and anti-CD11c PECy7 (BD, clone HL3)
were used to identify macrophages (CD11c−/CD11b+/GR-1-) and dendritic cells (GR-1-/
CD11c+/CD11b+ or GR-1-/CD11c+/CD11b−). Figure 3 and Figure 4 show lymphocyte and
macrophage/dendritic cell data, respectively.

2.2. Two compartmental mathematical model
We previously developed different mathematical models exploring cell trafficking between
the lung and LN (Marino and Kirschner, 2004; Marino et al., 2004) and the role of TNF and
CD8+ T cells in the lung (Marino et al., 2007; Sud et al., 2006) in M. tuberculosis infection.
We now merge these two models to develop our next-generation model to consistently
replicate data derived herein. The updated two-compartmental model has 32 equations with
210 parameters. Bacteria are not modeled explicitly; since we have precise data available on
the dynamics of bacteria populations in this system, we use the time courses of bacteria as
input functions for the model in the lung (CFUlung) and LN (CFUln) Section 2.13 and
Figure S1 show the details of how the CFU functions are generated and used. The remaining
equations in the system of non-linear ODE model comprise macrophage (resting, infected,
classical and alternatively activated), dendritic cell (immature and mature) and lymphocyte
populations in both lung and LN. Naïve CD4+ and CD8+ T cells are primed in the LN and
migrate to the lung as both precursor or effector T helper cells and precursor or effector
cytotoxic T lymphocytes (CTLs). These cells elicit their effector functions at the site of
infection (lung) after becoming fully differentiated. Cytokines (TNF, IFN-γ, IL10 and IL12)
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are also explicitly modeled, both in lung and LN. Table I describes the variables in the
model. A diagram describing the dynamics of macrophage populations in the lung is
presented in Figure 1. The non-linear ordinary differential equation system is shown in
Supporting Information online, as well as diagrams of the remaining cell dynamics.

2.3. Macrophage dynamics: macrophage polarization functional
Similarly to a recent study (Day et al., 2009), we describe four different macrophage
subpopulations, both in lung (equations (1)–(4)) and LN (equations (5)–(8)): uncommitted/
resting/resident (M0), infected (MI), classically (MA), and alternatively activated (M2). Both
sets of equations represent identical macrophage subpopulations, with identical terms and
different parameter labels and values (where necessary). The pool of uncommitted/resting/
resident macrophages (M0) is referred to as resident macrophages. A diagram of
macrophage dynamics is shown in Figure 1.

Equation (1) describes the dynamics of resident macrophages (M0) in lung. A pool resides in
the blood (as monocytes) and is constantly recruited to the lung. Monocyte differentiation
produces a constant net turnover of resident macrophages, where the constant SM0 is a
function of M0 death rate (µM0), alternative macrophage activation rate (k7) and of the initial
condition for M0 (M0(0)), namely SM0 =(k7+µM0)M0(0) (similar functional forms are given
for the constants SM0a, sIDC , SIDCLN , SN4 and SN8. Recruitment is influenced by either
inflammation, captured as a function of MI and MA (rc1 term) or Tumor Necrosis Factor-
TNFα (Fα, rc2 term) (Algood et al., 2004; Hehlgans and Pfeffer, 2005).

We define the term d in the lung (see equation (1), equation (3), equation (4))

and the term δLN in LN (see equation (5), equation (7) and equation (8))

to capture the effect of both cytokine environment and bacterial load on resident
macrophage activation (Martinez et al., 2008). We refer to δ and δLN as macrophage
polarization functionals or MPFs since they drive macrophage activation.

These MPF terms are defined as a function of three different cytokines (IFN-γ [Iγ], TNF [Fα]
and IL-10 [I10]) and live bacteria (CFUlung and CFUln). This follows since, upon infection
(i.e., live bacteria), one of the first cytokines to be produced by mast cells, endothelial cells,
macrophages and lymphoid cells is TNF (Korbel et al., 2008; Lin et al., 2007). TNF is
crucial in recruitment of inflammatory cells. It initiates and sustains chemotactic action by
virtue of stimulating chemokine production (CCL-2, 3, 4, 5, 8 and CXCL-9, 10, 11, (Algood
et al., 2004)) and induction of adhesion molecules (such ICAM-1) on the vascular
endothelium (Roach et al., 2002). Another key cytokine for triggering inflammation is IFN-
γ. IFN-γ is predominantly secreted by innate cells (mainly natural killer cells, sg terms in
equation (26) and equation (30) in the Supporting Information online) right after infection
and upon signaling by interleukin 12 (IL-12) and by T cells upon instruction by interleukin
12 (IL-12) and IL-18 (Korbel et al., 2008) and . In fact, a second wave of IFN-γ production
occurs when adaptive immune cells are generated (α5, α6, α8 and α9, terms, see equation
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(26) and equation (30) in the Supporting Information online)) and is sustained throughout
infection. The role of IL-10 is mainly anti-inflammatory. IL-10 down-regulates macrophage
activation, inhibiting IFN-γ inducible genes, reactive oxygen and nitrogen intermediates
(reviewed in (Moore et al., 2001)).

The main assumption of the model is that without infection (no live bacteria, i.e.
CFUlung=CFUln=0), there is essentially no cytokine production, therefore no inflammation
occurs and the MPFs are zero (i.e., δ = δLN = 0 ). As soon as infection occurs (CFUlung>0,
CFUln>0), cytokine environment is altered, as well as the numbers and phenotypes of cells
present at the site of infection (lung) and in LN. In the model, infection translates into δ > 0
and δLN > 0.

2.4. Classical versus alternatively activated macrophages
Depending on bacterial load (CFUlung and CFUln) and cytokine profile, resident
macrophages (M0) can differentiate either into a type 1 phenotype (classically activated
macrophages, CAM, labeled as MA in equation (3)), or a type 2 phenotype (alternatively
activated macrophages, AAM, labeled as M2 in equation (4)).

As described in Martinez, et al. (2008) AAMs can be divided in three subtypes: M2a, M2b,
and M2c. The phenotype of an alveolar macrophage (in the lung in a non-infectious case)
seems to be closest to the M2a type macrophage, rather than an M2b type that produces much
higher levels of IL-10. However, the pool of undifferentiated macrophages (M0) is
constantly replenish with infiltrating macrophages upon infection. While without infection
the AAM (M2) equations represent the M2a phenotype, upon infection all the M2
phenotypes are collectively modeled in the AAM equations. In fact, in the absense of
infection the default M0 activation is biased towards an alternatively activated phenotype or
M2a (AAM, k7 term, see equation (4)) (Martinez et al., 2008). Alveolar macrophage (M2a)
only produces IL-10 (and TNF) when infected with Mtb (Engele et al., 2002). Comparable
data are shown by Giacomini et al (Giacomini et al., 2001) and Hickman et al (Hickman et
al., 2002). Similar assumptions guided the modeling of macrophage phenotypes in the
lymph node environment.

The main difference between classically and activated macrophage phenotypes in the model
is that AAM becomes immediately infected (MI, see equation (2)) when a bacterium is
phagocytized (k1 term), while CAM (MA) immediately kills any bacteria that are
phagocytized and thus cannot become infected (Day et al., 2009). We also assume that MI
cannot be activated in the classical way (through IFN-γ) but that AAM can be activated to
become a MA (k21 term, see (Martinez et al., 2008)).

2.5. Switching Time
Based on a recent study (Day et al., 2009), the concept of switching time is defined as the
time needed to switch from an AAM-dominated to a CAM-dominated lung environment on
M. tuberculosis infection. The biological relevance of increasing switching times is that a
delay in CAM presence in lung may be responsible for M. tuberculosis gaining an initial
“foothold” (Day et al., 2009). One of the goals of our sensitivity analysis is to investigate
which mechanisms affect switching time, both in lung and in LN.

2.6. Macrophage infection and killing
Once infected, macrophages (equation (2)) can either die naturally (µMI, burst, get killed by
apoptosis or by cytotoxic mechanisms. Bursting (k3) is caused by intracellular bacteria
proliferation and is represented by a Hill term (n=2). MI killing is due to the concentration of
type 1 lymphocytes – T1 (through Fas-FasL-induced apoptosis, k4 term) (Vignali et al.,
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2008), soluble TNF (through TNFR1 apoptosis pathway, k5 term) (Hehlgans and Pfeffer,
2005) and CTLs - TC (through granzyme and perforin, k6 term) (Flynn and Chan, 2001)).
See Supporting Information online for details on equations describing lymphocyte and
cytokine dynamics. The TNF-dependent apoptosis mechanism also affects MA and M2
(same rate, k5 term). Equation (5)–Equation (8) are similar to equation (1)–Equation (4):
they describe macrophage dynamics in LN (see Supporting Information online for
equations). Macrophage dynamics in LN are an exact replica of those in lung (different rates
and rate constants are only allowed for model fitting and uncertainty and sensitivity
analysis).

2.7. Dendritic Cell Dynamics
A diagram (Figure S2) of dendritic cell dynamics in both compartments and the equations
are presented in Supporting Information online. We model two types of dendritic cell
populations in each compartment: immature dendritic cells (IDCs) and mature dendritic cells
(MDCs). Recruitment and uptake/maturation mechanisms are present in both compartments.
Upon bacterial uptake, DCs mature and migrate to the LN to prime naïve lymphocytes. We
assume that DCs die in the LN and never migrate out.

2.8. Lymphocytes Dynamics
Diagrams (Figure S3, Figure S4 and Figure S5) and equations of lymphocytes dynamics in
both compartments are shown in Supporting Information online. Naïve CD4+ and naïve
CD8+ T cells are only present in LN, where they are naturally recruited and primed by
MDCs. Precursor effector cells (T0 and T80) proliferate (clonal expansion) and migrate out
of the LN into the blood to reach the site of infection. IL-10 acts as a down-regulatory
mechanism for T cell expansion, in both compartments. T cell differentiation is mainly via
MDCs but we also include a mechanism by which both infected and activated macrophages
can act as antigen presenting cells and induce T cell differentiation (both in lung and LN).
TNF-induced apoptosis is a shared regulatory mechanism for effector T cells in both
compartments.

2.9. Cytokine production dynamics
Cytokines are produced by a large variety of cells involved both in innate and adaptive
immunity (Lucey et al., 1996). We modeled four cytokines (TNF, IFN-γ, IL-12 and IL-10)
in both compartments with identical mechanisms. Table S1 (Supporting Information online)
lists cytokine production by cell types. TNF is mainly secreted by macrophages (activated
and infected) and mature DC. The presence of bacteria (CFUlung) enhances TNF production
by CAM (MA), while IL-10 inhibits it. IFN-γ is mainly secreted by lymphocytes in close
interaction with CAM and DCs (Barnes et al., 1993; Tsukaguchi et al., 1999). Additional
sources of IFN-γ (e.g., natural killer cells - NKs) are present only if both bacteria and IL-12
are present (sg term). IL-12 is mainly produced by mature DC (Giacomini et al., 2001) and
CAM (Chensue et al., 1995; Fulton et al., 1996): IFN-γ increases IL-12 secretion, while
IL-10 inhibits it (Fulton et al., 1998). Infected AAMs are the main producers of IL-10
(Giacomini et al., 2001; Hickman et al., 2002; Martinez et al., 2008).

2.10. Novel Model fitting approach
Our goals are to first recapitulate the mouse data with the model (model fitting) and second,
to use the model to determine the key mechanisms that affect specific cellular processes,
including recruitment, activation, infection and trafficking (using uncertainty and sensitivity
analysis). To accomplish these goals we use tools from nonlinear programming, statistics
and probability. Model fitting and parameter estimation of independent parameters of the
mathematical model described in equations (1)–(32) are performed by implementing and
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solving a Non-Linear-Least-Squares (NLLS) problem (see Figure 2 for a schematic diagram
of the main steps of the algorithm). Due to the large size of the system, it is necessary to
initialize the algorithm with an adequate initial guess (vector θ(0)) for the set of parameters
we want to estimate (vector θ). We accomplish this task by using techniques from
uncertainty analysis (see Uncertainty and Sensitivity Analysis section).

The parameter space was extensively sampled (5000 samples, Table S2 in Supporting
Information online for the ranges used, LHS1 ranges column) by Latin Hypercube Sampling
(LHS) and all trajectories that were outliers to the experimental data (LHS experiment 1,
LHS1) were qualitatively rejected. Then, we visually selected one of the remaining
trajectories (i.e., the one that most closely fit the data). The corresponding set of parameter
values were used as a starting point for the NLLS fitting algorithm (i.e. θ(0), see step (1) in
Figure 2). We did not use any quantitative criteria to select the trajectories that most closely
fit the data (e.g., Sum of Squared Errors - SSE). The purpose of this preliminary step
(LHS1) was to select a qualitatively adequate initial condition for the fitting and ensure that
we start the optimization close enough to a local optimum.

Since we seek to indentify the key mechanisms for immune control in lung and LN
environments during M. tuberculosis infection, we focused our analysis only on parameters
related directly to recruitment, infection/uptake, activation, killing, apoptosis, priming and
trafficking. We fit only 130 of the 210 parameters of the model: 80 parameters (primarily
related to cytokine production rates and half-life parameters) have been set to reasonable
values (based on published models and the results of LHS1). Since the model is specified as
an ordinary differential equation (ODE) system, a numerical solver generates temporal
dynamics for each variable at each iteration of the optimization algorithm for each parameter
choice (vector θ(j), see step (2)). The numerical predictions (step (3)) for the time span under
analysis are then compared to the data (step (4)). If optimality conditions are met (step (5)),
the algorithm stops. Otherwise, new parameter choices are selected (i.e., θ(j+1), see step (6))
and passed again to the numerical solver (step (7)). Model fitting has been performed by
superimposing reasonable box constraints on parameter values such as maximum and
minimum rates and half saturation constants. See Marino et al (2006) for details on the
fitting algorithm implementation. Matlab© (Copyright 1984–2009 The MathWorks, Inc.
Version 7.9.0.529 (R2009b) 32-bit 3, August 12, 2009, www.mathworks.com) platform and
its numerical methods (ode15s function) were used to numerically solve the system of 32
non-linear ordinary differential equations, as well as to perform model fitting (lsqcurvefit
function in the Optimization toolbox).

2.11. Model validation: virtual deletion and depletion
To validate the mathematical model, we recapitulate experimental approaches and known
data, for example, TNF gene knockouts and TNF neutralization studies. These can be
simulated with our mathematical model as virtual deletion and depletion simulations,
respectively, as previously described (Marino et al., 2007). Virtual deletions remove an
element from the system at day zero while virtual depletions mimic experimental conditions
where an element can be depleted or neutralized via antibody treatment at any time during
the infection. We use the time course of infected macrophages as a proxy for infection
progression (since bacterial time courses are used as input/forcing functions and are fixed).

2.12. Uncertainty and Sensitivity Analysis to reveal key factors that control immune
dynamics

There are variances in many of the parameter values of the mathematical model due to
extensive variability in the data, which often are incomplete. Such variances require a
systematic evaluation of the uncertainty in the system in order to assess effects of
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uncertainties in our parameter estimation on model outcomes. The purpose of uncertainty
analysis is to quantify the degree of confidence in the existing experimental data and
parameter estimates. We use Latin Hypercube Sampling (LHS) to extensively and
efficiently explore the parameter space. LHS is the most efficient sample-based approach
among the more general class of Monte Carlo methods (see (Marino et al., 2008) for a
review).

LHS allows an un-biased estimate of the average model output, with the advantage that it
requires fewer samples than simple random sampling to achieve the same accuracy (Mckay
et al., 1979). It is a so-called stratified sampling without replacement technique, where the
random parameter distributions are divided into N equal probability intervals, which are then
sampled. N represents the sample size.

Sensitivity analysis (SA) is a method for quantifying uncertainty in any type of complex
model. The objective of SA is to identify critical inputs (parameters and initial conditions) of
a model and to quantify how input uncertainty affects model outcome(s). We use a
generalized correlation coefficient, namely partial rank correlation coefficient (PRCC) as
sensitivity analysis index. PRCC is the most efficient and reliable among the sample-based
indexes (Saltelli and Marivoet, 1990) and it provides a robust sensitivity measure for
nonlinear but monotonic relationships between inputs and outputs, as long as little to no
correlation exists between the inputs (see (Marino et al., 2008) for details). Matlab scripts to
perform US analysis are available online at
http://malthus.micro.med.umich.edu/lab/usanalysis.html (Marino et al., 2008).

We performed two LHS experiments. The purpose of the first (LHS1) was to select an
adequate initial condition for the NLLS algorithm. LHS1 explores large ranges (several
logs) for all parameters. The set of outputs generated is filtered and only the trajectories
close enough to the data are retained. We then select one trajectory (that qualitatively
recapitulated the data) and the corresponding set of parameter values as the initial condition
for the optimization algorithm in the model fitting module. The second LHS experiment
(LHS2) was performed after an adequate fit to the data was obtained. LHS2 experiment
comprises 2500 samples where the parameter estimates resulting from the model fitting step
are used as averages of uniform probability density function distributions (Table S2, column
Baseline (best fit)). They are multiplied by 1e−2 and 1e2 to get minimum and maximum for
each interval of variation for the sampling of LHS2. Our sensitivity analysis is based on the
outputs generated by the LHS2 experiment.

When performing sensitivity analyses it is necessary to identify the output(s) that will be
correlated with parameter dynamics. Outputs such as cell numbers, recruitment,
differentiation, and activation of cells for the sensitivity analysis performed here were
chosen to indentify key mechanisms for immune control in the lung and LN environments
following infection. Specifically, we correlate changes in parameters with numbers of
infected and activated macrophages, mature and immature DCs, switching time (the time
needed to switch from an AAM dominant to a CAM dominant lung environment after
infection) and macrophage polarization functional.

2.13. Novel use of Data on Bacterial levels as a forcing function
One main assumption throughout the model building process is that data on bacterial counts
(see Figure S1 in the Supporting Information online) are used as external input/forcing
functions for the ODE model. Median trajectories as CFU in lung (CFUlung) and LN
(CFUln) were used for the model fitting and parameter estimation. In order to use the CFU
time course data as input/forcing functions for the two-compartmental ODE model, a
stepwise linear interpolation is implemented for each time step that is selected by the
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numerical solver. The ODE solver uses a variable step size algorithm to obtain the numerical
solutions and the stepwise linear interpolation is necessary to generate continuous set of data
for the CFU time courses.

To account for the effects of bacterial numbers in our uncertainty and sensitivity analysis,
we captured the effect of bacterial load over time with a parameter linked to what we labeled
virtual CFU trajectories, generated as follows. For each time point, the min and max
experimental data values are selected and used as extremes of a uniform probability
distribution. We defined 7 ranges for the lung data (one per each day on which CFU data
have been collected in lung, i.e. day 1, 8, 14, 21, 28, 43 and 99) and 6 ranges for LN data
(one per each day on which CFU data have been collected in LN, i.e. day 8, 14, 21, 28, 43
and 99). We then apply LHS to generate N samples for each range in both compartments.
Each set of N values is then sorted and labeled sequentially, from 1 to N. Virtual CFU
trajectories are generated by connecting each sample by stepwise linear interpolation and
we only connect the data points with the same label (see Figure S6, Panel A). For example,
the virtual trajectory k (k<N) connects over time all the samples labeled with k. The only
constraint superimposed was that virtual trajectories 1 and N connect the actual minimum
and maximum points (taken from the data and not from the samples), respectively (see
Figure S6, Panel B). The independence condition required by LHS is then fulfilled by
randomly shuffling the sequence 1, 2, …., N. This sequence is then used as our CFU
parameter for sensitivity analysis. If either bacterial levels in lung (CFUlung) or LN
(CFUln) show a significant PRCC with respect to the output under study, then we speculate
with confidence that different bacterial dynamics have an impact on that particular output.

3. Results
3.1. Model fitting and parameter estimation

Figure 3 and Figure 4 show the NLLS algorithm best fit on the experimental data for T cell,
macrophage and dendritic cell populations in lung and LN generated herein. For cell types
where we do not have experimental data, we predict the dynamics of these populations (e.g.
infected versus activated macrophages, or mature versus immature dendritic cells) in lung
and LN (Figure 5 and Figure 6). We discuss in detail the best fit results and parameter
estimate values in the Comparing parameter estimates section of Supporting Information
online.

3.2. T-cell fitting
In all cases, we adequately replicated the experimental data, with the exception of the late
decline of CD8+CD69+ T cells observed in LN (Figure 3E). This decline is not mirrored in
the CD4+CD69+ T cell data in LN (Figure 3B). The reasons for this decline remain unclear.
Possibilities include a reduction in antigen availability threshold for CD8+ T cell activation,
or unresponsiveness of CD8+ T cells to priming in infected LN after a period of infection. It
is also possible that CD69 is not a reliable activation marker, especially for later in infection
when other factors, such as cytokines, might affect expression of CD69. Specific reagents
for tracking primed T cells (e.g. MHC Class I and II multimers) are necessary to accurately
assess M. tuberculosis-specific primed and effector T cells. Fitting of CD69+CD8+ T cells
in the LN was not improved when parameters directly affecting naïve T cell recruitment, T
cell proliferation and/or differentiation in the LN were varied, even by several orders of
magnitude (data not shown). In addition, no decline was observed in effector CD8+ T cell
data in the lung (Figure 3F), suggesting that mechanisms other than CD8+ T migration from
the LN affect effector CD8+ T cell numbers in lung.
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3.3. Macrophage fitting and prediction
Figure 4 shows the fitting results for total macrophage (A, B) and dendritic cell (C, D)
populations in lung and LN compartments. Both cell types increase 2-fold during infection.

Our model predicts that resting (Figure 5A, B) and activated (Figure 6A, B) macrophages
comprise the large majority of the macrophage populations in lung and LN. In agreement
with the literature (Cooper, 2009), our prediction indicates that infected macrophages
represent approximately 1–10% of the total macrophage population (Figure 5A, B). The
model demonstrates that there is an initial increase in AAM, followed by a large increase in
CAM (at day 10 post infection) in lung (Figure 6A). However, in LN, there is a much
smaller increase in CAM, and at later time points, the AAM and CAM populations are equal
in the LN (Figure 6B).

This difference is likely due to corresponding macrophage polarization scenarios (or MPF,
see Figure 6C, D), with 2–4 fold higher CAM polarization occurring in lung. Less MPF
corresponds in the model to fewer classically activated macrophages, which may contribute
to impaired control of infection. There are also higher bacterial numbers in lung at all time
points, compared to LN (see Figure S1), affecting macrophage polarization.

In the “best fit” scenario shown in Figure 6, we predict a faster switching time when
comparing to the results of Day et al (Day et al., 2009). Our switching time is within 10 to
13 days in the lung (versus 50 days predicted by Day et al., see Figure 2A in (Day et al.,
2009)), and 17 to 22 days in the LN (not predicted by Day et al). Our uncertainty and
sensitivity analysis experiments (LHS2, see Sections 3.6–3.8 and Table S4) resulted in
values for switching time up to 60, 70 and 106 days in the lung and 27–30 days in the LN
(data not shown). However, the fitting in those cases was not good. One possible
explanation is that we modeled murine infection data, while Day et al predicted human TB
infection

3.4. Dendritic cell fitting and predictions
Comparing lung and LN compartments, the scenario predicted for the dendritic cell subsets
shows completely different profiles. By as early as 2 weeks post infection, mature DCs
represent the majority of DCs in the lung (Figure 5C), while in LN they are more than 1 log
lower than the immature phenotype (Figure 5D), probably due to the difference in the
amount of M. tuberculosis bacilli in each compartment available for interaction with DCs.
The first mature DCs appear in LN 10–15 days post infection, likely as a result of trafficking
of infected DC from the lung; this is in line with published experimental findings
(Chackerian et al., 2002; Reiley et al., 2008; Wolf et al., 2008), and may account for the
relatively slow initiation of the adaptive T cell response to this pathogen.

3.5. Model validation: virtual depletions
We focused our model validation on virtual depletions of three cytokines represented in the
model: TNF, IFN-γ and IL-10. Since CFU data are available to day 99 during infection, we
start the depletions at day 100.

Experimental data demonstrate a key role for both TNF (Flynn et al., 1995) and IFN-γ
(Flynn et al., 1993) in mounting and/or maintaining a protective response to M. tuberculosis
(mice and humans), while data on IL-10 depletion are not conclusive. Some data point to
necessary roles for IL-10 in infection control (Denis and Ghadirian, 1993; Murray et al.,
1997; Turner et al., 2002), while others suggest IL-10 plays no part in the dynamics (Erb et
al., 1998; North, 1998).
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Our virtual TNF depletion experiment confirms the key role of TNF demonstrated in the
literature (Ehlers, 2003; Flynn et al., 1995): infected macrophage populations (in lung and
LN) increase after TNF is depleted from both compartments (data not shown), recapitulating
that TNF depletion is detrimental for the host. Similar dynamics are confirmed in virtual
IFN-γ depletion (data not shown). Virtual IL-10 depletion suggests a key regulatory role for
IL-10 in MDC maturation and trafficking to the LN (MDCs in LN significantly increase
after IL-10 depletion, data not shown), as well as in controlling classical macrophage
activation and macrophage polarization, especially in the lung (the MPF term δ reaches its
maximum after IL-10 depletion).

3.6. TNF effects on phagocyte populations and macrophage polarization
From our sensitivity analysis results, TNF emerges as a major factor in determining
macrophage and dendritic cell phenotypes and numbers (Figure 7A, B, Table S4). TNF-
dependent, but not TNF-independent recruitment of resting macrophages (rc2, rc2a)
significantly increased the number of infected and activated macrophages (both CAM and
AAM), in lung and LN. This is likely due to an increase in the potential pool of new resident
macrophages for infection and activation. TNF-dependent recruitment of immature DCs to
the lung (rc4) also has a positive impact on the number of mature DCs in the same
compartment (Table S4). TNF-independent recruitment of resting macrophages (rc1 and
rc1a) appears only to positively affect the AAM population in lung and LN (Figure 7A, B).
TNF-dependent apoptosis mechanisms of infected macrophages (k5, k5a) are generally the
strongest negative regulator of all macrophage populations, both in lung and LN (Figure 7A,
B).

3.7. Effects of macrophage and DC infection rates on phagocyte populations and
macrophage polarization

Higher macrophage infection rates in the lung and LN (k1 and k1a) obviously increase the
number of infected macrophages, but they also increase MPF in the lung early in infection
(Table S4). Higher overall macrophage infection rates reduce the number of AAM in both
compartments, likely due to the pro-inflammatory cytokine production by macrophages in
response to infection. The mature DC population is positively affected by higher uptake/
infection rates (k12 and k12a) in both compartments (Table S4): higher uptake rate by DC in
the lung has a strong effect only very early during infection, where more MDC are generated
in the lung and, as a consequence, more MDC can migrate to the LN. Bacterial dynamics
have a modest positive effect on macrophage infection in the lung and on DC maturation in
both compartments (Table S4).

3.8. IL-10 effects on phagocyte populations
The effect of IL-10 on total numbers of CAM and MDC is represented by the term

 in the MPF terms δ (equation (1), equation (3) and equation (4)) and δLN
(equation (5), equation (7) and equation (8)). The sensitivity analysis predicts that hsI10 is
strongly positively correlated with numbers of these cells (Figure 7C). This follows since

mathematically this term simplifies to  which gets smaller as IL-10 levels get
larger and as hsI10 gets much larger compared to IL-10. IL-10 regulation (hsI10 and hsI10a) is
consistently important for balancing CAM and AAM in the lung, as well as dendritic cell
maturation (hsI10-DC and hsI10-DCLN) and MPF (Figure 7C): more IL-10 results in a decrease
in CAM and MDC, and an increase in AAM, in lung and LN. This has the effect of
dampening MPF in the lung. This result agrees with a published study where IL-10 may
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limit DC maturation and migration upon bacterial uptake (Demangel et al., 2002). Switching
time (AAM to CAM environment) is negatively affected by higher IL-10 saturation
thresholds: more IL-10 is needed to skew the macrophage population to an AAM phenotype.

Not surprisingly, the switching time and the numbers of CAM and AAM in both the lung
and the lymph node are dependent on their respective activation rates (CAM: k2 and k2a;
AAM: k7 and k7a). The activation rates for AAM have a significantly positive effect on the
total number of infected macrophages, since AAM cannot eliminate bacilli efficiently (Table
S4).

4. Discussion
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is an
extraordinarily successful pathogen that primarily infects the lungs. In most cases, the
human host can control bacteria replication and dissemination, and maintain an
asymptomatic infection (termed latent tuberculosis). A small percentage of humans do not
control the infection and develop active tuberculosis, either as primary disease or
reactivation of a latent infection (due to factors such as HIV infection and aging). Why and
how individuals experience different outcomes is still poorly understood. Experimental
studies have uncovered several immune factors that influence host control of infection and
maintenance of latency. Because these studies are complex, expensive, and sometimes not
possible in vivo, we take a computational approach and developed a detailed, two
compartmental (i.e., lung and lymph node) mathematical model to investigate some of the
mechanisms involved in the complex immunobiology of tuberculosis. The mathematical
model reflects the complexity of the disease as well as the need for experimentalists to
generate data for as many mechanistic details as possible to allow useful and specific
predictions. Model calibration and validation is ultimately based on experimental data.

The outcome of M. tuberculosis infection is believed to be dependent on a balance of pro-
and anti-inflammatory factors in the infected tissues. In this work, we focused on the effects
of pro-inflammatory (TNF) and anti-inflammatory (IL-10) cytokines on the spectrum of
phagocyte populations in lung and LN. Our results demonstrate that TNF is a major
mediator of recruitment of phagocytes (macrophages and dendritic cells) to the lungs, but it
does not differentially affect CAM and AAM numbers. In contrast, IL-10 appears to be a
factor in balancing which macrophage environment is dominant in the lung and LN: AAM
(anti-inflammatory) or CAM (pro-inflammatory). The outcome of infection and the severity
of the disease may well be dependent on the balance of macrophage types in the lungs (Day
et al., 2009), as this likely contributes to pathology. This suggests that biasing the
macrophage population to an AAM phenotype, perhaps due to co-infection with other
pathogens or the presence of underlying lung disease such as asthma, could be detrimental to
control of tuberculosis. In other words, pushing the lung to an even more TH2 setting will
increase the AAM population and shift the balance (or make the shift to CAM harder). In
contrast, biasing to a CAM environment could increase inflammation and resulting damage
and pathology. A balance must be reached that facilitates reduction in bacterial numbers yet
preserves lung tissue. Bacterial numbers in lung had a surprisingly modest effect on
macrophage dynamics, positively affecting the numbers of infected macrophages (MI) and
MDC, as well as MPF. In contrast, our previous studies using an agent-based model
approach demonstrated a major role for bacterial numbers in size of the granuloma (Ray et
al., 2009), which one could interpret loosely as inflammation. This highlights the importance
of using different mathematical approaches to explore a specific biological question to
uncover the effects of different processes that are present in the system (Gammack et al.,
2005). Further work to reconcile these findings is ongoing.
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In this work we developed a complex, two compartmental (i.e., lung and LN), non-linear
ODE system (32 equations, 210 parameters) to consistently replicate data from a murine
model. We used data on bacterial numbers over time to drive temporal immuno-dynamics of
cells and cytokines in lung and LN during M. tuberculosis infection. By combining
nonlinear programming, statistics, and probability techniques, we described a sophisticated
methodology to adequately address model fitting and extensive uncertainty and sensitivity
analysis of a large and complex nonlinear system of ODEs. This model can now be
exploited in future work to incorporate data with variable and evolving bacterial dynamics to
explore the effects on all processes in the system.

Model fitting was implemented as a generalized non linear least squares (NLLS) algorithm,
using stepwise linear interpolations of the median trajectories for the CFU data as input
functions. Uncertainty and sensitivity analysis was performed by combining Latin
Hypercube Sampling (LHS) and Partial Rank Correlation Coefficients (PRCCs) to predict
key mechanisms affecting cellular processes during infection within and between LN and
lung. For the first time, to our knowledge, we describe a method to incorporate a function
(CFU over time) as a parameter for the US analysis. We accomplished this by projecting the
variability of the CFU data over time into a set of nested stepwise linear interpolators and
sequentially labeling these curves based on the order of the samples for each time point.

Our model represents the first step in integrating multi-organ experimental data in a
quantitative setting. By focusing on the cytokines important for the interplay between
phagocyte populations and inflammation, we have identified roles for TNF and IL-10 in
control of the lung environment in tuberculosis. This model can be further exploited to
investigate key questions about lymphocyte dynamics and effects on control of infection and
pathology, and trafficking of cells between LN and lungs. Additional data will be necessary
for these investigations, which are crucial to our understanding of the dynamics of
tuberculosis.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Diagram of macrophage dynamics in the lung and lymph node that are represented in the
model. The parameters in parenthesis represent how each mechanism is described in the
model equations. CFU input/forcing functions are represented by the graphs (see Figure S1
for details on these graphs) on the branches describing M0 differentiation to CAM (or as
referred in the literature as M1), AAM infection, and MI bursting.
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Figure 2.
Schematic diagram of the model fitting module.  minimization algorithm,  numerical
method. (*)Technically a stationary point is found (that could be either a local or global
minimum, as well as a saddle point)
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Figure 3.
Fitting of the model (CD4+ and CD8+ T cell populations) to the data. The black curves
represent the best fit of our mathematical model to the data, while all the data are shown by
red x. Panel A: total number of CD4+ T cells in the LN (Naïve CD4 [N4]+ Precursor Th1

). Panel B: number of CD69+/CD4+ T cells in the LN

( . Panel C: number of CD69+/CD4+T cells in the Lung
(Precursor Th1 [T̂1] +Th1 [ T1 ]). Panel D: total number of CD8+T cells in the LN (Naïve

CD8 [N8]+Precursor effector CD8  producing CD8 ). Panel
E: number of CD69+/CD8+ T cells in the LN (Precursor effector CD8 

producing CD8 . Panel F: number of CD69+/CD8+ T cells in the Lung
(Precursor effector CD8 [ T80 ]+IFN-γ producing CD8 [ T8 ]+CTL [ TC ]).
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Figure 4.
Fitting of the model (macrophage and dendritic cell populations) to the data. The black
curves represent the best fit of our mathematical model to the data, while all the data are
shown by red x. We equally split CD11b+c+ and CD11b+c- cell data between Macs and
DCs. We tried other alternative Mac/DC proportions (data not shown) where we first
assigned 30% of CD11b+c+ to DC and 70% of CD11b+c+ to macrophages and then
viceversa. The major impact is on DC data and the fitting was adjusted to match the new
data. The major parameter changes were on DC recruitment parameters (lower rc3 and rc4,
to match the lower DC data) and higher priming parameters (k14 and k17, to increase the
resulting lower levels of primed T cells in the LN). Panel A: estimated total number of
macrophages in the Lung. Panel B: estimated total number of macrophages in the LN. Panel
C: estimated total number of DCs in the lung. Panel D: estimated total number of DCs in the
LN.

Marino et al. Page 20

J Theor Biol. Author manuscript; available in PMC 2011 August 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Model predictions for macrophage and dendritic cell subpopulations. Panel A: total number
of resident (M0) and infected (MI) macrophages in the Lung. Panel B: total number of
resident (M0) and infected (MI) macrophages in the LN. Panel C: total number of immature
and mature DCs in the lung. Panel D: total number of immature and mature DCs in the LN.
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Figure 6.
Model predictions for macrophage and dendritic cell subpopulations. Panel A: total number
of classically activated (CAM) and alternatively activated (AAM) macrophages in the Lung.
AAM are divided between uninfected (M2) and total (M2 + MI). Panel B: total number of
classically activated (CAM) and alternatively activated (AAM) macrophages in the LN.
AAM are divided between uninfected (M2) and total (M2 + MI). Panel C: dynamics of δ,
defined as Macrophage polarization functional (MPF) in the lung. Panel D: dynamics of
δLN, MPF in the LN.
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Figure 7.
Sensitivity analysis results for the LHS2 experiment. The correlation index is Partial Rank
Correlation Coefficient (PRCC) and it is shown on the y-axes- only significant results are
shown. In this context, a positive impact of a particular mechanism on a specific output
(positive PRCC) means that if that mechanism is increased/enhanced, the output will likely
increase, or vice versa. On the other hand, a negative impact (negative PRCC) is when an
increase in a specific mechanism results in a decrease in the output, and vice versa. There is
a strict criteria for significance (p<1e-3) and only PRCC>±0.15 are shown. Panel A: TNF-
related mechanisms affecting macrophage numbers (infected, CAM and AAM) in the lung
at day 100 post infection. Panel B: TNF-related mechanisms affecting macrophage numbers
(infected, CAM and AAM) in LN at day 100 post infection. Panel C: IL-10-related
mechanisms affecting MPF (δ), activated macrophage (CAM and AAM) and mature DC
numbers, as well as switching time, in each compartment (lung and lymph node).
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Table 1

list of all the variables represented in the 32 equations ODE system. Measure units are number of cells or
bacteria in the whole organ (lung or lymph node) and pg/ml for cytokine concentrations.

Variable
(# of equations)

Lung (18) Lymph Node (20)

Resting [M0], classically activated
Resting M0

LN , classically activated

Macrophages
(8)

[MA], alternatively activated [M2]
infected [MI]

MA
LN , alternatively activated M2

LN ,

infected MI
LN

Dendritic Cells
(4)

Immature [IDC],
Mature [MDCL]

Immature [IDCLN],
Mature [MDC]

Lymphocytes
(12)

Precursor Th1 [T ̂1, Th1 [T1]
Precursor effector CD8 [T80],
IFN-γ producing CD8 [T8],

CTL [TC]

Naïve CD4 [N4], Naïve CD8 [N8]

Precursor Th1 T̂ 1
LN , Th1 T1

LN ,

Precursor effector CD8 T80
LN ,

IFN-γ producing CD8 T8
LN , CTL TC

LN

Cytokines
(8)

TNF [Fα], IFN-γ [Iγ],
IL 12 [I12], IL 10 [I10] TNF Fα

LN , INF − γ Iγ
LN ,

IL12 I12
LN , IL10 I10

LN
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