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SNARE proteins play a critical role in intracellular membrane fusion
by forming tight complexes that bring two membranes together
and involve sequences called SNARE motifs. These motifs have a
high tendency to form amphipathic coiled-coils that assemble into
four-helix bundles, and often precede transmembrane regions.
NMR studies in dodecylphosphocholine (DPC) micelles suggested
that the N-terminal half of the SNARE motif from the neuronal
SNARE synaptobrevin binds to membranes, which appeared to
contradict previous biophysical studies of synaptobrevin in lipo-
somes. NMR analyses of synaptobrevin reconstituted into nano-
discs and into liposomes now show that most of its SNARE motif,
except for the basic C terminus, is highly flexible, exhibiting cross-
peak patterns and transverse relaxation rates that are very similar
to those observed in solution. Considering the proximity to the
bilayer imposed by membrane anchoring, our data show that most
of the synaptobrevin SNARE motif has a remarkable reluctance to
bind membranes. This conclusion is further supported by NMR ex-
periments showing that the soluble synaptobrevin SNARE motif
does not bind to liposomes, even though it does bind to DPC mi-
celles. These results show that nanodiscs provide a much better
membrane model than DPC micelles in this system, and that most
of the SNAREmotif of membrane-anchored synaptobrevin is acces-
sible for SNARE complex formation. We propose that the charge
and hydrophobicity of SNARE motifs is optimized to enable forma-
tion of highly stable SNARE complexes while at the same time
avoiding membrane binding, which could hinder SNARE complex
assembly.
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Traffic at most eukaryotic membrane compartments is gov-
erned by members of conserved protein families that underlie

a universal mechanism of intracellular membrane fusion (1).
Particularly important among these proteins are the members of
the SNARE family, which are characterized by sequences of
about 60–70 amino acid residues that are known as SNARE mo-
tifs and often precede C-terminal transmembrane (TM) regions
(2–5). Through these motifs, SNAREs from two apposed mem-
branes form a tight four-helix bundle called the SNARE complex
(6, 7), which brings the two membranes together and was proposed
to provide the energy for membrane fusion (8). Although the exact
fusion mechanism is still unclear (9), and fusion depends critically
on other universal factors such as Sec1/Munc18 proteins (10–12)
and sometimes on specialized proteins such as synaptotagmin-1 in
the case of synaptic vesicle exocytosis (13–15), there is little doubt
that the SNAREs play a central role in membrane fusion.

Crystal structures of the SNARE four-helix bundle that repre-
sents the postfusion state have been determined without or with
the adjacent TM regions (e.g., refs. 7 and 16), but detailed struc-
tural information on the isolated SNAREmotifs attached to their
adjacent TM regions is more limited. Early studies of synaptobre-
vin, syntaxin-1, and SNAP-25, the SNAREs that mediate synaptic
vesicle fusion (3–5), and of the yeast plasma membrane SNAREs,
showed that soluble fragments spanning the SNARE motif are

generally unstructured (17–21), although the syntaxin-1 SNARE
motif can be unstructured or helical (due to oligomerization) de-
pending on the conditions (17, 19, 22, 23). Analyses of the synap-
tobrevin SNARE motif in the context of the full-length protein
have yielded conflicting results. On one hand, CD experiments in
detergents (24) and EPR data on synaptobrevin reconstituted
into lipid vesicles (25) indicated that most of the synaptobrevin
SNARE motif is unstructured except for a short region at its
C-terminal end, which forms an α-helix together with part of the
linker joining the SNARE motif and the TM sequence (below
referred to as the juxtamembrane region; see Fig. 1A). This
region associates with the membrane (25) because of the abun-
dance of basic and aromatic residues in its sequence and already
has a tendency to form helical structure in solution, as observed
by NMR spectroscopy (18). On the other hand, NMR studies in
dodecylphosphocholine (DPC) micelles indicated that much of
the N-terminal half of the synaptobrevin SNARE motif (residues
36–54) also binds to the micelles, forming an α-helix (26).

It is important to note that the amphipathic nature and neces-
sary proximity of SNARE motifs to membranes could strongly
favor membrane binding. Because the N-terminal halves of
SNARE motifs are critical to initiate SNARE complex assembly
(27, 28), membrane binding might compete with and thus hinder
SNARE complex assembly. Therefore, characterizing in detail
the conformational behavior of the membrane-anchored synap-
tobrevin SNARE motif and of membrane-anchored SNARE
motifs in general is critical to understand the intrinsic anatomy
of SNARE proteins and their biochemical properties, which is
fundamental to elucidate the mechanism of intracellular mem-
brane fusion. With this purpose, we have performed an NMR
analysis of synaptobrevin reconstituted into phospholipid vesicles
or into nanodiscs, which are disc-like phospholipid bilayers sur-
rounded by a scaffolding protein (29). Our data conclusively show
that most of the SNARE motif of reconstituted synaptobrevin is
unstructured and does not interact with phospholipid bilayers
under a variety of conditions, thus remaining highly accessible
for SNARE complex assembly. These results suggest that the
N-terminal sequences of SNARE motifs are optimized to avoid
membrane interactions, which enhances their availability for bind-
ing to their cognate SNAREs or other components of the fusion
machinery. Moreover, our data illustrate how using detergents as
membranemimics can sometimes yieldmisleading results, whereas
nanodics offer a more faithful model to recapitulate the behavior
of membrane proteins in their native environment.
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Results
Flexibility of the SNARE Motif Synaptobrevin on Nanodiscs. Applica-
tion of solution NMR methods to study the structure of mem-
brane proteins reconstituted into phosphoplipid vesicles is
hindered by the very large size of the vesicles, which effectively
ranges from tens of megadaltons to gigadaltons depending on
their radii and leads to broadening beyond detection of reso-
nances from structured parts of the proteins. This problem can
be alleviated by incorporation of membrane proteins into nano-
discs (30–32), which leads to effective molecular weights in the
150–400 kDa range but still requires protein perdeuteration
to obtain high-quality NMR data for structured regions. In the
current study, we made no attempt to observe resonances from
structured regions of reconstituted synaptobrevin and focused on
determining which regions of its sequence remain flexible upon
anchoring to a phospholipid bilayer. The rationale behind these
experiments is that the resonances of a flexible polypeptide at-
tached to a large macromolecular species should be observable
as long as sufficient fast internal motions remain and there are
no or minimal interactions with the large species. For instance,
relatively sharp signals can still be observed even upon anchoring
a peptide to 50-μm cross-linked polystyrene beads (33).

We first analyzed full-length synaptobrevin (residues 1–116)
incorporated into nanodiscs with a lipid composition consisting
of 85% 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)
and 15% 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS),
which has been widely used in reconstitutions of SNARE proteins
(34). Homogeneous preparations as judged by gel filtration
(Fig. 1B) were obtained by carefully adjusting the ratio of lipids
to synaptobrevin and scaffolding protein. The resulting nanodiscs
could readily be concentrated to 90 μM (or higher), which was suf-
ficient to obtain high-quality triple resonance data for assignment
of backbone resonances from flexible regions. The 1H-15N hetero-

nuclear single quantum coherence (HSQC) spectrum and corre-
sponding cross-peak assignments (Fig. 1 C and D) reveal that
resonances are observable for the sequence spanning residues 1
to 76, but not for the rest of the protein. These results are consis-
tent with a model whereby the juxtamembrane and TM sequences
of synaptobrevin are structured and bound to the nanodiscs,
whereas residues 1–76, which include most of the SNARE motif,
are unstructured and flexible (Fig. 1E).

Our conclusions were further supported by comparison of the
1H-15NHSQC spectrum of full-length synaptobrevin in nanodiscs
with that of the synaptobrevin cytoplasmic region (residues 1–96)
in solution, for which resonance assignments were already avail-
able (18). The major differences between the two spectra corre-
spond to the cross-peaks from residues 77–96 of the soluble
fragment, which are not observed for synaptobrevin in the nano-
discs (Fig. 2 A and B). Importantly, the cross-peaks from residues
1–76 are practically in the same positions in both spectra. As
shown earlier (18), this sequence is unstructured in the soluble
synaptobrevin(1–96) fragment. Considering the high sensitivity
of amide chemical shifts to even slight changes in chemical
environment, our data indicate that residues 1–76 are similarly
unstructured in the nanodisc-anchored synaptobrevin and are
visiting similar conformational ensembles as in the soluble frag-
ment. Moreover, the patterns of cross-peak intensities and trans-
verse relaxation rates of the 1H and 15N backbone atoms of
residues 1–76 are very similar for the soluble synaptobrevin
(1–96) fragment and the nanodisc-anchored full-length synapto-
brevin (Fig. 2 C and D). All these observations show that the seg-
ment spanning residues 1–76 does not interact with the nanodisc
membranes, and that its conformational behavior is largely un-
coupled from the juxtamembrane region regardless of whether
this region is free or bound to a membrane.

Reluctance of the SNARE Motif of Reconstituted Synaptobrevin to
Membrane Binding. Although nanodiscs are believed to offer
faithful models of phospholipid bilayers, there is only limited data
demonstrating this notion. In addition, it is plausible that cis in-
teractions of the N-terminal half of the synaptobrevin SNARE
motif with the nanodisc surface might have been hindered by
its limited size [10-nm diameter for the nanodiscs we prepared
(29)]. To study synaptobrevin in a much more extensively used
model of a phosphoilipid bilayer, we reconstituted full-length
synaptobrevin into preformed 100-nm vesicles composed of
POPC∶DOPS 85∶15 by detergent-assisted insertion (35), a meth-
od that yields highly homogeneous proteoliposomes (36). In
these experiments, we used a 1∶500 protein-to-lipid ratio, which
is well below that found in synaptic vesicles (37), to limit the like-
lihood that molecular crowding might hinder cis interactions of
the SNARE motif with the vesicle surface. Control experiments
showed that the reconstituted synaptobrevin readily formed
SNARE complexes with the syntaxin-1 and SNAP-25 SNARE
motifs (Fig. S1). Even though the synaptobrevin concentration
was only 9 μM, we still were able to obtain high-quality 1H-15N
HSQC spectra exhibiting cross-peaks for residues 1–74 (Fig. 3A,
red contours). Moreover, the positions of the cross-peaks, the
patterns of cross-peak intensities, as well as the 1H and 15N trans-
verse relaxation rates of vesicle-anchored synaptobrevin (Fig. 3),
are very similar to those observed for the soluble synaptobrevin
(1–96) fragment and for synaptobrevin in nanodiscs (Figs. 1, 2,
and 3A). These results show that residues 1–74 of vesicle-
anchored synaptobrevin are highly flexible and unstructured, as
they are in the nanodiscs or in solution.

In the above experiments, we included DOPS because the cy-
toplasmic leaflets of synaptic membranes are negatively charged.
Because the synaptobrevin SNARE motif has abundant negative
charges, we investigated the possibility that binding to mem-
branes might be hindered by repulsion with the negatively
charged head groups of DOPS by acquiring additional 1H-15N
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Fig. 1. NMR analysis of synaptobrevin in nanodiscs. (A) Domain structure of
synaptobrevin. Residue numbers above the bar indicate the sequence span-
ning the SNARE motif and the TM region. The approximate position of the
juxtamembrane region (JM), which includes the C terminus of the SNARE
motif and the linker joining it to the TM region, is indicated below. (B) Gel
filtration on a Superdex200 column of the nanodiscs containing synaptobre-
vin after detergent removal and before concentrating for NMR analysis.
(C, D) 1H-15N HSQC spectrum of synaptobrevin incorporated into nanodiscs.
The expansion shown in D corresponds to the box of C. Cross-peak assign-
ments are indicated (* indicates those from N-terminal residues arising from
the expression vector). (E) Cartoon representing the overall structure of
synaptobrevin (red) in nanodiscs with the lipid headgroups shown as gray
spheres and the ApoA1 scaffold shown as a double blue ring. The diagram
is meant to illustrate that residues 1–76 of synaptobrevin are highly flexible.
The juxtamembrane region is represented by a tilted cylinder that represents
a helix and is bound on the surface of the nanodiscs in a tilted orientation
based on EPR data (25).
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HSQC spectra of synaptobrevin reconstituted in POPC∶DOPS
85∶15 vesicles in the presence of 1 mMMg2þ, and of synaptobre-
vin reconstituted into POPC vesicles lacking DOPS. The spectra
obtained under both conditions were very similar to those obtained
in POPC∶DOPS 85∶15 in the absence of Mg2þ (Fig. S2 A and B).
Analogous 1H-15N HSQC spectra were also obtained with synap-
tobrevin reconstituted into vesicles formed with POPC:1,2-dipal-
mitoyl-sn-glycero-3-phosphoethanolamine:DOPS:cholesterol 45∶
20∶15∶20, a lipid composition that approximates that of synaptic
vesicles (37) (Fig. S2C). All these results show that the lipid com-
position does not influence markedly the conformational behavior
of residues 1–74 of reconstituted synaptobrevin.

Our results agree with previous CD and EPR studies of recon-
stituted synaptobrevin (24, 25), but contrast with those of an

NMR study in DPC micelles, which concluded that residues
36–54 in the N-terminal half of the SNARE motif bind to mem-
branes (26). In fact, our data suggest that this region does not
have any significant affinity for membranes. Thus, if residues
36–54 of even a small population of reconstituted synaptobrevin
molecules were bound to the membrane because of a weak mem-
brane affinity, the transverse relaxation in these molecules would
be extremely fast (orders of magnitude faster than those of
unbound states) because of the very large size of the vesicles
(effectively larger than 100 MDa). Such fast relaxation would
be transferred to the unbound molecules by chemical exchange
and would lead to substantial increases in the observed relaxation
rates and decreases in the observed resonance intensities, even if
the population of bound molecules were very small [for instance,
binding to the 800-kDa GroEL tetradecamer causes strong reso-
nance broadening on a peptide even at a 1∶400 GroEL:peptide
ratio (38)]. However, the resonances of residues 36–54 of recon-
stituted synaptobrevin did not exhibit any overt increase in relaxa-
tion or decrease in intensity (Figs. 2 C and D and 3B). The same
argument applies to the entire segment encompassing residues
1–74 of synaptobrevin. Because the proximity to the bilayer im-
posed by membrane anchoring should favor membrane binding
by dramatically increasing the local concentration, our results
show that residues 1–74 of synaptobrevin actually have a remark-
able reluctance to membrane binding.

Soluble Synaptobrevin SNARE Motif Binds to DPC Micelles but not to
Liposomes.Given the contrast of our conclusions with those drawn
from the results obtained in DPCmicelles (26), we decided to test
whether we could verify the latter results in our hands. Indeed,
a 1H-15N HSQC spectrum of the soluble synaptobrevin(1–96)
fragment in the presence of DPC under similar conditions to
those used in ref. 26 revealed dramatic changes, including disap-
pearance of the cross-peaks of residues 36–54 and of C-terminal
residues from unstructured synaptobrevin(1–96), and the appear-
ance of new cross-peaks corresponding to the micelle bound pro-
tein (Fig. 4A). However, 1H-15N HSQC spectra of synaptobrevin
(1–96) in the presence of POPC vesicles (50 mM lipid) at the
same pH (6.0) or at neutral pH exhibited much smaller perturba-
tions, leading to broadening of only a few C-terminal residues
(Fig. 4 B and C). These results further confirm the conclusion
that the N-terminal half of the synaptobrevin SNARE motif does
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not bind to membranes, and show that DPC micelles do not con-
stitute a good membrane model for this system.

Discussion
SNARE proteins play a central role in intracellular membrane
fusion by forming SNARE complexes that bring the two mem-
branes into close proximity (8). To perform this function, the basic
architecture of most SNARE proteins is relatively simple, consist-
ing of a SNARE motif that is followed by a short linker and a
C-terminal TM region [apart from the existence in some cases
of regulatory N-terminal domains like the syntaxin-1Habc domain
(39)]. A potential problem with this architecture is that the
SNARE motif must be able to form an amphipathic helix to as-
semble into a SNARE complex, and the necessary membrane
proximity of the SNARE motif should favor binding of its hydro-
phobic side to the membrane. Although it has been suggested
that such binding could facilitate SNARE complex formation
by nucleating helical structure (26), the benefit of such nucleation
is unclear, because helix-to-coil transitions can occur in the na-
nosecond time scale; in fact, it seems more likely that membrane
binding would sequester the hydrophobic face of the SNARE
motif, thus hindering interactions with other SNAREs or with
other components of the fusion apparatus. This issue is particu-
larly important for the N-terminal halves of the SNARE motifs,
because they are believed to be critical for initiation of SNARE
complex assembly (40), and they could also play important roles
in binding to proteins that may form scaffolds for SNARE com-
plex formation such as Munc13s (41–43). The results presented
here show that most of the SNARE motif of reconstituted synap-
tobrevin does not bind to membranes and in fact appears to have
a remarkable reluctance to membrane binding. It is tempting
to speculate that reluctance to membrane binding is a general
property of SNAREmotifs that may be an intrinsic aspect of their
anatomy and may be fundamental for their function in intracel-
lular membrane fusion.

Except for the basic C terminus, the SNARE motif of synap-
tobrevin has abundant negative charges. This feature, which is

shared by many SNARE motifs including that of syntaxin-1
(44), should lead to repulsion with the negatively charged mem-
brane surface and is therefore very likely to contribute to the
reluctance of most of the synaptobrevin SNARE motif to mem-
brane binding. Note, however, that the very negative nature of
SNARE motifs imposes an additional energy barrier to bring the
membranes together, and hence may play an important role in
the mechanisms of membrane fusion and its regulation. For in-
stance, it is plausible that the repulsion between the membranes
and the negative sequences from the SNARE motifs may add to
the repulsion between the two membranes themselves, and that
these repulsive forces are compensated by the energy of SNARE
complex formation and by the interactions of the positively
charged C termini of the SNARE motifs with the membranes.
This combination of repulsive and attractive forces exerted by
the SNARE motifs may help to generate leverage on the mem-
branes to bend them and initiate membrane fusion. This notion
has been supported by electrostatic potential calculations, and it
seems likely that diverse proteins that bind to different regions
of the SNARE complex (45–48) may also help to overcome the
repulsive forces, at least some of them by binding in addition to
one or both membranes (13, 47, 49, 50).

Regardless of the potential functional importance of negative
charges in SNARE motifs, our results show that most of the
synaptobrevin SNARE motif does not bind to membranes even
when they do not contain negative charges (Figs. S2B and 4 B
and C). Therefore, the reluctance to membrane binding does not
arise only from electrostatic repulsion and may be due to a more
fundamental, intrinsic property. We speculate that, perhaps be-
cause SNARE motifs might have been selected by evolution to
form four-helix bundles rather than two- or three-helix bundles,
the ratio between hydrophobic and polar residues may be rela-
tively low, and the hydrophobic interactions that can be estab-
lished between the SNARE motif hydrophobic surface and the
interior of the membrane may not be sufficient to overcome the
energy required for insertion into the lipid bilayer. Thus, the com-
position of SNARE sequences may be optimized to have suffi-
cient hydrophobicity to form stable SNARE complexes while at
the same time avoiding membrane insertion.

It is interesting that the N-terminal half of the synaptobrevin
SNARE motif does bind to DPC micelles (26) (Fig. 4A), despite
its inability to bind to membranes. The basis for this difference is
unclear, but it seems plausible that micelles may be more dynamic
and adaptable than phospholipid bilayers, which may facilitate
interactions with sequences of limited hydrophobicity. In any
case, it now seems clear that the apparent contradiction between
the NMR studies of synaptobrevin in DPC micelles (26) and
initial studies suggesting that most of the SNARE motif of recon-
stituted synaptobrevin is flexible (24, 25) is not a real contradic-
tion: Synaptobrevin actually has a different behavior in DPC
micelles compared to phospholipid bilayers. Hence, DPC mi-
celles do not appear to constitute a good model for membranes
in this system. Conversely, our data show that synaptobrevin be-
haves very similarly on nanodiscs and on phospholipid vesicles,
confirming the notion that nanodiscs provide a faithful mem-
brane model. Although our NMR experiments of synaptobrevin
in nanodiscs focused on analyzing flexible regions, recent studies
have shown that good-quality NMR data can also be obtained for
structured regions of membrane proteins inserted into nanodiscs
(30–32). Hence, the nanodisc approach provides a promising
avenue for structural studies of membrane proteins in their actual
bilayer environment.

Experimental Procedures
Protein Expression and Purification. The construct to express full-
length rat synaptobrevin-2 within a pGEX-KG (51) vector was
described previously (36). This construct was used to make a new
construct to express the soluble rat synaptobrevin-2(1–96) frag-

A B C

R sc R sc

N92

Y88
W90W89

L93 K91

M96

M95

K87

108

113

118

123

15
N

 (
pp

m
)

8.5      8.0      7.5 8.5       8.0      7.5 8.5      8.0       7.5

1H (ppm) 1H (ppm)1H (ppm)

Fig. 4. The N-terminal half of the SNARE motif of soluble synaptobrevin
binds to DPC micelles but not to liposomes. (A–C) Superposition of 1H-15N
HSQC spectra of the 10 μM soluble synaptobrevin(1–96) fragment (black
contours) alone or in the presence (red contours) of 300 mM DPC at
pH 6.0 (A), POPC liposomes (50 mM lipids) at pH 6.0 (B), or POPC liposomes
(50 mM lipids) at pH 7.0 (C). In B, cross-peaks that disappear upon addition of
liposomes are labeled; cross-peaks fromArg side chains, which are observable
at pH 6.0 but not at pH 7.0, are labeled Rsc. Note that in A there are less
observable cross-peaks in DPC than in ref. 26 because we used a much lower
protein concentration, but the data are fully consistent.
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ment, also in the pGEX-KG vector, using standard recombinant
DNA techniques. The proteins were expressed in Escherichia coli
BL21(DE3) cells using minimal media with 15NH4Cl and

13C6-
glucose as the sole nitrogen and carbon sources, respectively (as
needed for 15N and 13C labeling), and purified as described (18,
36). A construct to express human apolipoprotein A1 residues
68–267 (ApoA1) within a pET-28a vector (Novagen) was made
from cDNA obtained from ATCC using standard recombinant
DNA techniques. The protein was expressed in E. coli BL21
(DE3) cells in LB broth and purified as previously described (52).

SNARE Reconstitution into Nanodiscs and Vesicles. Nanodiscs con-
taining full-length synaptobrevin were prepared in a manner pre-
viously described for rhodopsin (52). Briefly, 13C, 15N syb 1–116
was added to a mixture of ApoA1 and lipid with n-octyl-β-D-glu-
copyranoside (β-OG) and sodium cholate. The syb:ApoA1:lipid
ratio was 1∶2∶120, and the mixture was prepared from stock
concentrations of 110 μM, 200 μM, and 13 mM, respectively.
The β-OG and sodium cholate were added from 10% stocks to
a final concentration of 1%. The mixture was vortexed and incu-
bated at room temperature for 30 min without disturbance. The
nanodiscs were formed by passing the mixture over a 4-cm-high
column Extracti-Gel D resin (Pierce) to remove the detergent.
The nanodiscs were then run on a Superdex-200 Hiload 16∕60
column (GE Healthcare) in 20 mM 4-(2-hydroxyethyl)-1-pipera-
zineethanesulfonic acid (HEPES) pH 7.0, 100 mM KCl, 0.3 mM
tris(2-carboxyethyl)phosphine (TCEP) (reconstitution buffer),
and concentrated using a 30-kDa molecular weight cutoff filter
to the desired concentration. Proteoliposomes containing full-

length synaptobrevin were prepared by detergent-assisted inser-
tion of the protein into preformed liposomes of 100-nm diameter
and the desired lipid composition in reconstitution buffer,
basically as described (36). The synaptobrevin-to-lipid ratio was
1∶500, with final concentrations of 10 μMand 5 mM, respectively.

NMR Spectroscopy.All NMRexperiments were performed at 15 °C
on Varian INOVA spectrometers operating at 800, 600, or
500 MHz. Most samples were dissolved in reconstitution buffer
containing 5% D2O, except for those used in the experiments of
Fig. 4 A and B, which were prepared with the same buffer but at
pH 6.0. Samples for 1H-15N HSQC and transverse relaxation
measurements contained approximately 10 μM protein. 15N
transverse relaxation measurements were obtained with a 1H-15N
HSQC-based pulse sequence incorporating a Carr–Purcell–Mei-
boom–Gill (CPMG) train applied to 15N (53). A similar sequence
with a CPMG train applied to 1H was designed to measure 1H
transverse relaxation rates. The synaptobrevin-nanodisc sample
used for backbone assignments had a 90 μM protein concentra-
tion. Assignments were obtained with gradient-enhanced 3D
CBCA(CO)NH and HNCACB experiments (54). All data were
processed with NMRpipe (55) and analyzed with NMRView (56).
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