
Fax +41 61 306 12 34
E-Mail karger@karger.ch
www.karger.com

 Original Paper 

 Neuroendocrinology 2011;94:49–57 

 DOI: 10.1159/000323780 

 Nuclear Receptor Coactivators Are 
Coexpressed with Steroid Receptors and 
Regulated by Estradiol in Mouse Brain 

 Christina M. Tognoni    Joseph G. Chadwick, Jr.    Courtney A. Ackeifi    Marc J. Tetel 

 Neuroscience Program, Wellesley College,  Wellesley, Mass. , USA 

mals, 17 � -estradiol benzoate (EB) treatment increased SRC-1 

levels in the arcuate nucleus, but not the medial preoptic 

area or the ventromedial nucleus of the hypothalamus. EB 

did not alter SRC-2 expression in any of the three brain re-

gions analyzed.  Conclusions:  Taken together, the present 

findings identify a population of cells in which steroid recep-

tors and nuclear receptor coactivators may interact to mod-

ulate steroid sensitivity in brain and regulate hormone-de-

pendent behaviors in female mice. Given that cell culture 

studies reveal that SRC-1 and SRC-2 can mediate distinct ste-

roid-signaling pathways, the present findings suggest that 

steroids can produce a variety of complex responses in these 

specialized brain cells.  Copyright © 2011 S. Karger AG, Basel 

 Introduction 

 The ovarian hormones estradiol (E) and progesterone 
regulate growth, proliferation and differentiation in a va-
riety of tissues. In addition, these hormones play an im-
portant role in hormone-dependent cancers of the repro-
ductive systems, including breast cancer  [1] . E and pro-
gesterone act in specific brain regions to influence a 
variety of functions, including cognition and female re-
productive behavior and physiology  [2, 3] . 

  Estrogens and progestins bind to their respective ste-
roid receptors, ER and PR, which are members of a su-
perfamily of ligand-dependent transcription factors. In-
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 Abstract 

  Background/Aims:  The steroid hormones, including estra-

diol (E) and progesterone, act in the brain to regulate female 

reproductive behavior and physiology. These hormones me-

diate many of their biological effects by binding to their re-

spective intracellular receptors. The receptors for estrogens 

(ER) and progestins (PR) interact with nuclear receptor co-

activators to initiate transcription of steroid-responsive 

genes. Work from our laboratory and others reveals that nu-

clear receptor coactivators, including steroid receptor coac-

tivator-1 (SRC-1) and SRC-2, function in brain to modulate

ER-mediated induction of the PR gene and hormone-de-

pendent behaviors. In order for steroid receptors and co-

activators to function together, both must be expressed in 

the same cells.  Methods:  Triple-label immunofluorescence 

was used to determine if E-induced PR cells also express SRC-

1 or SRC-2 in reproductively relevant brain regions of the fe-

male mouse.  Results:  The majority of E-induced PR cells in 

the medial preoptic area (61%), ventromedial nucleus of the 

hypothalamus (63%) and arcuate nucleus (76%) coexpressed 

both SRC-1 and SRC-2. A smaller proportion of PR cells ex-

pressed either SRC-1 or SRC-2, while a few PR cells expressed 

neither coactivator. In addition, compared to control ani-
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tracellular ER exist as two subtypes,  �  and  � , which are 
transcribed from different genes  [4–6] . In primates and 
rodents, PR are expressed in two forms; the full-length 
PR-B and the N-terminal truncated PR-A, which are en-
coded by the same gene but are regulated by different 
promoters  [7] . In the traditional genomic mechanism of 
action, these steroid receptors bind hormones and un-
dergo a conformational change that causes the dissocia-
tion of heat shock proteins and other immunophilins  [8] . 
Activated receptors dimerize and bind preferentially to 
specific hormone response elements in the promoter re-
gions of target genes to increase or decrease gene tran-
scription  [9, 10] . In addition, ER and PR have been found 
to function in the absence of ligand and at the membrane 
to rapidly activate cytoplasmic signaling pathways  [11–
15] .

  A classic example of a steroid-induced gene is the in-
duction of the PR gene by E in a variety of tissues, includ-
ing brain. This ER-mediated induction of PR is thought 
to occur via an estrogen response element in the promot-
er region of the PR gene  [16–18] . While PR are present in 
low levels in the brains of ovariectomized rodents, E 
priming dramatically increases the expression of PR in 
the medial preoptic area (MPA), arcuate nucleus (ARC) 
and ventromedial nucleus of the hypothalamus (VMN) 
 [19–28] . Based on studies in ER knockout mice, E induc-
tion of PR in brain appears to be predominantly, while 
not solely  [29] , dependent on ER �   [30–32] . In support of 
this ER � -mediated event, virtually all E-induced PR cells 
in the hypothalamus also express ER �   [26, 33] . These E-
induced PR in the hypothalamus are important for pro-
gesterone-facilitated reproductive behavior  [34] . In addi-
tion, studies using PR-A- and PR-B-specific knockouts 
reveal that while both receptors are important, PR-A ap-
pears to have a larger role in the full display of progester-
one-facilitated lordosis  [35] .

  Nuclear receptor coregulators consist of coactivators 
and corepressors that are required for efficient transcrip-
tional regulation by nuclear receptors  [36–39] . There is 
mounting evidence that coregulators are involved in hu-
man disease, including metabolic disorders and cancers 
 [40] . Nuclear receptor coactivators dramatically enhance 
the transcriptional activity of nuclear receptors, includ-
ing PR and ER, through a variety of mechanisms, includ-
ing acetylation, methylation, phosphorylation and chro-
matin remodeling  [36, 37] . In vitro, these coactivators are 
often rate limiting for steroid receptor activation and act 
as bridging proteins between the receptor and the basal 
transcriptional machinery  [36, 37] . 

  The p160 steroid receptor coactivator (SRC) family in-
cludes SRC-1/NcoA-1  [41] , SRC-2/TIF2/GRIP1/NcoA2 
 [42, 43] , and SRC-3/p/CIP/ACTR/AIB1/TRAM-1/RAC3 
 [44, 45] . Recent work reveals that two members of this 
p160 family of coactivators, SRC-1 and SRC-2, are impor-
tant for hormone action in brain and behavior  [46, 47] . 
SRC-1  [48–57]  and SRC-2  [58–60]  are expressed at high 
levels in the cortex, hypothalamus and hippocampus of 
rodents. Our laboratory and others have found that SRC-
1 and SRC-2 are important for hormone-dependent sex-
ual differentiation of the brain  [53] , gene expression in 
brain  [54, 61–63]  and sexual behavior  [54, 61–64] . Final-
ly, SRC-1 and SRC-2 from rodent brain physically interact 
with ER and PR in a receptor subtype- and brain region-
specific manner  [58, 65] .

  In order for coactivators to function with steroid re-
ceptors in hormone action in brain, both the coactivators 
and receptors must be expressed in the same cells. Our 
previous work in female rats reveals that the majority of 
E-induced PR cells in the hypothalamus also express 
SRC-1  [48] . In support, SRC-1 and SRC-2 expression is 
significantly related to PR expression in hormone-re-
sponsive meningiomas  [66] . In contrast, SRC-1 was not 
detected in mouse mammary epithelial cells expressing 
E-induced PR  [67] , suggesting that SRC-1 functions in a 
cell-type- and tissue-specific manner. However, it is not 
known if SRC-1 or SRC-2 are expressed in PR-containing 
cells in mouse brain. Therefore, we used a triple-label im-
munofluorescent technique to ask if E-induced PR cells 
expressed SRC-1, SRC-2 or both coactivators in repro-
ductively relevant brain regions of female mice. 

  Materials and Methods 

 Animals 
 Female C57 mice, 5–6 weeks old, were obtained from Taconic 

(Germantown, N.Y., USA) and group-housed for 1 week under a 
12:   12-hour light/dark cycle with food and water freely available. 
One week after arrival, the animals were ovariectomized under 
1.5% isoflurane. One week following ovariectomy, the mice were 
injected subcutaneously with either 17 � -estradiol benzoate (EB, 
1  � g in sesame oil) or vehicle 48 h prior to sacrifice. Ovariecto-
mized mice treated with EB (n = 8) or vehicle (n = 7) were anes-
thetized with Fatal Plus (sodium pentobarbital 0.1 ml, 390 mg/ml) 
and perfused with 4% paraformaldehyde. Five thousand units of 
sodium heparin dissolved in saline were injected into the left ven-
tricle. Saline (0.15  M , 8 ml) preceded the flow of 4% paraformal-
dehyde in 0.1  M  sodium phosphate buffer (pH = 7.2) at a flow rate 
of 8 ml/min for 8 min. Brains were removed from the cranium, 
blocked and stored in 0.1  M  sodium phosphate buffer (pH = 7.2) 
containing 20% sucrose at 4   °   C for 48 h. Coronal sections were cut 
on a freezing rotary microtome at 40  � m from the MPA through 
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the hypothalamus following the mouse brain atlas  [68] . The sec-
tions were stored in cryoprotectant at –20   °   C until processing. All 
animal procedures were approved by the Institutional Animal 
Care and Use Committees of Wellesley College.

  Immunohistochemistry 
 A triple-label immunohistochemistry technique was used to 

identify cells expressing PR, SRC-1 and SRC-2 in the VMN, ARC 
and MPA. The brain sections were incubated in 0.05  M  Tris-buff-
ered saline (TBS) and incubated in donkey anti-mouse IgG to oc-
cupy the endogenous mouse antibodies. The sections were washed 
again in TBS and incubated in 20% donkey serum to reduce non-
specific binding. To detect PR, SRC-1 and SRC-2, the sections 
were incubated for 24 h at 4   °   C in a cocktail containing a PR mouse 
monoclonal antibody directed against amino acids 922–933 of the 
C-terminus of human PR (1:   6,000, MAB 462, Millipore), an SRC-
1 goat polyclonal antibody directed against the C-terminus (aa 
1355–1405) mouse SRC-1 (1:   250, M-20, sc-6098, Santa Cruz Bio-
technology), and an SRC-2 rabbit polyclonal antibody directed 
against the C-terminus (aa 1400–1464) of human SRC-2 (1:   1,000, 
NB100-1756, Novus Biologicals). The specificities of the PR and 
SRC-1 antibodies have been established previously in rodent 
brain  [48, 69, 70] . Analysis of homogenates of mouse hypothala-
mus by Western blot using NB100-1756 revealed a distinct immu-
noreactive band for SRC-2 (see online supplementary figure 1, 
www.karger.com/doi/10.1159/000323780) at the expected molec-
ular mass of 160 kDa  [41, 42] . The sections were washed with TBS 
and incubated in a cocktail of fluorescently labeled secondary an-
tisera containing donkey anti-mouse serum (1:   300, Alexa 594, In-
vitrogen) for detection of PR, donkey anti-goat (1:   100, Alexa 488) 
for detection of SRC-1, and donkey anti-rabbit (1:   100, Alexa 647) 
for detection of SRC-2. The sections were then washed with TBS 
and mounted on gel-coated glass slides, coverslipped with Fluoro-
Gel (EMS) and stored at 4   °   C. 

  Controls for this triple-label technique included the omission 
of the primary or secondary antibodies. In addition, primary an-
tibodies were preadsorbed with 20-fold molar excess of SRC-1 
peptide of the C-terminus (SRC-1 M-20 P, Santa Cruz Biotechnol-
ogy), a fragment of GST-tagged recombinant human SRC-2 pro-
tein consisting of aa 1365–1465 (H00010499-Q01, Novus Biolog-
icals) or full-length human PR-B protein. Recombinant human 
PR-B proteins were expressed in  Spodoptera frugiperda  (Sf9) in-
sect cells from the Baculovirus/Monoclonal Antibody Facility at 
the Baylor College of Medicine, as described previously  [71, 72] .

  Imaging by Confocal Microscopy and Analysis 
 The MPA (fig.  33 of  [68] ), VMN (fig.  46 of  [68] ) and ARC 

(fig. 46 of  [68] ), which are rich in E-induced PR, were analyzed 
with the experimenter blind to treatment groups. Images of im-
munofluorescence from one section per brain region were cap-
tured at 200 !  with a Leica TCS SP laser scanning confocal mi-
croscope (equipped with an argon laser 488, diode laser 561 and 
helium-neon laser 633) using imaging software (LCS 1347a, Lei-
ca). For each brain region, a two-dimensional 1- � m optical sec-
tion (512  !  512) was captured and analyzed. One side of a repre-
sentative section of each animal was analyzed using a uniform 
region of interest for the MPA (total area of the region of inter-
est = 44,981  � m 2 ), VMN (total area = 40,373  � m 2 ) and ARC (total 
area = 59,809  � m 2 ). For each brain region, the region of interest 
was placed over the highest concentration of PR-immunoreactive 

(IR) cells in EB-treated animals and the corresponding area for 
vehicle animals. Laser output (mV) was measured using a Field-
Master (Coherent) and kept constant between animals and imag-
ing sessions. Triple-labeled images (8-bit) were analyzed using 
NIS Elements (Nikon). The threshold for detection of specific im-
munoreactivity was determined as a function of background. For 
each brain region, the threshold was established as the mean max-
imum pixel intensity (ranging from 0 to 256) of 10 random sam-
ples of background for 3 randomly selected animals in each group. 
Within each optical section, cells were considered immunoposi-
tive if above the threshold value and the total area was greater than 
8.0  � m 2 . To insure unbiased data collection for each optical sec-
tion of a brain region, all objects that met the established criteria 
were counted in a uniform region of interest. In each brain region, 
the number of immunoreactive cells and the average optical den-
sity were collected for PR immunoreactivity, SRC-1 immunoreac-
tivity and SRC-2 immunoreactivity. 

  Statistical Analysis 
 To determine if EB influenced the expression of SRC-1 or

SRC-2, images of matched sections from EB-treated and control 
animals were analyzed for total cell counts and relative optical 
density for coactivator immunoreactivity using NIS Elements 
(Nikon). Because the data were not normally distributed, differ-
ences in coactivator immunoreactivity between the EB and con-
trol groups were compared using a Kruskal-Wallis one-way anal-
ysis of variance by rank test (Statistica). Differences were consid-
ered statistically significant at a probability  ! 0.05. 

  Results 

 Coexpression of E-Induced PR, SRC-1 and SRC-2 
 Consistent with previous studies in mice and rats, 

many E-induced PR-IR cells were detected in EB-treated 
mice, while little to no PR were observed in control ani-
mals  [20, 21, 23, 25, 30, 31, 34, 73–78]  in the VMN (EB = 
35.0  8  2.0 cells vs. oil = 0.3  8  0.2; p  !  0.001), ARC (109.3 
 8  23.7 vs. 1.6  8  1.4; p  !  0.01) and MPA (139.0  8  25.9 vs. 
31.1  8  17.1; p  !  0.01) ( fig. 1 a, b,  2 a). Similar differences in 
the average optical density of PR immunoreactivity were 
found between EB and control animals (data not shown). 

  SRC1-IR cells were observed throughout the hippo-
campus, amygdala (data not shown) and hypothalamus, 
including the VMN, ARC and MPA ( fig. 1 b, f,  2 b), which 
is consistent with other limited studies of SRC-1 mRNA 
in mice  [59, 79] . In addition, the present findings of SRC-
1 expression in mouse brain are consistent with previous 
studies in rats  [48–54, 70, 80]  and birds  [57, 81] . SRC2-IR 
cells were detected throughout the mouse hippocampus, 
amygdala (data not shown) and hypothalamus, including 
the VMN, ARC and MPA ( fig. 1 c, g,  2 c). While the pat-
tern of SRC-2 expression in brain has been studied much 
less, these results are consistent with other findings in 
mice and rats  [59–61] . 
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  We found that a large majority of cells containing E-
induced PR in the VMN coexpressed both SRC-1 and 
SRC-2 ( table 1 ;  fig. 1 d). In addition, most of the E-induced 
PR cells in the MPA and ARC coexpressed both SRC-1 
and SRC-2 ( table 1 ;  fig. 2 d). A smaller proportion of E-
induced PR cells in these three brain regions contained 
only SRC-1. Interestingly, in all three brain regions, fewer 

PR cells expressed SRC-2 only than SRC-1 only ( table 1 ). 
A relatively small population of E-induced PR-IR cells ex-
pressed neither of the coactivators. In the VMN, the ma-
jority of coactivator-expressing cells also expressed PR 
( table 1;   fig. 1 d). However, in contrast to the VMN, the 
majority of SRC1-IR and SRC2-IR cells in the ARC and 
MPA did not express E-induced PR ( table 1 ). 

a b c d

e f g h

PR SRC-1 SRC-2 Overlay

Table 1.  Cells immunostained for PR, SRC-1 and SRC-2 in the mouse VMN, ARC and MPA

Brain 
region

Total % PR cells expressing   % SRC-1 cells 
expressing PR

% SRC-2 cells
expressing PR

PR cells SRC-1
cells

SRC-2
cells

neither SRC-1
nor SRC-2

SRC-1 only SRC-2 only SRC-1 and SRC-2

VMN 3582.0 3986 3387 12 18 7 63 78 82
ARC 109822 232815 195825 3 18 2 76 44 45
MPA 139824 250829 235834 7 19 13 61 44 44

T otal numbers of cells per region of interest for each brain region are shown as the mean 8 SEM.

  Fig. 1.  E-induced PR cells coexpress SRC-1 and SRC-2 in the VMN 
of female mice. The VMN of animals treated with EB ( a–d ) or ve-
hicle ( e–h ) were immunostained for PR ( a ,  e ), SRC-1 ( b ,  f ), or SRC-
2 ( c ,  g ).  d ,  h  Overlaid image shows cells expressing PR, SRC-1 and 

SRC-2 (yellow circles), shown in inset at higher magnification. 
Red circles indicate a cell expressing PR only, green circles indi-
cate a cell expressing SRC-1 only and blue circles indicate a cell 
expressing SRC-2 only. Bar = 50  � m.  
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  Regulation of Nuclear Receptor Coactivator 
Expression by Estradiol 
 To determine if EB alters the expression of SRC-1 or 

SRC-2 expression in the VMN, MPA or ARC, sections 
from EB- and vehicle-treated animals were compared. EB 
increased the number of SRC1-IR cells in the ARC, but 
not in the MPA or VMN ( fig. 2 b, f,  3 a). No differences 
were detected in the number of SRC2-IR cells between EB 
and control animals in the three brain regions analyzed 
( fig. 3 b). Similar effects were detected in the relative opti-
cal densities of SRC-1 and SRC-2 immunoreactivity be-
tween EB- and vehicle-treated animals (data not shown). 

  Controls for Triple-Label Immunohistochemistry 
 Controls were performed to confirm specificity of the 

triple-label immunohistochemistry technique. Omission 
of each individual primary antibody resulted in no de-
tectable immunoreactivity of the respective label (data 
not shown). In addition, omission of each individual sec-
ondary antibody resulted in no observable immunoreac-
tivity of the respective label (data not shown). Preadsorp-
tion of (1) MAB-462 with a 20-fold excess of recombinant 
human PR-B protein resulted in no PR immunoreactivi-
ty, (2) M-20 with a 20-fold molar excess of SRC-1 peptide 
of the C-terminus resulted in no SRC-1 immunoreactiv-

a b c d

e f g h

PR SRC-1 SRC-2 Overlay

  Fig. 2.  Expression of PR, SRC-1 and SRC-2 in the ARC of female 
mice treated with EB or vehicle. The ARC of animals treated with 
EB ( a–d ) or vehicle ( e–h ) were immunostained for PR ( a ,  e ), SRC-

1 ( b ,  f ), or SRC-2 ( c ,  g ). Red circles indicate a cell expressing PR 
only and yellow circles indicate a cell expressing PR, SRC-1 and 
SRC-2. Bar = 50  � m.  
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  Fig. 3.  EB regulates SRC-1 expression in 
the ARC. Average number ( 8 SEM) of cells 
immunoreactive for SRC-1 ( a ) or SRC-2 
( b ) per region of interest for the VMN, 
ARC and MPA from oil- (open bars) and 
EB- (grey bars) treated mice.  *  p  !  0.02.                
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ity, and (3) NB100-1756 (SRC-2) with a fragment of re-
combinant human SRC-2 protein resulted in no SRC-
2 immunoreactivity (data not shown). In further confir-
mation of the specificity of the triple-label technique, 
intensely labeled cells with only PR, SRC-1 or SRC-2 im-
munoreactivity were observed. 

  Discussion 

 Our laboratory and others have shown that the nucle-
ar receptor coactivators SRC-1 and SRC-2 are important 
for steroid action in the brain. These coactivators modu-
late ER-mediated transactivation of the PR gene in the 
brain and ER- and PR-dependent reproductive behaviors 
in female rodents  [54, 61, 64] . In order for nuclear recep-
tor coactivators to function with steroid receptors in 
brain, both coactivator and receptor must be expressed in 
the same cell. In the present study, triple-label immuno-
fluorescence was used to investigate the coexpression of 
E-induced PR with SRC-1 or SRC-2 in individual cells in 
the female mouse brain.

  SRC-1 and SRC-2 were expressed at high levels in the 
VMN, ARC and MPA, regions known to be involved in 
reproductive behavior. Interestingly, the majority of E-
induced PR cells in the VMN, MPA and ARC coexpress 
both SRC-1 and SRC-2. Given that virtually all E-induced 
PR cells in the hypothalamus express ER �   [26, 33] , the 
present data indicate that a distinct population of cells in 
the VMN, MPA and ARC coexpress steroid receptors (ER 
and PR) and two members of the p160 family of nuclear 
receptor coactivators (SRC-1 and SRC-2). A smaller pop-
ulation of E-induced PR cells in these three brain regions 
expressed only SRC-1, while less expressed only SRC-2. 
Finally, there was a small proportion of E-induced PR 
cells that expressed neither SRC-1 nor SRC-2. While it is 
possible that very low levels of SRC-1 and SRC-2 were not 
detected in PR cells by the immunofluorescent technique, 
it may be that ER and PR transcriptional activity in these 
cells is mediated by other coactivators in brain  [46] . In 
future experiments it will be important to investigate 
other coregulatory proteins that interact with ER and PR, 
including SRC-3 and silencing mediator of retinoic acid 
and thyroid hormone receptor (SMRT) which have re-
cently been shown to function together to coactivate ER 
transactivation of the PR gene in MCF-7 cells  [82] . It is 
also possible that the ER and PR in some cells function 
through a coactivator-independent pathway  [83, 84] . It 
should be noted that not all coactivator-containing cells 
expressed PR, suggesting that these coactivators function 

with other steroid receptors such as glucocorticoid and 
androgen receptors  [46] .

  There is evidence that SRC-1 and SRC-2 expression in 
rat brain is altered by steroids  [60, 80, 85–88]  and endo-
crine disruptors  [89] , while other studies have found no 
effects of steroids on coactivator expression [see  46  for a 
more thorough review;  48, 49 ]. However, very little is 
known about hormonal regulation of coactivators in 
mouse brain. Therefore, the present study addressed the 
possibility of E regulation of SRC-1 or SRC-2 expression 
in mouse brain. EB treatment increased SRC-1 expression 
in the ARC compared with vehicle-treated control ani-
mals. In contrast, EB did not alter SRC-1 levels in the 
VMN or MPA, or SRC-2 expression in any of the three 
brain regions. It is possible that the present immunofluo-
rescent technique was not sensitive enough to detect 
slight changes in SRC-1 or SRC-2 expression in these oth-
er brain regions. The present E-induced increase of SRC-
1 in the ARC is consistent with other studies in rats that 
have found changes in SRC-1 protein over the estrous cy-
cle  [85]  and E-induced increases in SRC-1 mRNA in the 
hypothalamus  [86] . The present findings suggest that E 
regulates SRC-1, but not SRC-2, in a brain-region-specif-
ic manner. 

  The mechanisms by which individual cells modulate 
steroid responsiveness in a given brain region is a funda-
mental issue in steroid hormone action in brain. Taken 
together with previous findings, the present results iden-
tify putative sites of functional interaction of ovarian ste-
roid receptors (ER �  and PR) with nuclear receptor co-
activators (SRC-1 and SRC-2) in reproductively relevant 
brain regions. These results support and extend our pre-
vious findings that the majority of E-induced PR cells in 
the rat hypothalamus express SRC-1 and CBP  [48]  and 
support the findings that SRC-1 and SRC-2 function in 
the hypothalamus to modulate hormone-dependent fe-
male sexual behavior  [54, 61, 64] . In addition, these re-
sults provide neuroanatomical support for the concept 
that these coactivators are important in ER transactiva-
tion of the PR gene in brain  [54, 61] . However, the func-
tional differences of these coactivators in ER-mediated 
activation of the PR gene in brain are not known. For ex-
ample, it is not known if these two coactivators contribute 
differentially to the ER-mediated induction of the two PR 
isoforms. In support of this idea, ER and other steroid 
receptors have distinct affinities for nuclear receptor co-
activators. For example, SRC-1 and SRC-2 from the rat 
hypothalamus and hippocampus physically associate 
with ER and PR in a receptor subtype- and brain region-
specific manner  [58, 65] . Interestingly, SRC-1 from the 
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hypothalamus interacts more with ER �  than ER � , while 
SRC-2 associates with ER �  but shows virtually no inter-
action with ER �   [58, 65] . In addition, receptor-coactiva-
tor interactions are influenced by different ligands and 
response elements on DNA  [90–93] . In MCS80 Schwann 
cells, glucocorticoid receptors recruit SRC-1 or SRC-3, 
but not SRC-2, in the transactivation of a minimal gluco-
corticoid-sensitive reporter gene containing two GREs 
 [94, 95] . Studies in T47D cells reveal that SRC-1 preferen-
tially recruits CBP resulting in acetylation of histone H4, 
while SRC-2 recruits pCAF leading to acetylation of his-
tone H3  [96] . It has been suggested that this recruitment 
of differential histone acetyltransferases can modulate 
the transcription of various steroid-responsive genes. 
Moreover, ER (as well as androgen receptors) in the pres-
ence of classical hormone response elements, recruit dis-
tinct heterodimers of the SRC family members  [97] . In-
terestingly, on non-hormone response element-contain-
ing genes (such as AP-1 sites of early genes), ER recruit 
SRC proteins as monomers. Taken together, the present 
findings that many E-induced PR cells coexpress both 
SRC-1 and SRC-2 provide neuroanatomical support for 

the concept that steroid responsiveness can be fine-tuned 
not only by the presence or absence of coactivators but 
also by the ratio of these coactivators present within in-
dividual neurons. Thus, these distinct populations of 
cells expressing SRC-1 and SRC-2 may allow alternate ste-
roid receptor signaling pathways in the regulation of
behavior. Furthermore, the E-induced upregulation of 
SRC-1 expression in a brain-region-specific manner pro-
vides another mechanism by which E can increase the 
sensitivity of individual cells to steroids. Thus, studying 
the order and timing of recruitment of different coregula-
tor complexes to the promoter, which is likely to be cell- 
and region-specific, will be critical to understanding hor-
mone action in the brain.
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