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Understanding and improving the predictive skill of imperfect
models for complex systems in their response to external forcing
is a crucial issue in diverse applications such as for example climate
change science. Equilibrium statistical fidelity of the imperfect
model on suitable coarse-grained variables is a necessary but not
sufficient condition for this predictive skill, and elementary exam-
ples are given here demonstrating this. Here, with equilibrium
statistical fidelity of the imperfect model, a direct link is developed
between the predictive fidelity of specific test problems in the
training phase where the perfect natural system is observed and
the predictive skill for the forced response of the imperfect model
by combining appropriate concepts from information theory with
other concepts based on the fluctuation dissipation theorem. Here
a suite of mathematically tractable models with nontrivial eddy
diffusivity, variance, and intermittent non-Gaussian statistics
mimicking crucial features of atmospheric tracers together with
stochastically forced standard eddy diffusivity approximation with
model error are utilized to illustrate this link.

Predicting the long-range behavior of complex systems in nat-
ure in diverse disciplines ranging from climate change science

(1, 2) to materials (3) and neuroscience (4) is an issue of central
importance in contemporary engineering and science. Accurate
predictions are hampered by the fact that the true dynamics of
the system in nature are actually unknown due to inadequate
scientific understanding or inadequate spatiotemporal resolution
in the imperfect computer models used for these predictions; in
other words, there are significant model errors compared to the
true signal from nature. Recently, information theory has been
utilized in different ways to systematically improve model fidelity
and sensitivity (5, 6), to quantify the role of coarse-grained initial
states in long-range forecasting (7, 8), and to make an empirical
link between model fidelity and forecasting skill (9, 10). Imperfect
models for complex systems are constrained by their capability to
reproduce certain statistics in a training phase where the natural
system has been observed; for example, this training phase in cli-
mate science is roughly the 60-y dataset of extensive observations
of the Earth’s climate system. For long-range forecasting, it is nat-
ural to guarantee statistical equilibrium fidelity for an imperfect
model, and a framework using information theory is a natural way
to achieve this in an unbiased fashion (5–8, 10). First, equilibrium
statistical fidelity for an imperfect model depends on the choice
of coarse-grained variables utilized (5, 6); second, equilibrium
model fidelity is a necessary but not sufficient condition to guar-
antee long-range forecasting skill (8). For example, ref. 11,
Sect. 2.6, extensively discusses three very different strongly mixing
chaotic dynamical models with 40 variables and with the same
Gaussian equilibrium measure, the TBH, K-Z, and IL96 models,
so that all three models have the same climate equilibrium fidelity
but have completely different forecasting skill; simple examples
with one- and two-dimensional stochastic systems are presented
in ref. 5 where there is perfect equilibrium fidelity but there is an
intrinsic barrier to capturing the correct sensitivity with the
imperfect models; several empirical examples in climate science
where simply improving climate fidelity did not result in im-
proved forecasting skill are noted in ref. 10. On the other hand,

there are notable examples where improving equilibrium fidelity
results in improved model sensitivity (5) or intermediate range
forecasting skill (10). The central issue addressed here is the
following one: Is there a systematic way to improve long-range
forecasting skill of imperfect models satisfying equilibrium fide-
lity? Is there a systematic set of statistical prediction tests in
the training phase beyond equilibrium fidelity that guarantees
improved long-range forecasting skill for an imperfect model?

The main goal of the present paper is to provide such a direct
link by utilizing fluctuation dissipation theorems (FDTs) for com-
plex dynamical systems (11–13) together with the framework
of empirical information theory for improving imperfect models
developed recently (5, 6). After a summary of relevant formulas
of empirical information theory, the main link utilizing FDT is
developed. This is followed afterward by demonstration of this
approach on a suite of mathematical test models, which despite
their simplicity and mathematical tractability, nevertheless,
mimic crucial statistical features of complex systems such as
Earth’s climate.

Improving Models Through Empirical Information Theory
The natural way (14, 15) to measure the lack of information in
one probability density, qð ~uÞ, compared with the true probability
density, pð ~uÞ, is through the relative entropy, Pðp;qÞ, given by

Pðp;qÞ ¼
Z

p log
�
p
q

�
: [1]

Consider the least biased probability measure πLð ~uÞ consistent
with L empirical measurements, ~EL, of the perfect model (14, 16,
17); for example, these measurements could correspond to the
mean and covariance of a coarse-grained subset of variables in
which case πLð ~uÞ ¼ πGð ~uÞ is a Gaussian distribution (18). The
first issue to contend with is the fact that πLð ~uÞ is not the actual
perfect model density but only reflects the best unbiased estimate
of the perfect model given the L measurements, ~EL. Let πð ~uÞ
denote the probability density of the perfect model, which is not
actually known. Nevertheless, Pðπ;πLÞ precisely quantifies the
intrinsic error in using the L measurements of the perfect model,
~EL. Consider an imperfect model with its associated probability
density, πMð ~uÞ; then the intrinsic model error in the climate sta-
tistics is given by Pðπ;πMÞ. Consider a class of imperfect models,
M, the best imperfect model for the coarse-grained variable ~u is
theM� ∈ M so that the perfect model has the smallest additional
information beyond the imperfect model distribution πM� ð ~uÞ; i.e.,

Pðπ;πM� Þ ¼ min
M∈M

Pðπ;πMÞ: [2]

The following general principle (6, 11) facilitates the practical
calculation of Eq. 2:
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Pðπ;πML Þ ¼Pðπ;πLÞþPðπL;πML Þ ¼ ðSðπLÞ−SðπÞÞþPðπL;πML Þ:
[3]

In Eq. 3, SðπÞ ¼ −∫ π log π is the absolute entropy (11, 14, 16, 17)
of the probability measure π. The entropy difference, SðπLÞ−
SðπÞ in Eq. 3 precisely measures the intrinsic error from the L
measurements of the perfect system. The most practical setup
for applying the framework of empirical information theory de-
veloped above arises when both the perfect systemmeasurements
and the model measurements involve only the mean and covar-
iance of the variables ~u so that πL is Gaussian with climate mean ~u
and covariance R, whereas πM is Gaussian with model mean ~uM
and covariance RM (14, 19). Next, the framework developed in
ref. 5 of systematic general principles for improving model fidelity
as well as model sensitivity is briefly summarized. Assume that the
perfect system or the model system or both are perturbed in
a fashion so that πδð ~uÞ, the unknown perfect distribution,
πL;δð ~uÞ, the measured distribution, and πMδ ð ~uÞ, the model distri-
bution, all vary smoothly with the parameter δ; i.e.,

πL;δð ~uÞ ¼ πLð ~uÞþ δπLð ~uÞ;
Z

δπLð ~uÞd ~u¼ 0;

πMδ ð ~uÞ ¼ πMð ~uÞþ δπMð ~uÞ;
Z

δπMð ~uÞd ~u¼ 0. [4]

Rigorous theorems guarantee this smooth dependence under
minimal hypothesis for stochastic dynamical systems (20). By as-
suming the parameter δ is small enough and doing leading order
Taylor expansion, the following general result emerges:

Pðπδ;πMδ Þ ¼SðπL;δÞ−SðπδÞþPðπL;πMÞ

þ
Z

log
�
πL
πM

�
δπL −

πL
πM

δπM

þ 1

2

Z �
π−1L ðδπLÞ2þ

πL
ðπMÞ2 ðδπ

MÞ2 − 2
δπLδπ

M

πM

�
þOðδ3Þ:

[5]

Statistical equilibrium fidelity (5, 6, 10) consistent with the L
measurements of a coarse-grained variable ~u for an imperfect
model arises when

PðπL;πMÞ≡ 0. [6]

The interest here regards dynamically perturbed probability dis-
tributions for both nature, πδð ~uÞðtÞ, and the imperfect model,
πMδ ð ~uÞðtÞ, and the crucial question of whether the coarse-grained
statistical behavior of the dynamics of the imperfect model,
πMδ ð ~uÞðtÞ, accurately predicts the coarse-grained statistics of
the perfect dynamics, πδð ~uÞðtÞ. Recall from the introduction
(5, 10, 11) that there are many explicit examples of imperfect
models satisfying Eq. 6 where there is no prediction skill in
the imperfect model. Under Gaussian assumptions with diagonal
covariance matrices and perfect model fidelity, the formula in
Eq. 5 becomes (5)

Pðπδ;πMδ Þ ¼SðπG;δÞ−SðπδÞ

þ 1

2 ∑
jkj≤N

ðδūk − δūM;kÞR−1
k ðδūk − δūM;kÞ

þ 1

4 ∑
jkj≤N

R−2
k ðδRk − δRM;kÞ2 þOðδ3Þ: [7]

The first (second) summation in Eq. 7 is the signal (dispersion)
contribution to the model error.

FDT as a Link Between Fidelity and Forecast Skill
Assume the perfect model is a dynamical system with noise

~vt ¼ ~Fð ~vÞþ σð ~vÞ _~W ; [8]

for ~v ∈ RP, where σ is a P × K noise matrix and _~W ∈ RK is a
K-dimensional white noise. The associated Fokker–Planck equa-
tion for the probability density pð ~v;tÞ is

pt ¼−div ~vð ~Fð ~vÞpÞþ
1

2
div ~v∇ ~vðQpÞ≡LFPp; [9]

where Q ¼ σσT . The ideal equilibrium state associated with Eq. 8
is the probability density peqð ~vÞ that satisfies LFPpeq ¼ 0, and the
equilibrium statistics of some functional Að ~vÞ are determined by

hAð ~vÞi ¼
Z

Að ~vÞpeqð ~vÞd ~v: [10]

Next, perturb the system in Eq. 8 by the change δ ~wð ~vÞf ðtÞ; that is,
consider the perturbed equation

~vδt ¼ ~Fð ~vδÞþ δ ~wð ~vδÞf ðtÞþ σð ~vδÞ _~W : [11]

Calculate perturbed statistics by utilizing the Fokker–Planck
equation associated with Eq. 11 with initial data given by the un-
perturbed statistical equilibrium. Then, FDT (11) states that if δ
is small enough, the leading order correction to the statistics in
Eq. 10 becomes

δhAð ~vÞiðtÞ ¼
Z

t

0

Rðt− sÞf ðsÞds; [12]

where RðtÞ is the linear response operator that is calculated
through correlation functions in the unperturbed climate

RðtÞ ¼ hAð ~vðtÞÞBð ~vð0ÞÞi; Bð ~vÞ ¼−
div ~vð ~wpeqÞ

peq
: [13]

The noise in Eq. 8 is not needed for FDT to be valid but, in this
form, the equilibrium measure needs to be smooth. Such a
rigorous FDT response is known to be valid for a wide range
of dynamical systems under minimal hypothesis (20). Although
the Markov assumption in Eq. 8 is very reasonable for the dy-
namics of the perfect model representing the natural system
provided the dimension P is large enough, the practical use of
Eqs. 8–13 is hampered by the fact that the dynamics in Eq. 8,
the equilibrium measure in Eq. 10, and even the dimension of
the phase space P for the perfect dynamics are unknown. Never-
theless, crucially one is interested in the long-range forecasting
skill of the response in Eq. 11 to the change in external forcing;
here δf ðtÞ might be an impulsive constant change or a gradual
change such as a ramp function (see Eq. 28 below). Furthermore,
as for example in climate change science, one is interested not
only in the actual response of the natural system but also in
the response when anthropogenic effects of human activity are
included so that δf ðtÞ assumes a variety of different forms and
magnitudes in various scenarios. However, what is only actually
known about the natural system are measurements, ~Eð ~uÞ, for ~u,
a coarse-grained collection of variables in a subspace during a
training phase interval of time. The imperfect models are as-
sumed to be given by a known dynamical system

ð ~vMÞt ¼ ~FMð ~vMÞþ σMð ~vMÞ _~W ; [14]

which has similar structure to Eq. 8 but the phase space for the
imperfect model, RM , is often completely different from that of
the natural system with usually M ≪ P, but the natural system in
Eq. 8 and the imperfect model share the common variables,
~u ∈ RN ; a simple example illustrating this is discussed in ref. 5,
equations 15–21. Now, perturb both the perfect model (Eq. 8)
and the imperfect model (Eq. 14) by δ ~wð ~vÞf ðtÞ to generate the
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perfect probability density, pδð ~v;tÞ, and the imperfect probability
density, pMδ ð ~vM;tÞ exactly through Eq. 13; on the common coarse-
grained variables ~u, let πδð ~u;tÞ, πMδ ð ~u;tÞ denote the corresponding
marginal probability densities. As in Eq. 2, we are interested
in the best imperfect models that minimize PðπδðtÞ;πMδ ðtÞÞ for a
given prediction horizon t and perturbed forcing scenario,
δ ~wð ~uÞf ðtÞ. In general, using the coarse-grained functionals,
~ELð ~u;tÞ (one should keep in mind the mean and covariance of
~u to define ~EL) and applying Eq. 3 yields

PðπδðtÞ;πMδ ðtÞÞ ¼SðπL;δðtÞÞ−SðπδðtÞÞþPðπL;δðtÞ;πMδ ðtÞÞ; [15]

with

πδðtÞ ¼ πeqþ δπðtÞ; πMδ ðtÞ ¼ πMeq þ δπMðtÞ: [16]

The corresponding perturbed values of the functionals ~EL;δðtÞ
and ~E

M
L;δðtÞ are defined through Eq. 16 by

~EL;δðtÞ ¼
Z

~ELð ~uÞπeqþ
Z

~ELð ~uÞδπðtÞ; [17a]

~E
M
L;δðtÞ ¼

Z
~ELð ~uÞπMeq þ

Z
~ELð ~uÞδπMðtÞ: [17b]

At this stage in the discussion, only exact formulas for the perfect
and imperfect predictions have been utilized in the above frame-
work to characterize the predictive skill of the imperfect model.

A potentially practical quantitative link between climate fide-
lity and forecast skill is defined through the fluctuation dissipa-
tion formulas in Eqs. 11–13. First, by assuming the validity of
FDTand that the perturbation strength, δf ðtÞ, is sufficiently small,
from Eq. 12,Z

~ELðuÞδπMðtÞ ¼
Z

t

0

RM
~E
ðt− sÞδf ðsÞdsþOðδ2Þ;

Z
~ELðuÞδπðtÞ ¼

Z
t

0

R ~Eðt− sÞδf ðsÞdsþOðδ2Þ; [18]

where RM
~E
, R ~E are the corresponding response operators for the

imperfect and perfect models defined through the correlation
functions from Eq. 13 in the unperturbed systems. Now, with sta-
tistical equilibrium fidelity from Eq. 6 satisfied by the imperfect
model, by definition the leading term in Eq. 17a exactly equals
the leading term in Eq. 17b so that at δ ¼ 0, PðπL;δðtÞ;πMδ ðtÞÞ
vanishes identically and the perturbation formulas in Eqs. 7
and 13 can be applied directly with the approximation in
Eq. 18 from FDT. For example, if u is a scalar variable like
the global temperature in climate science with ~E ¼ ðū;σ̄2Þ, the
mean ū, and the variance σ̄2, then Eqs. 16 and 18 yield

PðπδðtÞ;πMδ ðtÞÞ ¼SðπG;δðtÞÞ−SðπδðtÞÞ;

þ 1

2
σ̄−2

�Z
t

0

ðRūðt− sÞ−RM
ū ðt− sÞÞδf ðsÞds

�
2

þ 1

4
σ̄−4

�Z
t

0

ðRσ̄2ðt− sÞ−RM
σ̄2
ðt− sÞÞδf ðsÞds

�
2

þOðδ2Þ:

[19]

In Eq. 19, σ2 is the statistical equilibrium variance of both the
perfect and imperfect models that coincide with equilibrium fi-
delity; also Rū, RM

ū and Rσ̄2 , RM
σ̄2

are, respectively, the mean
and variance linear response operators. In the more general set-
ting, where the mean and covariance of vectors are measured, the
more general formulas in Eqs. 7 and 12 are readily used (see the
second example in the present paper). The formula in Eq. 19 and
its generalizations illustrates that the skill of an imperfect model
in predicting forced changes for the statistical equilibrium with

general external forcing is directly linked with the skill in estimat-
ing the linear response operators for the mean and variance in a
suitably weighted fashion as dictated by information theory.

The advantage of utilizing this FDTapproximation is that the
predictive skill of the imperfect model response operator RM

~E
ðtÞ to

external forcing can be evaluated through specific experiments in
the training period where the fidelity with observed data of the
perfect model can be monitored. To illustrate this, perturb the
initial data for the perfect and imperfect model systems in the
direction δu in a statistical fashion so that one generates statistical
solutions of the unperturbed perfect and imperfect models with
perturbed initial data,

∂pM

∂t
¼LM

FPp
M; pM jt¼t0 ¼ pMeqð~vM − δuÞ;

∂p
∂t

¼LFPp; pjt¼t0 ¼ peqðvM − δuÞ: [20]

Consider the marginal distribution in ~u of pM and p and set
pMð ~u;tÞ ¼ pMeqð ~uÞ þ δpMð ~u;tÞ, pð ~u;tÞ ¼ peqð ~uÞ þ δpð ~u;tÞ; because
we are utilizing linear response theory as in Eqs. 12 and 13, it
is a general mathematical fact (12, 21) that for δ small enough,
the linear response operators can be calculated from Eq. 20:

δRM
~E
ðtÞ ¼

Z
~Eð ~uÞδpMð ~u;tÞþOðδ2Þ;

δR ~EðtÞ ¼
Z

~Eð ~uÞδpð ~u;tÞþOðδ2Þ: [21]

Thus, model errors in the training period for a given imperfect
model can be assessed with the tools of information theory (6,
11, 14) such as Eqs. 2–7 above by utilizing superensembles for
the specific kicked ensemble perturbations for pM given in
Eq. 20; furthermore, in this training period, R ~EðtÞ does not need
to be calculated explicitly but only the statistical fidelity of
∫ ~Eð ~uÞδpMð ~u;tÞ with the actual observed data in nature. These
points are illustrated in the example at the end of this paper.

General Comments on the Link
We proposed the general approach through FDT here to estab-
lish a link with firm mathematical underpinning for improving
the long-range forecasting of imperfect models with changes in
external forcing by evaluating the skill of related superensemble
experiments defined in Eqs. 20 and 21 in the training phase using
information theory; formally, this link is valid only for sufficiently
small perturbations with δ ≪ 1, and equilibrium fidelity was uti-
lized at the onset to control leading order errors. However, we
proposed this link as a useful empirical guideline in general so
it is important to understand the strengths and weaknesses of
the above approach. First, note that the evaluation of the forced
response operators in Eq. 19 requires skill for the mean-square
averaged response operators RM

ū , R
M
σ̄2
whereas skill in the training

phase is, on the surface, more demanding because pointwise eva-
luation of RM

~E
ðtÞ is made; thus depending on the nature of the

forcing, only less stringent suitable time averages of Eq. 21 are
needed in evaluating the skill metric in Eq. 19. Second, there
is a growing literature in developing theory (11, 21–24) and algo-
rithms for FDT (25–35). In fact, the earliest applications that
tested the original suggestion of Leith (28) utilized the kicked
perturbations in Eq. 20 without model error to evaluate the
response operator (25, 26), and these algorithms have been im-
proved recently (33, 35); their main limitation is that they can
diverge at finite times when there are positive Lyapunov expo-
nents (26, 33, 35). Alternative algorithms utilize the quasi-
Gaussian approximation (11) in the formulas in Eq. 13; these al-
gorithms have been demonstrated to have high skill in both mean
and variance response in the midlatitude upper troposphere to
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tropical forcing (30, 31) as well as for a variety of other large di-
mensional turbulent dynamical systems that are strongly mixing
(11, 32, 34). There are recent blended response algorithms that
combine the attractive features of both approaches and give very
high skill for both the mean and variance response for the L-96
model (32, 36) as well as suitable large dimensional models of the
atmosphere (34) and ocean (27) in a variety of weakly and
strongly chaotic regimes. Note that the information metric in
Eq. 19 requires objective model improvement of both the mean
and variance response to actually improve skill. Finally, there are
linear regression models (37) that try to calculate the mean and
variance response directly from data; these linear regression
models can have very good skill in the mean response but neces-
sarily have no skill (21) in the variance response required in
Eq. 19; they necessarily have an intrinsic barrier (5, 6) in model
error response when the perfect model has a large variance re-
sponse. In fact, one can regard all of the above approximations as
defining various systems with model error in calculating the ideal
response of a perfect model (11); this is a useful exercise for un-
derstanding the information theoretic framework on model error
and response proposed here.

An Instructive Elementary Example
Consider the system given by the two linear stochastic equations

du
dt

¼ auþ vþF;
dv
dt

¼ quþAvþ σ _W; [22]

where _W is white noise; the system of equations in Eq. 22 has
smooth Gaussian statistically steady state provided that

aþA< 0; aA− q > 0. [23]

Regard u alone as a coarse-grained variable of interest and the
perfect model as defined by stochastic solutions for Eq. 22 with a
specific choice of a, q, A, F, σ satisfying 23; here the imperfect
models satisfy the same requirements as in Eq. 22 and 23 but with
imperfect coefficients aM , qM , AM , FM , σM . For linear stochastic
systems like that in Eq. 22 and 23, the framework of linear re-
sponse theory developed in Eqs. 8–13 above is exact without ap-
proximations; thus, it is possible to classify in elementary fashion
all the imperfect models that have equilibrium fidelity and then
characterize all imperfect models with the same linear response
operator defined from Eqs. 12 and 13 for the change in external
forcing with F in Eq. 22 replaced by F þ δf ðtÞ. First, simple
calculations establish that there is a three parameter family of
imperfect models with the same equilibrium statistics for u deter-
mined by the two equations

ðaM þAMÞðaMAM − qMÞ
ðσMÞ2

¼ ðaþAÞðaA− qÞ
σ2

;

AMFM

aMAM − qM
¼ AF
aA− q

: [24]

It is also easy to calculate that the imperfect models with the same
mean response to a change in constant external forcing, where
δf ðtÞ is proportional to a Heaviside function, necessarily satisfy
the additional constraint

AM

aMAM − qM
¼ A
aA− q

: [25]

The variance response (21) to any change in external forcing is
identically zero for any linear stochastic model, Rσ̄2 ¼ RM

σ̄2
≡ 0 for

all of the stochastic models satisfying Eq. 22 and 23, and the mod-
el error information response metric from Eq. 19 has only signal
contribution from ∫ ∞

0 RūðtÞdt. Furthermore, the two parameter
family of imperfect models satisfying Eqs. 24 and 25 can have sig-
nificant model error yet, they have perfect information content

for the crucial forced response as required, whereas other models
with perfect fidelity in Eq. 24 can have a significant model error in
the response.

Improving Response in a Complex Test Model
The previous examples were elementary because they involved
only linear stochastic equations, yet they revealed subtle behavior
for improving models and their sensitivity. Here, we utilize the
instructive models introduced and analyzed by the authors (6, 38,
39) with nontrivial eddy diffusivity, variance spectrum, and inter-
mittent non-Gaussian statistics like tracers in the atmosphere
(40) as the perfect models to provide a highly nontrivial demon-
stration of improving the response of imperfect models through
information theory.

The perfect model has a zonal (east–west) mean jet, UðtÞ, a
family of planetary and synoptic scale waves with north–south
velocity vðx;tÞ with x, a spatially periodic variable representing
a fixed midlatitude circle in the east–west direction, and tracer
gas Tðx;tÞ with a north–south environmental mean gradient α,
molecular diffusivity κ, and damping dT . The dynamical equations
for these variables are

dU
dt

¼−γU þ f U þ σ _W; [26a]

∂v
∂t

¼ P
�
∂
∂x

�
vþ σvðxÞ _Wvþ f vðxÞ; [26b]

∂T
∂t

þUðtÞ∂T
∂x

¼−αvðx;tÞþ κ
∂2T
∂x2

−dTT: [26c]

The functions f U , f vðxÞ are known constant in time functions,
whereas _W , _Wv represent random white noise fluctuations in
forcing. The equation in Eq. 26b for the turbulent planetary
waves is solved by Fourier series with independent scalar complex
variable versions of the equation in Eq. 26a for each different
wave number k (6); in Fourier space the operator P̂k has the form
P̂k ¼ −γk þ iωk with frequency ωk ¼ βk

k2þFs
corresponding to the

dispersion relation of baroclinic Rossby waves and dissipation
γk ¼ νðk2 þ FsÞ where β is the north–south gradient of rotation,
Fs is the stratification, and ν is a damping coefficient; the white
noise forcing for Eq. 26b is chosen to vary with each spatial wave
number k to generate an equipartition energy spectrum for
planetary scale wave numbers 1 ≤ jkj ≤ 10 and a jkj−5∕3 turbulent
cascade spectrum for 11 ≤ jkj ≤ 52. The zonal jet UðtÞ ¼
Ū þ U 0ðtÞ, where Ū is the climatological constant mean with γ,
and σ chosen so that this jet is strongly eastward, whereas the
random fluctuations, U 0ðtÞ, have a standard deviation consistent
with such eastward dynamical behavior. Here, the imperfect mod-
els are Gaussian with the same dynamics for the zonal jet and
Rossby waves from Eqs. 26a and 26b, but the tracer equation
is given by

∂TM

∂t
þ ŪM

∂TM

∂x
¼−αvMðx;tÞþ ðκþ κMÞ

∂2TM

∂x2
− dTTM þ σT _W ðx;tÞ:

[27]

In Eq. 27, κM is an eddy diffusivity coefficient, often utilized for
parameterization of unresolved turbulence in climate science (40,
41), whereas _W ðx;tÞ denotes space–time white noise forcing with
variance parameter σT . In the rapid decorrelation limit of Eq. 26a,
the exact eddy diffusivity for the tracer, κ�M ¼ σ2

2γ2
, is valid (6, 39)

and here κM ¼ κ�M . The standard parameterizations in climate
science are deterministic and, in ref. 5, we utilized the models
in Eq. 27 with σT ≡ 0 as typical deterministic imperfect models
to improve by stochastic forcing for σT ≠ 0 using information the-
ory. In fact, the optimal stochastic forcing to minimize the lack of
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information in Eq. 2 for the climatology gave essentially perfect
climate fidelity for the large-scale wave number k ¼ 1.

Next, we study the sensitivity of the perfect model in Eqs. 26 to
the perturbations of external forcing. The model in Eqs. 26 has
constant in time statistical steady state with the mean and covar-
iance computable analytically as shown in ref. 38. Consider a
ramp perturbation of the external forcing for UðtÞ:

δf UðtÞ ¼
8<
:
0; t≤ 0;
ηUt; 0< t≤ t1;
ηUt1; t > t1:

[28]

where t1 is the time during which δf UðtÞ grows linearly in time
at the rate ηU and after which δfUðtÞ is held fixed. This kind
of external forcing perturbation mimics, for example, the scenario
when at the first stage of climate change the forcing of the cross-
sweep increases and at the second stage, the external forcing is
fixed at a larger value and is not changing in time anymore. First,
we focus on the impact of this external perturbation on the sta-
tistics of the tracer. The exact reponse of the system in Eq. 26 to
the external perturbation, δfUðtÞ, can be computed analytically as
shown in ref. 38. We use the following parameters in our experi-
ments: γU ¼ 2∕3, σU ¼ 2, f U ¼ 4, β ¼ 8.91, Fs ¼ 16, ν ¼ 0.1,
dT ¼ 0.1, κ ¼ 0.001, α ¼ 2, and the perturbation δf UðtÞ from
Eq. 28 with ηU ¼ 0.05 and t1 ¼ 1, which corresponds to a 5% per-
turbation at the end of the first time unit and for the remaining
two time units, so that the whole system was monitored during
three time units as the perturbation was applied. As a result
of such perturbation, the mean of the cross-sweep, U, grows
and reaches a perturbed steady-state value, while the mean
and the variance of the tracer, Tk, decrease in absolute value
and also reach steady-state values. On the other hand, the var-
iance of the cross-sweep as well as the mean and variance of
the waves, vk, stay unchanged due to the uncorrelated and Gaus-
sian structure of the velocity field. Next, we quantify the sensitiv-
ity of the model in Eq. 26 by measuring additional information
due to the perturbation, δf UðtÞ, via Eq. 7 with πMδ ≡ π, the equili-
brium unperturbed steady state. In the first two panels in Fig. 1,
we show the signal and dispersion parts of the additional infor-
mation for the spatial coarse grainings up to k ¼ 1, 3, 6, and 10
Fourier modes. The perturbation δf UðtÞ causes a much more
significant response in the variance than in the mean because,
as shown in Fig. 1, the signal is always at least one order of
magnitude smaller than the dispersion. Moreover, as the number

of Fourier modes in the coarse graining increases to k ¼ 3 and
more, the signal part saturates; i.e., including more than three
modes in the coarse graining does not provide additional infor-
mation in the signal part. On the other hand, the dispersion part
grows significantly as the coarse graining increases. By comparing
the first two panels of Fig. 1, we conclude that the mean of the
tracer takes less time to adjust to a perturbed steady state than
the variance. This delayed response to external perturbations can
have potentially important practical implications.

Next, we study how well the FDT-based algorithms can predict
the true response of the model in Eqs. 26 to the same ramp per-
turbation, δfUðtÞ, from Eq. 28. Using Eqs. 12 and 13, we compute
the mean and variance response operators to the perturbation of
the forcing. Note that peq from Eq. 13 is strongly non-Gaussian
with fat exponential tails (38, 39), and we approximate it with a
Gaussian distribution with the samemean and covariance. On the
other hand, the two-point correlator from Eq. 13 is computed
numerically over the true non-Gaussian equilibrium measure.
This procedure leads to the quasi-Gaussian FDT (qG-FDT) (23).
In the last two panels in Fig. 1, we demonstrate the error in using
qG-FDT for predicting the response to the ramp perturbation,
δf UðtÞ, from Eq. 28. We quantify the error using Eq. 7 with
πMδ ≡ πqGδ , the qG-FDT response. We note that the signal part
of the information is very small for all coarse grainings, which
reflects the fact that the mean response is predicted well using
qG-FDT. On the other hand, the dispersion part is almost as large
as it was in the sensitivity study above. This shows that the var-
iance response is not predicted accurately. Indeed, we checked
that the qG-FDT variance response is significantly smaller than
the true variance response, although qG-FDT predicts the sign
and the shape of the variance response correctly.

To avoid errors due to the quasi-Gaussian approximation, one
can utilize the kicked response strategy advocated above in
Eqs. 20 and 21 and compute the exact FDT response. We com-
pute the response operator by kicking the system at time t ¼ 0 by
δU ¼ 0.1 from its equilibrium value hUi ¼ 6 and monitoring the
decay of the perturbed system back to equilibrium. The coupling
of the tracer to the cross-sweep in Eq. 26 naturally forces the
tracer out of the equilibrium until it relaxes back to equilibrium.
We use the exact analytical formulas from ref. 38 to compute the
mean and variance of the tracer for given kicked initial condi-
tions. However, these formulas use an assumption that the statis-
tics of the system including the tracer are Gaussian at the initial
time t ¼ 0, which is not the case for the tracer in equilibrium as
the authors showed in refs. 38 and 39. To circumvent the systema-
tic errors that the Gaussian assumption brings, we subtract the
statistics computed using the unperturbed Gaussian initial condi-
tions from the statistics computed with the kicked Gaussian initial
conditions. Note that even if we use the unperturbed equilibrium
initial conditions, the system will deviate from equilibrium due to
the imposed Gaussian initial conditions and only after some re-
laxation time, the statistics will approach equilibrium again. This
is exactly the effect that we want to eliminate when computing the
kicked response. In Fig. 2, we demonstrate the high skill of the
kicked FDT algorithm in predicting both the mean and the var-
iance response to the ramp perturbation. Here, the perturbation
δf UðtÞ is growing for two time units at the rate of 2% per time unit
and then stays fixed for another two time units at the level of 4%.
We note that for the first two time units, the FDT and exact re-
sponses are practically indistinguishable and then they deviate
slightly. We also note that the lack of information measured
via Eq. 7 with πMδ ≡ πFDT

δ is very small and although the dispersion
part is a little larger than the signal part, both mean and variance
responses are predicted with an extremely high accuracy, which
makes the kicked FDTa very plausible approach to make climate
change predictions in realistic models. However, one should be
careful in computing the kicked response for the systems with
positive Lyapunov exponents (26, 33, 35).
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Fig. 1. (Upper Two) Signal and dispersion parts of Pðπδ;πÞ from Eq. 7 mea-
suring the sensitivity of the tracer model Eq. 26 to the ramp-type perturba-
tion, δfUðtÞ. (Lower Two) Signal and dispersion parts of Pðπδ;πqGδ Þ from Eq. 7
measuringmodel error due to the use of quasi-Gaussian FDT from Eqs. 10 and
11 for predicting climate response to the same ramp-type perturbation. The
vertical line shows when the perturbation, δfUðtÞ, stopped changing at the
rate 5% per unit time and became constant leading to a new climate. The
solid line corresponds to the coarse graining with only 1 mode; dashed line,
3 modes; the dash-dotted line, 6 modes; and the dotted line, 10 modes.
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Finally, we comment on using the imperfect model with eddy
diffusivity and optimal noise in Eq. 27 for predicting climate
change in the true model from Eq. 26. Following ref. 5, we find
the optimal noise σT for an eddy diffusivity κM ¼ κ�M by minimiz-
ing information theoretic metric Pðπ;πMÞ in equilibrium, i.e., by
tuning the imperfect model to have the perfect climate. In ref. 5,
the authors have shown that the same optimal noise provides a
significant improvement in the predictive skill for the impulsive
external perturbation in the information theoretic sense. We note
that the imperfect model has only moderate skill in predicting the

climate response to the ramp perturbation because of its limited
skill in predicting the true variance response with very good skill
in predicting the true mean response as noted earlier.

Concluding Discussion
Equilibrium statistical fidelity on suitable coarse-grained vari-
ables is a necessary but not sufficient condition for predictive skill
for imperfect models in long-range forecasting with changes in
external forcing (5, 7, 8, 10); an elementary example is presented
above (see Eq. 22), which demonstrates this in the present con-
text. In many applications to complex systems with model error,
it is crucially important to provide guidelines to improve the pre-
dictive skill of imperfect models for their response to changes in
external forcing. Here, a direct link has been developed between
fidelity of specific test problems in the training phase and predic-
tive skill for the forced response by systematically combining
appropriate concepts of information theory with those based on
the fluctuation dissipation theorem. The strengths and weak-
nesses of the approach were summarized. Here, a suite of math-
ematically tractable models with nontrivial eddy diffusivity,
variance, and intermittent non-Gaussian statistics (5, 6, 38, 39)
mimicking crucial features of atmospheric tracers (40) were uti-
lized together with stochastically forced eddy diffusivity approx-
imations with model error to demonstrate this link. The high skill
of the systematic strategy on this unambiguous nontrivial test
model is encouraging for future developments.
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Fig. 2. High skill of FDT in predicting the response to the ramp-type pertur-
bations, δfUðtÞ. (Upper) The unperturbed equilibrium and perturbed mean
tracer as functions of time as well as the FDT prediction obtained using
the kicked perturbation experiment; (Middle) the same as Upper but for
the variance of the tracer; (Lower) the signal and dispersion parts of
Pðπδ;πFDTδ Þ from Eq. 7. The vertical line shows when the perturbation,
δfUðtÞ, stopped changing at the level 2% per unit time and became constant
leading to a new climate.
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