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Abstract
Lipid rafts and caveolae play a pivotal role in organization of signaling by Toll-like Receptor
(TLR)4 and several other immune receptors. Beyond the simple cataloguing of signaling events
compartmentalized by these membrane microdomains, recent studies have revealed the
surprisingly central importance of dynamic remodeling of membrane lipid domains to immune
signaling. Simple interventions upon membrane lipid, such as changes in cholesterol loading or
crosslinking of raft lipids, are sufficient to induce micron-scale reordering of membranes and their
protein cargo with consequent signal transduction. In this review, using TLR signaling in the
macrophage as a central focus, we discuss emerging evidence that environmental and genetic
perturbations of membrane lipid regulate protein signaling, illustrate how homeostatic flow of
cholesterol and other lipids through rafts regulates the innate immune response, and highlight
recent attempts to harness these insights towards therapeutic development.
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Since the inception of the lipid raft hypothesis in 1997 (1), a profusion of studies have
reported roles for these cholesterol-enriched membrane microdomains in organization of cell
signaling. As a crossroads for immunology, biophysics, and lipid science, the raft field has
suffered growing pains in terminology, technique, and interpretation. Progressively refined
imaging techniques continue to support the existence of lateral protein/lipid heterogeneities
in biological membranes (2, 3), but the precise nature, size, and malleability of these
microdomains remain a matter of debate. A burgeoning field that has catalogued an
increasing number of signaling events within rafts at the same time finds itself at risk of
losing sight of the implications of this localization. In this review, rather than focus on
definitions of rafts/caveolae (for this the reader is referred to recent scholarly reviews (2, 4,
5)), the objective will be to synthesize and interpret emerging insights on how genetic and
environmental modification of raft lipid plays a fundamental role in determining immune
signaling and disease. The case will be made that dynamic remodeling of raft lipid is not
only necessary in many signaling cascades, but that primary perturbations of raft lipid (e.g.,
cholesterol loading or unloading, raft coalescence) can also be sufficient initiating events to
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trigger protein signaling. Using the macrophage, and, in particular, TLR signaling in
macrophages as a primary case in point, the dependence of inflammatory signaling upon
cholesterol-loading conditions and on the regulatory proteins that control homeostatic
intracellular trafficking of cholesterol through rafts will be highlighted.

Lipid Rafts and Caveolae
Lipid rafts are thought to be highly dynamic, nanoscale (i.e., <200 nm), cholesterol- and
sphingolipid-enriched membrane microdomains, likely present in all eukaryotic cells, that
compartmentalize select signaling and functional events. While it is difficult to place a lower
limit on their size in the resting state, and evidence indeed exists for ‘lipid shells’
surrounding individual proteins in biological membranes (2), rafts can also be driven to
coalesce into more stable, micron-range domains through lipid-lipid, protein-lipid, and
protein-protein interactions. The mechanism(s) underlying raft ‘coalescence’ or ‘clustering,’
however, in many cases remain elusive. It is generally thought that the saturated acyl chains
of raft sphingolipids and phospholipids exhibit tight packing in a manner analogous to the
liquid-ordered (Lo)2 domains observed in model membranes, and that this may account for
their resistance to solubilization by cold nonionic detergents (e.g., Triton-X-100). However,
as detergent can itself induce the formation of domains in membranes (6), rafts should not
be equated with ‘detergent-resistant membranes’ (DRMs); nor can identification of a protein
in DRMs be taken as sufficient evidence for assigning raft localization in vivo. While good
evidence supports the co-existence within cell membranes of heterogeneous populations of
lipid rafts, isolation of DRMs of discrete composition with the use of different detergents
should not be considered as evidence for discrete raft domains in vivo.

Caveolae are ~60–80 nm cholesterol-enriched membrane invaginations whose flask-shaped
morphology derives from caveolin proteins, expression of which suffices to confer caveolar
morphology (7). Caveolae are thought to represent a discrete, specialized subpopulation of
membrane microdomains, and thus should not be simply equated with ‘lipid rafts’. The
caveolin proteins, through direct regulatory interactions with other proteins (e.g., TLR4 (8)),
are in particular thought to play a central role in signal regulation within caveolae. Of
interest, while caveolae are well-studied in certain cell types (e.g., endothelial cells,
fibroblasts) and thought to be absent in others (e.g., lymphocytes), their presence in
macrophages is less well-defined and indeed controversial, varying by macrophage type
(reviewed in (9)).

While rafts and/or caveolae promote immune receptor signaling in several pathways by
serving as platforms for dynamic assembly of signaling complexes, in other cases, raft-
localization suppresses signaling (e.g., TGFβ and epidermal growth factor receptors)
(10-12). Moreover, in addition to concentrating signaling proteins, the lipid micro-
environment of rafts may itself alter protein function (13), in some cases shaping signaling
much more selectively than as just a simple binary switch. Thus, localization of the TNF
receptor to raft vs. non-raft domains determines responses to TNFα, including cell fate as
well as signaling events (14).

Protein localization to rafts, in many cases determined by GPI linkage or palmitoylation, is
also thought to be responsive to raft cholesterol levels. Indeed, lipid-induced changes in the

2Abbreviations used in this paper: ABC, ATP Binding Cassette; ADAM, a disintegrin and metalloproteinase domain-containing
protein; Apo, apolipoprotein; DPPC, dipalmitoyl-phosphatidylcholine; DPPE, dipalmitoyl-phosphatidylethanolamine; DRM, detergent
resistant membrane; HDL, high density lipoprotein; mβCD, methyl-betacyclodextrin; MyD88, myeloid differentiation primary
response gene 88; NPC1, Niemann Pick C1; oxLDL, oxidized low density lipoprotein; PUFA, polyunsaturated fatty acid; SR,
scavenger receptor; TRIF, Toll-Interleukin-1 receptor-domain-containing adapter-inducing interferon-β; TRAM, TRIF-related adaptor
molecule.
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raft proteome likely explain reports, discussed below, that acute or chronic changes in raft
cholesterol may determine protein signaling. Conversely, some proteins (e.g., NAP-22) and
peptides (apolipoprotein A-I mimetic 4F) may themselves induce phase separation of
cholesterol-rich and –poor domains (15), or induce raft signaling by deforming membrane
lipids (16). It is also important to note that proteins, through scaffolding and other
interactions, have been shown in some contexts to play dominant roles in determining
membrane domains in immune cells (17, 18). Raft coalescence induced in dendritic cell
membranes by physical contact of uric acid crystals (19), or in RAW 264.7 membranes by
altered topography of the cell substratum (20), can also activate signaling proteins including
Syk and NF-κB. Taken together, these findings suggest that protein and lipid remodeling of
the membrane interact to shape domains and cell signaling, and that raft signaling may be
profoundly influenced or indeed induced by ‘ligand independent’ interventions upon plasma
membrane lipid.

Rafts as poised signaling units: signal initiation by microdomain
coalescence

Interestingly, recent work indicates that the resting plasma membrane may be poised at the
edge of a phase boundary such that simple membrane perturbations can drive large-scale
phase separation of discrete protein/lipid macrodomains, thereby inducing signaling. Thus,
crosslinking of the raft glycosphingolipid GM1 with cholera toxin B subunit induces
cholesterol-dependent coalescence of micron-scale GM1 domains that recruit lipid-anchored
raft proteins but exclude the non-raft transferrin receptor (21). Cholesterol depletion with
methyl-β-cyclodextrin (mβCD) also induces micron-scale phase separation of the plasma
membrane into fluid and ordered domains in living CHO cells (22), GM1-rich domains that
concentrate Lck and LAT and signal to ERK activation in T cells (23), and GM1- and
CD11b-rich domains in neutrophils (24). Imaging techniques with higher resolution than
fluorescence microscopy will almost certainly be required to properly characterize raft co-
localization and coalescence. Nonetheless, together, these findings confirm that membrane
lipid remodeling is sufficient to drive cell signaling by reorganizing protein cargo, and also
demonstrate, perhaps paradoxically, that cholesterol depletion can increase membrane order
and coalescence of raft-like domains, a topic to which we will return below.

Notably, antibody-mediated crosslinking of several GPI-linked proteins can also coalesce/
remodel rafts and induce signaling by co-patching proteins within rafts. Crosslinking of
external leaflet raft proteins induces co-patching and activation of inner leaflet raft proteins
such as H-ras (25), whereas crosslinking of GM1 can interestingly induce its co-patching
with TLR4 (26) and CD18 (27). As oligomeric cholesterol-binding cytolysins such as
listeriolysin O both cluster CD14-rich rafts (28) and activate TLR4 (29), it seems plausible
that some TLR4 agonists may activate this receptor through raft-mediated receptor
clustering. In this light, it is important to remember that lipopolysaccharide (LPS), the
canonical TLR4 ligand, is itself a polymeric molecule that induces receptor clustering.

The two faces of rafts: signal inhibition and activation by raft-perturbing
agents

Perhaps the most widely used experimental tools used to ‘disrupt’ rafts are the β-
cyclodextrins, mβCD and 2-hydroxyl-β-CD, cyclic oligosaccharides that remove cholesterol
from membranes. While numerous papers have used mβCD to infer that cell signals,
including those induced by LPS, are raft-dependent, some caution is warranted (reviewed in
(30)). Thus, mβCD depletes cholesterol to varying degrees in different cell types, may under
high concentrations (i.e., >10 mM) or prolonged incubations (>30 min) also remove extra-
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raft cholesterol or even cause cell death, and may interact with non-sterol lipids or
immobilize membrane proteins through effects on the cytoskeleton (30). Moreover, mβCD
and other in vitro manipulations of cell membrane lipid may not necessarily be
physiologically relevant. These concerns notwithstanding, good evidence suggests that low
concentration/short incubation usage of mβCD may be selective for raft cholesterol (30–32).
Moreover, multiple control strategies are available, including clamping of cell cholesterol
with mβCD-cholesterol complexes, use of the structurally dissimilar cholesterol-
sequestering agents filipin and nystatin, cholesterol depletion by lipoprotein-deficient serum,
as well as additional raft-perturbing agents that have been described (Table I).

While raft isolation and perturbation strategies have been used to show the requirement for
raft integrity in several signaling pathways, a perhaps more intriguing chain of literature has
shown that acute cholesterol depletion can itself initiate signaling cascades in a cell type-
dependent fashion. CDs activate ERK in Rat-1 and RAW 264.7 cells (31, 33), p38 and
Cdc42 in human neutrophils (34), and tyrosine phosphorylation in RBL-2H3 cells (35).
MβCD and filipin initiate ligand-independent activation of epidermal growth factor receptor
(10, 36) and Fas (37) by a mechanism involving displacement of these receptors from rafts.
Conversely, cholesterol depletion may also cause a disintegrin and metalloproteinase
domain-containing protein (ADAM)10- and/or ADAM17-dependent cleavage of several
receptors (IL-6R, CD44, CD30, TNFR1, TNFR2) by causing their displacement from rafts
(38–41). MβCD also activates NF-κB in macrophages by a mechanism involving the adaptor
myeloid differentiation primary response gene 88 (MyD88)(33). Consistent with these
findings with CDs, we recently reported that the physiologic cholesterol acceptor
apolipoprotein (apo)A-I activates a TLR2-, TLR4-, and MyD88-dependent pathway to NF-
κB in macrophages (33). While the full significance of these assorted findings is not yet
clear, and multiple underlying mechanisms are likely involved, taken together, these reports
suggest that native microdomains of the cell membrane may serve to maintain signal
quiescence by sequestering pathway components, and that their perturbation through
cholesterol removal may induce pathways the nature of which is determined by the specific
signaling proteins expressed in the cell under study.

Regulation of rafts and TLR signaling by intracellular cholesterol traffic
While it is now well recognized that pharmacologic raft-perturbing agents can modify raft-
dependent signaling by delocalization of proteins, the effects of cholesterol loading on raft
function under more physiologic settings are perhaps less widely appreciated. In primary
murine macrophages, raft levels of TLR4 and TLR9, and cell responsiveness to TLR2,
TLR4, TLR7, and TLR9 ligands, are all directly associated with exogenously manipulated
raft cholesterol levels (42, 43). Moreover, hypercholesterolemia increases macrophage raft
cholesterol in mouse and man in vivo, increasing cell responsiveness to LPS (44, 45).
Perhaps more striking are reports that indicate that acute cholesterol loading of membranes
may suffice to activate TLRs. Thus, cholesterol loading of the macrophage plasma
membrane induces TLR4-dependent signaling, and loading of endosomal membranes
induces TLR3- and TLR4-dependent responses (46). Conversely, it is also recognized that,
in other contexts (e.g., modified lipoprotein treatment) cholesterol loading can also be
associated with reduced macrophage inflammatory function (47, 48). This may in part
reflect the propensity of conditions to load cytosolic cholesterol ester instead of membrane
cholesterol, as well as to activate nuclear receptors (e.g., Liver X Receptors, Peroxisome
Proliferator-activated Receptors).

Physiologically, raft/caveolar cholesterol content is regulated by homeostatic trafficking of
cholesterol through the cell (Figure 1), a topic covered in depth by recent comprehensive
reviews (49). In brief, following cholesterol synthesis in the endoplasmic reticulum (ER) or
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endosomal recycling of internalized cholesterol to the ER/Golgi by Niemann Pick C1
(NPC1) protein, it is thought that caveolae are assembled in the Golgi and transported to the
plasma membrane in a caveolin- and NPC1-dependent fashion (7, 50). Thus, NPC-deficient
fibroblasts have reduced plasma membrane caveolar cholesterol (50) and late endosomal
cholesterol overload with raft overcrowding (51). Raft/caveolar cholesterol is, in turn,
regulated by transporter-mediated (ATP Binding Cassette [ABC]A1; ABCG1; and
scavenger receptor [SR]-BI) efflux of plasma membrane cholesterol to extracellular
acceptors including lipid-free apoA-I and HDL, as well as by aqueous diffusion.
Overexpression of ABCA1 (52), and treatment with HDL or apoA-I (53, 54) all disrupt/
deplete raft domains, inhibiting raft-dependent signaling. The effect of stimulated
cholesterol efflux is quite complex, however, as apoA-I, like mβCD, can enhance responses
to some stimuli such as platelet derived growth factor (55) by removing cholesterol from
rafts (55, 56). Similarly, SR-BI-mediated cholesterol efflux to HDL activates eNOS (57).
Moreover, apoA-I may increase caveolar cholesterol by stimulating its transfer from
intracellular compartments faster than its efflux (58).

Building upon earlier reports that TLR4 signaling occurs in lipid rafts (34), an exciting chain
of literature has recently demonstrated profound effects of cholesterol trafficking through
rafts on TLR signaling in the macrophage. ABCA1-null macrophages have enlarged,
cholesterol-laden lipid rafts (42, 59) (Figure 2) containing increased TLR4 (43), and are
hyperresponsive to LPS (42, 59–61) as well as to TLR-2, -7, and -9 ligands (42, 61).
ABCG1-null macrophages display a similar albeit perhaps more pronounced TLR-
hyperresponsive phenotype (61, 62). NPC1-null macrophages display basal activation of
TLR3, -7, -8, and -4 (46), the first three of which may reflect cholesterol overloading of
endosomal rafts, and the last, TLR4 accumulation in endosomes due to blocked trafficking
(63). Taken together, these reports indicate an intriguing degree of overlap between the
pathway for trafficking of host lipids and that for recognition of microbial lipids, perhaps
even suggesting common evolutionary roots between the two. Indeed, it was recently
reported that, in addition to regulating efflux of cholesterol and phospholipid, ABCA1 also
regulates efflux of LPS from the macrophage (64).

Modification of rafts and their signaling by non-sterol lipids
Complex effects upon raft remodeling and signaling in TLR and other pathways have also
been described for sphingomyelin and the product of its breakdown by sphingomyelinase,
ceramide. Sphingomyelin and cholesterol promote raft formation in the Golgi via strong
physical interactions (65), and ceramide indeed stabilizes rafts more effectively than
cholesterol (66). On the other hand, good evidence indicates that sphingomyelinase
treatment and ceramide itself both displace cholesterol from rafts (67, 68) in a manner that
could realistically occur in vivo during inflammation. Indeed, acid sphingomyelinase-
induced remodeling of the plasma membrane into enlarged ceramide-rich rafts during P.
aeruginosa infection is critical for bacterial internalization and for successful host defense
(69). Interestingly, local acid sphingomyelinase-mediated ceramide production in rafts has
also been reported to be required for LPS-induced recruitment of TLR4 to rafts (70), and
ceramide itself elicits TLR4-dependent signaling (71). While the full implications of these
findings are not yet clear, it appears plausible that ceramide and cholesterol may ‘compete’
to form somewhat distinct rafts, and that dynamic remodeling of raft lipid and protein
composition by local ceramide induction may be a critical step in TLR signaling and
perhaps other pathways.

Phospholipids have also been shown to modulate raft structure and function. Dipalmitoyl-
phosphatidylethanolamine (DPPE) partitions into lipid rafts, inhibiting MHC peptide-
induced raft recruitment of acylated proteins in CD8+ T cells (72) and TNF-induced
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recruitment of its receptor to rafts in HT1080 cells (14), without displaying overt effects on
raft integrity. Similarly, the surfactant phospholipid dipalmitoyl-phosphatidylcholine
(DPPC) and surfactant itself both attenuate LPS signaling by inhibiting TLR4 recruitment to
rafts (73), perhaps suggesting that the lipid environment of the alveolus may dampen innate
immune responses through effects on rafts. A role for phospholipid metabolism in cell-
intrinsic TLR4 responses is also suggested by a report that lysophosphatidylcholine
acyltransferase is required for LPS-induced translocation of TLR4 to rafts (74).

Oxidized lipids present during disease have been shown to modify rafts with associated
effects on signaling. Thus, oxidized low density lipoprotein (oxLDL) reduces caveolar
cholesterol, displacing eNOS and caveolin (75). The major oxysterol in oxLDL, 7-
ketocholesterol, partitions into rafts, depleting them of cholesterol (56) and activating Src
within them (76). Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine, a
major oxidized phospholipid present in oxLDL, has also been shown to disrupt rafts through
a mechanism involving ceramide induction, thereby inhibiting LPS-induced translocation of
TLR4 to rafts (77, 78). Reports that reactive oxygen species are not only necessary but also
sufficient to induce assembly of TCR-associated proteins in T cell rafts (79) and TLR4
trafficking to rafts in macrophages (26), suggest that oxidation of membrane lipids may also
serve as a critical step in innate and adaptive immune signaling through raft remodeling.
Indeed, an antioxidant α-tocopherol derivative has been shown to attenuate LPS signaling by
interfering with CD14 and TLR4 recruitment to rafts (80).

Emerging opportunities for targeting rafts in disease
Several strategies have shown early promise as potential therapeutic measures to modify raft
signaling through intervening upon raft lipids. These include dietary polyunsaturated fatty
acids (PUFAs), statins (i.e., HMG CoA reductase inhibitors), squalene synthase inhibitors,
raft-targeting lipids, and edelfosine. PUFAs such as docosahexaenoic acid and
eicosapentaenoic acid inhibit signaling in Jurkat T cells by incorporating into rafts and
displacing acylated signaling proteins (Lck, Fyn, LAT) (81). Alternatively, it has been
proposed that PUFAs do not incorporate into rafts due to their unsaturation, but rather form
extra-raft domains that interfere indirectly with raft-dependent protein clustering (82, 83).
Statins, increasingly studied for their anti-inflammatory actions, attenuate leukocyte function
in part through membrane raft depletion (84). Inhibitors of squalene synthase, an enzyme
downstream of HMG CoA reductase in the cholesterol biosynthetic pathway, selectively
reduce raft cholesterol in cancer cells and induce cell death (85). In an additional raft-centric
strategy for cancer therapy, adhesion and cell cycle progression of breast cancer cells was
recently shown to be more effectively inhibited by targeting a Src family kinase inhibitor to
rafts through palmitoylation (86). Finally, a recent study has shown that the phospholipid
ether edelfosine may be an effective therapeutic for multiple myeloma by accumulating in
myeloma cell rafts, thereby inducing apoptosis through co-clustering of rafts and death
receptors (87). Taken together, these reports indicate the exciting potential to manipulate
disease cells through several independent interventions that target raft lipids.

Conclusions
Many basic questions about the nature of rafts and caveolae remain unanswered, and many
of these questions will almost certainly require high-resolution imaging techniques.
Nonetheless, a convergence of independent approaches including biophysics, immunology,
and lipid science has begun to indicate the fundamental importance of dynamic and chronic
changes in membrane lipid to signaling in immune and other cells. Pathways for trafficking
of cholesterol and other lipids through the macrophage, initially studied for their relevance
to cell biology and metabolism, are now understood to be critical determinants of TLR
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signaling. At a basic level, these studies have also challenged the traditional paradigm of
hierarchical protein signaling, showing that lateral changes in lipid domain segregation in
the plasma membrane are not only necessary, but also sufficient to initiate protein signaling.
A challenge for the field as it looks now to apply these insights to better understand ‘old’
diseases and to develop new therapeutics, will be to avoid conceptual constraint by the raft
hypothesis itself.
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Figure 1. Intracellular cholesterol trafficking regulates macrophage rafts
Cholesterol synthesized in the endoplasmic reticulum (ER) by HMG CoA reductase
(HMGCR) or internalized via scavenger receptors (CD36, SR-A) or low density lipoprotein
receptor (LDLR), is assembled into nascent rafts in the Golgi apparatus for caveolin- and
Niemann Pick C1 protein (NPC1)-dependent transfer to the plasma membrane. NPC1
together with NPC2 also regulates endosomal recycling of cholesterol to the plasma
membrane. In turn, cholesterol is effluxed either by simple diffusion or via transporters
(ATP Binding Cassette [ABC]A1, ABCG1, SR-BI) to extracellular acceptors
(apolipoprotein [apo]A-I, high density lipoprotein [HDL]), and also likely equilibrates with
non-raft regions. Cholesterol esterification is regulated in the cytosol by cholesterol ester
hydrolase (CEH) and in the ER by acyl-coenzyme A:cholesterol acyltransferase 1 (ACAT1).
Raft cholesterol/abundance and abundance of LPS recognition proteins (CD14, TLR4) are
regulated by cholesterol flux through this pathway.
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Figure 2. ATP Binding Cassette (ABC)A1-deficient macrophages have enlarged lipid rafts
(A) Rafts were imaged in peritoneal macrophages from WT and Abca1 null mice with the
use two raft cholesterol probes, BCθ toxin (red) and fPEG-chol (green). Nuclei were stained
with 4’6-diaminophenylindole (blue). Reprinted from (59) with permission. (B) Peritoneal
macrophages from wild type (+/+) or macrophage-specific Abca1 null (-M/-M) mice were
cholesterol-depleted with mβCD or cholesterol-loaded with mβCD-cholesterol, stained with
fPEG-chol, and then quantified by flow cytometry. Data are mean +/− SEM. *, p<.05; **,
p<.01. Reprinted from (43).
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Table 1

Agents reported to ‘disrupt’ raft structure and/or function and their associated effects on the cell.*

Disruptor Cell type Effect

PUFAs EL4 cell ↓raft coalescence, MHC I mislocalization (82)

HDL monocyte ↓raft chol, ↓CD11b activation (54)

4F MDM ↓rafts, altered cell differentiation (88)

LXR agonists prostate Ca cell ↓raft size, ↓raft Akt phosphorylation (89)

SQS inhibitor prostate Ca cell ↓raft chol, ↓cell proliferation (85)

Statins NK cell ↓membrane chol, ↓NK cell cytotoxicity (84)

OxLDL endothelial ↓raft chol, ↓raft eNOS, ↓eNOS activation (75)

OxPAPC endothelial ↓LPS-induced raft TLR4, ↓LPS response (77)

Ceramide PBMC ↓raft Lck, ↓raft PLD1, ↑PLD1 activity (90)

DPPE CD8+ T cell ↓MHC-induced raft proteins, ↓CTL activation (72)

DPPC, surfactant A549 ↓LPS-induced TLR4 translocation to rafts (73)

High glucose THP-1 ↓number and size of caveolae (91)

Ethanol Mϕ ↓LPS-induced raft CD14 and TLR4 (92)

ESeroS-GS Mϕ ↓LPS-induced raft CD14 and TLR4 (80)

*
Select examples are shown for each agent. Measures of raft ‘disruption’ differ among reports. For some agents (e.g., ceramide), both raft

stabilization and destabilization have been reported. For others, (e.g., ethanol), inhibitory and stimulatory effects have been reported on the TLR4
pathway. Ca, cancer; chol, cholesterol; CTL, cytotoxic T lymphocyte; DPPC, dipalmitoyl-phosphatidylcholine; DPPE, dipalmitoyl-
phosphatidylethanolamine; eNOS, endothelial nitric oxide synthase; HDL, high density lipoprotein; LPS, lipopolysaccharide; LXR, Liver X
Receptor; Mϕ, macrophage; MDM, monocyte-derived macrophage; oxLDL, oxidized low density lipoprotein; oxPAPC, oxidized 1-palmitoyl-2-
arachidonoyl-sn-glycero-3-phosphorylcholine; PUFA, polyunsaturated fatty acid; SQS, squalene synthase; TLR4, Toll like Receptor 4; 4F,
apolipoprotein mimetic peptide 4F.
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