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The global financial crisis of 2007–2009 exposed critical weaknesses
in the financial system. Many proposals for financial reform address
the need for systemic regulation—that is, regulation focused on the
soundness of the whole financial system and not just that of in-
dividual institutions. In this paper, we study one particular problem
faced by a systemic regulator: the tension between the distribution
of assets that individual banks would like to hold and the distribu-
tion across banks that best supports system stability if greater
weight is given to avoiding multiple bank failures. By diversifying
its risks, a bank lowers its own probability of failure. However, if
many banks diversify their risks in similar ways, then the probability
of multiple failures can increase. As more banks fail simultaneously,
the economic disruption tends to increase disproportionately. We
show that, in model systems, the expected systemic cost of multiple
failures can be largely explained by two global parameters of risk
exposure and diversity, which can be assessed in terms of the risk
exposures of individual actors. This observation hints at the possi-
bility of regulatory intervention to promote systemic stability by
incentivizing a more diverse diversification among banks. Such in-
tervention offers the prospect of an additional lever in the armory
of regulators, potentially allowing some combination of improved
system stability and reduced need for additional capital.
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The recent financial crises have led to worldwide efforts to
analyze and reform banking regulation. Although debate

continues as to the causes of the crises, a number of potentially
relevant factors have been identified. Financial regulation was
unable to keep pace with financial innovation (1, 2), was frag-
mented in its nature (2), and did not address important conflicts of
interest (1, 3–7). More generally, an issue raised by the crises is
that of individual vs. systemic risk: regulation was focused on the
health of individual firms rather than the stability of the financial
system as a whole (1, 2, 4, 8–10). In this paper, we investigate a
particular issue that, although not necessarily at the heart of the
recent crises, is of great relevance given the newly found interest
in systemic regulation. Specifically, we explore the relationship
between the risks taken by individual banks and the systemic risk
of essentially simultaneous failure of multiple banks.
In this context, we use a deliberately oversimplified toy model

to illuminate the tensions between what is best for individual
banks and what is best for the system as a whole. Any bank can
generally lower its probability of failure by diversifying its risks.
However, when many banks diversify in similar ways, they are
more likely to fail jointly. This joint failure creates a problem
given the tendency for systemic costs of failure to grow dispro-
portionately with the number of banks that fail. The financial
system can tolerate isolated failures, but when many banks fail at
one time, the economy struggles to absorb the impact, with se-
rious consequences (11–13). Thus, the regulator faces a di-
lemma: should she allow banks to maximize individual stability,
or should she require some specified degree of differentiation for
the sake of greater system stability? In banking, as in many other
settings, choices that may be optimal for the individual actors

may be costly for the system as a whole (14), creating excessive
systemic fragility.
Our work complements an existing theoretical literature on

externalities (or spillovers) across financial institutions that im-
pact systemic risk (15–32). Much of this literature has focused on
exploring liability-side interconnections and how, although these
facilitate risk-sharing, they can also create the conditions for con-
tagion and fragility. For instance, some researchers have shown
the potential for bankruptcy cascades to take hold, destabilizing
the system by creating a contagion of failure (20, 26). When one
firm fails, this failure has an adverse impact on those firms to
whom it is connected in the network, potentially rendering some
of these susceptible to failure. Most obviously affected are those
firms to whom the failed institution owes money, but also, the
firm’s suppliers and even those companies that depend on it for
supplies can be put in vulnerable positions. Another insightful
strand of research has emphasized the potential for other forms
of interdependence to undermine systemic stability, irrespective
of financial interconnections: fire sales of assets by distressed
institutions can lead to liquidity crises (28). In a very recent
approach, the financial crisis is understood as a banking panic in
the “sale and repurchase agreement” (repo) market (33). Other
recent studies have drawn insights from areas such as ecology,
epidemiology, and engineering (34–39).
The present paper builds on the early work by Shaffer (22) and

Acharya (23) to explore the systemic costs that attend asset-side
herding behavior. Other recent contributions in this direction
have considered situations where assets seem uncorrelated in
normal times but can suddenly become correlated as a result of
margin requirements (refs. 29 and 32 have comprehensive reviews
of relevant contributions). In the current work, we use the sim-
plest possible model to investigate other systemic and regulatory
implications of asset-side herding, thereby knowingly side-step-
ping these and many other potential features of real world fi-
nancial networks. We do not claim that asset-side externalities
were at the center of the recent crisis or were more important
than other contributory factors. Also, we do not take any posi-
tion on the extent to which the asset price fluctuations that we
consider are because of external economic conditions altering
the fair value of certain assets, fire sale effects temporarily de-
pressing the value of assets, price bubbles leading to banks
overpaying for assets whose prices subsequently collapse when
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the bubble bursts, general loss of confidence because of un-
certainty, global economic imbalances, or other factors. Rather,
we study asset-side herding, because it can have very important
and not fully explored implications. Possible extensions of our
work are discussed in SI Text.
We present a framework for understanding the tradeoffs be-

tween individual and systemic risk, quantifying the potential
costs of herding and benefits of diverse diversification. We then
show how systemic risk can be largely captured by two directly
observable features of a set of bank allocations: the average
distance between the banks in the allocation space and the bal-
ance of the allocations (i.e., distance from the average allocation
to the individually optimal allocation). We hope that our work
may offer insight to policy makers by providing a set of tools for
exploring this particular facet of systemic risk.

Model
Consider a highly stylized world, with N banks and M assets. An
asset here can be considered as something in which a bank can
invest and that can inflict losses or gains proportional to the level
of investment. At time t=0, each bank chooses how to allocate its
investments across the asset classes. At some later time, t= 1, the
change in value of each asset is drawn randomly from some dis-
tribution. All assets are assumed to be independent and identi-

cally distributed. A bank has then failed if its total losses exceed
a given threshold. We recognize that many other factors may
cause bank failures, including fire sale effects, interconnections
between banks, liquidity issues, and general loss of confidence, but
these issues are not the focus of the present work.
For illustrative simplicity, we will take the asset price fluctu-

ations to be drawn from a student t distribution with 1.5 degrees
of freedom, a long-tailed distribution often used in financial
models (40, 41). The distribution is additionally specified by
a probability p that a bank will fail if all its investments are in
a single asset class. As we will show, our main findings seem
remarkably robust to changes in the detailed assumptions used,
including the choice of distribution and the probability p.
We define Xij as the allocation of bank i to asset j. We also

define Vj as the loss in value between time t = 0 and t = 1 of asset
j (with negative losses representing profits) drawn from a student
t distribution as described above. The total loss incurred by bank
i at time t = 1 is, thus, Yi ¼

PM
j¼1Xij Vj. Bank i is then said to have

failed if Yi > γi (that is, if its total losses exceed a given threshold γi
set by its capital buffer). Additional model details are in SI Text.

Results
We now examine the outcomes of this system. Fig. 1A illustrates
how the probability of individual bank failure depends on the

Fig. 1. Probability of bank failure with two banks and two asset classes, A1 and A2. A fundamental tension exists between individual and system risk. Shown
are the results of simulations in which the initial value of each asset is one; the loss incurred by each asset after some time t is sampled from a student t
distribution with 1.5 degrees of freedom with mean = 0 and a 10% chance of being great than 1; and both banks have capital buffers such that a total loss
greater than 1 causes failure. Shown is the average fraction of failures over 106 loss samplings. Each bank’s individual probability of failure is minimized by
investing equally in A1 and A2 (i.e., diversifying uniformly) (A). Uniform diversification, however, does not minimize systemic risk. Instead, the probability of
joint failure is minimized by having one bank invest entirely in A1, whereas the other invests entirely in A2 (B). We next consider the cost function c = ks,
where k is the number of failed banks, and with s moving from (C) a linear system cost of bank failure (s = 1) to (D and E) a system cost that is progressively
convex (s = 1.3 in D; s = 2 in E). The lowest cost configurations are marked by a gray sphere.
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allocation between two asset classes when p = 10%. The in-
dividually optimal allocation for any given bank, in the sense of
minimizing risk for expected return, is to distribute equal
amounts into each asset class. We call this individually optimal
allocation O*, and we call the associated probability of individual
failure p*. When all banks are at the individual optimum, we call
the configuration uniform diversification, because all banks
adopt a common diversification strategy. Uniform diversification,
thus, represents a state of the banks maximally herding together
in the sense of adopting the same set of exposures. Readers fa-
miliar with the standard finance literature will recognize these
allocations as those allocations selected under modern portfolio
theory (42).
Fig. 1B illustrates the probability of total system failure in this

system of two banks, pSF (i.e., the probability that both banks fail
simultaneously). Unlike individual failure, we find that the prob-
ability of joint failure is not minimized by uniform diversification.
Instead, a reduction in the probability of joint failure can be
achieved by moving the banks away from each other in the space
of assets. Indeed, the minimal probability of joint failure is ach-
ieved by having each bank invest solely in its own unique asset,
which we will call full specialization. Thus, we observe a tension
between what is best for an individual bank and what is safest for
the system as a whole. The regulator faces a dilemma: should she
allow institutions to maximize their individual stability or regulate
to safeguard stability of the system as a whole?
To explore this dilemma, we introduce a stylized systemic cost

function c= ks, where k is the number of banks that fail and s ≥ 1
is a parameter describing the degree to which systemic costs
escalate nonlinearly as the number of failed banks increases.
When many banks fail simultaneously, private markets struggle
to absorb the impact. Instead, society incurs real losses, and the
economy’s long-term potential may be affected (13). Our par-
ticular choice of cost function is, of course, an illustrative sim-
plification, but as we show below, our results are robust to
considering alternative nonlinear cost functions, and our model

is easily extendable to consider any particular cost function
of interest.
Fig. 1 C–E shows the expected systemic cost of failure C for

two banks and two asset classes using various values of s. For
a linear cost function (s = 1), expected cost is minimized under
uniform diversification. In this special case, individual and sys-
temic incentives are aligned. However, when we consider more
realistic cases where the cost function is convex (so that the
marginal systemic cost of bank failure is increasing), the con-
figuration that minimizes C is no longer uniform diversification
but rather, a configuration with diverse diversification. As s
increases, an increasingly larger departure from uniform di-
versification is required to minimize C.
In Fig. 2, we illustrate a more general case of five banks

investing in three assets, randomly sampling 105 asset allocations.
For varying degrees of nonlinearity s, we show the configuration
with the lowest expected cost C. When the cost function is linear,
the lowest cost configuration is again uniform diversification O*,
where each bank allocates one-third of its investments to each
asset. As we increase s, we find that pushing the banks away from
uniform diversification to diverse diversification reduces C.
To further explore the relationship between the positioning of

banks in asset space and the expected systemic cost, we define D
as the average distance between the asset allocations of each pair
of banks, scaled so that the distance between banks exposed to
nonoverlapping sets of assets is one. We also define a second
parameter G to describe how unbalanced the allocations are on
average, which is defined as the distance between the average
allocation across banks and the individually optimum allocation
O*. SI Text has more detailed specifications of D and G. Note
that, if all banks adopt the individually optimum allocation, both
D and G are zero. Thus, in this case, all banks either survive or
fail together, and the system behaves as if there were only
a single representative bank. This finding is true regardless of
assumptions about how the asset values fluctuate, but of course,
it may not extend to more complex models with features such as
stochastic heterogeneity across banks.

Fig. 2. Lowest expected cost configurations for different levels of cost function nonlinearity s. (A–E) We consider five banks investing in three assets, with
losses drawn from a student t distribution with 1.5 degrees of freedom having a mean = 0 and a 10% chance of being great than the banks’ failure threshold
of 1. Shown is the lowest expected cost allocation of 105 randomly selected allocations over 106 loss samplings. As s increases, the lowest expected cost
configuration moves farther from uniform diversification. The cost function for various values of s is shown in F.
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In Fig. 3, we show expected cost C as a function of D and G
across 105 random allocations of five banks on three assets. As we
have already seen in Fig. 2, in the special case of s = 1, expected
cost is minimized by uniform diversification at D = G = 0; thus,
expected cost is increasing in both distanceD and imbalanceG. At
larger values of s, expected cost remains consistently increasing in
imbalance G, but the relationship between cost and distance D
changes. At s = 1.2, cost is large for distances that are either too
small or too large. The relationship between distance and cost is
clearly nonlinear, and cost is lowest at an intermediate value ofD.
As s increases to s = 4, cost is now lowest when distance is large,
and thus, cost is decreasing inD. Providing additional evidence for
the ability of D and G to characterize systemic cost, regression
analysis finds that D, D2, and G together explain over 90% of the
variation in log(C).
All of this information suggests that it may be possible in

principle, and it could provide a useful guide in practice, to
regulate expected systemic cost. For a given level of capital,
regulators might set a lower bound on distance D and an upper
bound on imbalance G. As shown in Fig. 4, fixing G = 0 and
requiring D to exceed some value of DMin results in a substantial
reduction in the capital buffer needed to ensure that the worst-
case expected cost remains below a given level. We particularly
consider the worst-case expected cost to take into account po-
tential strategic behavior on the part of the banks. This most
pessimistic case shows that, even if the banks are colluding to
purposely maximize the probability of systemic failure, regulating
D and G creates substantial benefit for the system. Fig. 4 also
illustrates the robustness of our results to model details. We
observe similar results when varying model parameter values,
including the number of banks and assets (Fig. 4A), the non-
linearity of the cost function (provided that s is not too low) (Fig.
4B), and the value of p (Fig. 4C). We also observe similar results
when varying the distribution of the asset prices (provided that
the tails of the distribution are heavy enough) (Fig. 4D) and
when considering assets with a substantial degree of correlation
(Fig. 4E and SI Text). Furthermore, Fig. 4F shows that our
results continue to hold when considering alternate cost func-
tions in which (i) the system can absorb the first i bank failures
without incurring any cost, with systematic cost then increasing
linearly for subsequent failure (i = 2 in our simulations), and (ii)
each of the first i failures causes a systemic cost C1, whereas each

additional failure above i causes a larger systemic cost C2 (i = 2,
C1 = 5, and C2 = 30 in our simulations; SI Text has discussion of
the various cost functions). This robustness is extremely impor-
tant, because many of these features are difficult to determine
precisely in reality. Because our results do not depend on the
details of these assumptions, the importance of diverse di-
versification may extend beyond the simple model that we
consider here.
Regulatory changes under discussion are estimated to require

banks to increase their Core Tier One capital substantially in the
major developed economies (43). In this context, the potential
ability of diverse diversification to reduce capital buffers is of
great economic significance. Estimates suggest that, for each 1%
reduction that does not compromise system stability, sums in ex-
cess of $10 billion would be released for other productive pur-
poses, with the economic benefits likely to be substantial (43, 44).

Discussion
There is a growing appreciation that prudent financial regulation
must consider not only how a bank’s activities affect its individual
chances of failure but also how these individual-level choices
impact the system at large. The analysis presented in this paper
highlights a particular aspect of the problem that a systemic
regulator will face: when the marginal social cost of bank failures
is increasing in the numbers of banks that fail, systemic risk may
be reduced by diverse diversification. This nonlinearity of the
systemic cost is a natural assumption. The societal costs of
dealing with bank failures grow disproportionately with the
numbers that fail. Hence, the regulator may wish to give banks
incentives to adopt differentiated strategies of diversification.
These results also have implications beyond the financial sys-

tem. For example, the tension between individually optimal
herding and systemically optimal diversification is a powerful
theme in ecological systems (45, 46). Natural selection pressures
organisms in a given species to adapt (in the same way) to their
shared environment. However, maintenance of diversity is es-
sential for protecting the species as a whole from extinction in
the face of fluctuating environments and emergent threats such
as new parasite species. Herding is also an issue for human so-
cieties in domains other than banking. In the context of in-
novation, for example, people often herd around popular ideas

Fig. 3. The systemic risk presented by a given set of allocations is largely characterized by two distinct factors: (i) the distance between the banks’ allocations
D and (ii) the imbalance of the average allocation G, defined as the distance between the average allocation and the individually optimal allocation. Shown is
the expected cost C associated with 105 randomly chosen allocations as described in Fig. 2. When the cost function is linear (s = 1), the configuration that

minimizes system cost has the banks herding in selecting the portfolio that minimizes individual risk of failure,
�
that is;

1
3
;
1
3
;
1
3

�
(A). As the cost function

becomes more nonlinear (s = 1.2), the cost-minimizing distance between the banks becomes larger. Here, the configurations that minimize system cost are
associated with having banks at an intermediate distance from each other, while still having low imbalance G (B). With stronger nonlinearity (s = 4), the cost-
minimizing configuration puts banks as far apart from each other as possible in asset space—large D (although still keeping the average location as close as
possible to the individual optimum, i.e., small G) (C). Regressing log(C) against D, D2, and G explains 97% of the variation in cost at s = 1, 90% of the variation
in cost at s = 1.2, and 99% of the variation in cost at s = 4.
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and fads, creating systemic costs by making it difficult for new
ideas to be appreciated (47).
In our model, the expected systemic cost of bank failures is

largely explained by two global parameters of risk exposure and
diversity. Both these parameters can be derived by the regulator
without the need for complicated calculations of systemic risk,
and they can be decomposed into their contributions from in-
dividual actors. We also show that a given level of expected
systemic cost can be achieved with a more efficient use of capital
if the regulator is able to encourage a suitable level of diversity
between banks in the system. Thus, this framework presents
a potentially useful tool for systemic regulation; our analysis
points to the possibility of regulation that combines knowledge of
system aggregates and individual bank positions to identify and
induce the desired degree of diverse diversification. The practical
design of this aspect of regulatory strategy can only emerge from
a fuller program of research.
In the meantime, it is our hope that the insights developed in

this paper can weigh on the deliberations that are gathering pace
surrounding the reform of financial regulation. Active discussion

is under way regarding the design of capital surcharges based on
an individual bank’s contribution to systemic risk (4, 10, 48).
Meanwhile, it is increasingly recognized that financial reporting
must improve significantly to support the function of the systemic
regulator, and discussion has turned to the practical details of data
gathering and analysis (1, 4, 8–10). The basic notion that common
diversification strategies can increase systemic risk is not entirely
absent from current policy thinking (7), and it predates the recent
crisis (49); however, it has received relatively little attention in the
literature. A priority for future research is to convert theoretical
insights into practical approaches for regulators.
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Fig. 4. Imposing aminimumon the distanceD can appreciably reduce the capital needed to ensure a givenmaximumexpected cost in ourmodel. For a given set
of parameters M, N, and p and a given asset price distribution, we calculate the expected systemic cost C when all banks act to minimize their individual risk
(uniform diversification withG = 0 andD = 0). We then impose aminimum average distanceDMin, while keepingG = 0. Forcing the banks apart from each other
lowers the expected cost for a given level of capital. Thus, for each value of DMin, we find the level of capital for which the worst case (highest expected cost) of
106 random allocations still gives an equivalent expected cost (within 2%) to that incurred under uniform diversification. Simulation results were also verified
using nonlinear optimization. Shown in blue is the result for a base case offive banks, three asset classes, s= 4, and the asset prices each generated independently
from a student t distribution with 1.5 degrees of freedom having p = 10% probability of failure for a bank invested only in one asset. We see that, as DMin

increases, banks need to hold less capital in reserve to ensure the same level of system stability.We then show that this result is qualitatively robust to varying the
model parametersM andN (A), the nonlinearity of the cost function s (B), the type of distribution (student twith 1.5 degrees of freedom, student twith 3degrees
of freedom, normal distribution, or a mix with the loss having a 5% probability of being from a uniform distribution in the range 0–10 and a 95% probability of
being fromanormal distribution;D), the degree of correlation between the asset pricefluctuations (E), and the choice of cost function, where k is the number of
failed banks (F). The alternative cost functions are discussed in greater detail in SI Text. In all of the above cases, the loss distributions on a single asset have
a mean = 0 and a p = 10% chance of being greater than the failure threshold of 1. Our results are also robust to changing this failure probability p (C).
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