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Abstract

We investigate interaction networks that we derive from multivariate time series with methods frequently employed in
diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences.
Mimicking experimental situations, we generate time series with finite length and varying frequency content but from
independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate
interdependencies between these time series. With clustering coefficient and average shortest path length, we observe
unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies
as compared to Erdös-Rényi networks, which would indicate small-world characteristics. These topologies reflect the mostly
unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We
propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an
exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures – known for their
complex spatial and temporal dynamics – we show that such random networks help to distinguish network properties of
interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis.
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Introduction

The last years have seen an extraordinary success of network

theory and its applications in diverse disciplines, ranging from

sociology, biology, earth and climate sciences, quantitative finance,

to physics and the neurosciences [1–4]. There is now growing

evidence that research into the dynamics of complex systems

profits from a network perspective. Within this framework,

complex systems are considered to be composed of interacting

subsystems. This view has been adopted in a large number of

modeling studies and empirical studies. It is usually assumed that

the complex system under study can be described by an interaction

network, whose nodes represent subsystems and whose links

represent interactions between them. Interaction networks derived

from empirical data (multivariate time series) have been repeatedly

studied in climate science (climate networks, see [5–9] and

references therein), in seismology (earthquake networks, see, e.g.,

[10–13]), in quantitative finance (financial networks, see e.g. [14–

18] and references therein), and in the neurosciences (brain

functional networks, see [19,20] for an overview). Many

interaction networks have been reported to possess non-trivial

properties such as small-world architectures, community struc-

tures, or hubs (nodes with high centrality), all of which have been

considered to be characteristics of the dynamics of the complex

system.

When analyzing empirical data one is faced with the challenge

of defining nodes and inferring links from multivariate noisy time

series with only a limited number of data points due to stationarity

requirements. Different approaches varying to some degree across

disciplines have been proposed. For most approaches, each single

time series is associated with a node and inference of links is based

on time series analysis techniques. Bivariate time series analysis

methods, such as the correlation coefficient, are used as estimators

of signal interdependence which is assumed to be indicative of an

interaction between different subsystems. Inferring links from

estimates of signal interdependence can be achieved in different

ways. Weighted interaction networks can be derived by consid-

ering estimated values of signal interdependence (sometimes

mapped via some function) as link weights. Since methods

characterizing unweighted networks are well-established and

readily available, such networks are more frequently derived from

empirical data. Besides approaches based on constructing

minimum spanning trees (see, e.g., reference [14]), on significance

testing [21–23], or on rank-ordered network growth (see, e.g.,

reference [15]), a common practice pursued in many disciplines is

to choose a threshold above which an estimated value of signal

interdependence is converted into a link (‘‘thresholding’’, see, e.g.,

references [5,12,16,20]). Following this approach, the resulting

unweighted interaction networks have been repeatedly investigat-

ed employing various networks characteristics, among which we

mention the widely-used clustering coefficient C and average

shortest path length L to assess a potential small-world

characteristic, and the node degrees in order to identify hubs.

As studies employing the network approach grow in numbers,

the question arises as to how informative reported results are with

respect to the investigated dynamical systems. To address this
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issue, properties of interaction networks are typically compared to

those obtained from network null models. Most frequently, Erdös-

Rényi random networks [24] or random networks with a

predefined degree distribution [25,26] serve as null models;

network properties that deviate from those obtained from the null

model are considered to be characteristic of the investigated

dynamical system. Only in a few recent studies, results obtained

from network analyses have been questioned in relation to various

assumptions underlying the network analysis approach. Problems

pointed out include: incomplete data sets and observational errors

in animal social network studies [27]; representation issues and

questionable use of statistics in biological networks (see [28] and

references therein); challenging node and link identification in the

neurosciences [29–31]; the issue of spatial sampling of complex

systems [31–33]. This calls not only for a careful interpretation of

results but also for the development of appropriate null models

that incorporate knowledge about the way networks are derived

from empirical data.

We study – from the perspective of field data analysis – a

fundamental assumption underlying the network approach,

namely that the multivariate time series are obtained from

interacting dynamical processes and are thus well represented by

a model of mutual relationships (i.e., an interaction network).

Visual inspection of empirical time series typically reveals a

perplexing variety of characteristics ranging from fluctuations on

different time scales to quasi-periodicity suggestive of different

types of dynamics. Moreover, empirical time series are inevitably

noisy and finite leading to a limited reliability of estimators of

signal interdependencies. This is aggravated with the advent of

time-resolved network analyses where a good temporal resolution

often comes at the cost of diminished statistics. Taken together, it

is not surprising that the suitability of the network approach is

notoriously difficult to judge prior to analysis.

We here employ the above-mentioned thresholding-approach

to construct interaction networks for which we estimate signal

interdependence with the frequently used correlation coefficient

and the maximum cross correlation. We derive these networks,

however, from multivariate time series of finite length that are

generated by independent (non-interacting) processes which would

a priori not advocate the notion of a representation by a model of

mutual relationships. In simulation studies we investigate often

used network properties (clustering coefficient, average shortest

path length, number of connected components). We observe that

network properties can deviate pronouncedly from those observed

in Erdös-Rényi networks depending on the length and the spectral

content of the multivariate time series. We address the question

whether similar dependencies can also be observed in empirical

data by investigating multichannel electroencephalographic (EEG)

recordings of epileptic seizures that are known for their complex

spatial and temporal dynamics. Finally, we propose random

networks that are tailored to the way interaction networks are

derived from multivariate empirical time series.

Methods

Interaction networks are typically derived from N multivariate

time series xi (i [ f1, . . . ,Ng) in two steps. First, by employing

some bivariate time series analysis method, interdependence

between two time series xi(t) and xj(t) (t [ f1, . . . ,Tg) is estimated

as an indicator for the strength of interaction between the

underlying systems. A multitude of estimators [34–40], which

differ in concepts, robustness (e.g., against noise contaminations),

and statistical efficiency (i.e., the amount of data required), is

available. Studies that aim at deriving interaction networks from

field data frequently employ the absolute value of the linear

correlation coefficient to estimate interdependence between two

time series. The entries of the correlation matrix rc then read

rc
ij :~ T{1

XT

t~1

(xi(t){�xxi)(xj(t){�xxj)ŝs
{1
i ŝs{1

j

�����
�����~ : corr(xi,xj)

�� ��, ð1Þ
where �xxi and ŝsi denote mean value and the estimated standard

deviation of time series xi. Another well established method to

characterize interdependencies is the cross correlation function.

Here we use the maximum value of the absolute cross correlation

between two time series,

rm
ij : ~ max

t

j(xi,xj)(t)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j(xi,xi)(0)j(xj ,xj)(0)

p
�����

�����
( )

, ð2Þ

with

j(xi,xj)(t) : ~

PT{t
t~1 xi(tzt)xj(t) ,t§0

j(xj ,xi)({t) ,tv0

(
ð3Þ

to define the entries of the cross correlation matrix rm. As

practiced in field data analysis, we normalize the time series to

zero mean before pursuing subsequent steps of analysis. Note that

rm
ij is then the maximum value of the absolute cross covariance

function. Both interdependence estimators are symmetric (rc
ij~rc

ji

and rm
ij ~rm

ji ) and are confined to the interval ½0,1�. High values

indicate strongly interdependent time series while dissimilar time

series result in values close to zero for T sufficiently large.

Second, the adjacency matrix A representing an unweighted

undirected interaction network is derived from rc (or rm) by

thresholding. For a threshold h [ ½0,1� entries Aij and Aji of A are

set to 1 (representing an undirected link between nodes i and j) for

all entries rc
ijwh (rm

ij wh, respectively) with i=j, and to zero (no

link) otherwise. In many studies h is not chosen directly but

determined such that the derived network possesses a previously

specified mean degree �kk : ~N{1
P

i ki, where ki denotes the

degree of i, i.e., the number of links connected to node i. More

frequently, h is chosen such that the network possesses a previously

specified link density E~�kk(N{1){1. We will follow the latter

approach and derive networks for fixed values of E.
To characterize a network as defined by A, a plethora of

methods have been developed. Among them, the clustering

coefficient C and the average shortest path length L are frequently

used in field studies. The local clustering coefficient Ci is defined as

Ci : ~
1

ki (ki{1)

P
j,m AijAjmAmi, if kiw1

0, if ki [ f0,1g:

(
ð4Þ

Ci represents the fraction of the number of existing links between

neighbors of node i among all possible links between these

neighbors [1,2,41]. The clustering coefficient C of the network is

defined as the mean of the local clustering coefficients,

C : ~
1

N

XN

i~1

Ci: ð5Þ

C quantifies the local interconnectedness of the network and

Ci,C [ ½0,1�.

Spurious Properties of Interaction Networks
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The average shortest path length is defined as the average

shortest distance between any two nodes,

~LL : ~
2

N(Nz1)

X
iƒj

lij , ð6Þ

and characterizes the overall connectedness of the network. lij
denotes the length of the shortest path between nodes i and j. The

definition of the average shortest path length varies across the

literature. Like some authors, we here include the distance from

each node to itself in the average (lii~0Vi). Exclusion will,

however, just change the value by a constant factor of

(Nz1)=(N{1).

If a network disintegrates into a number Nc of different

connected components, there will be pairs of nodes (i,j), for which

no connecting path exists, in which case one usually sets lij~?
and thus ~LL~?. In order to avoid this situation, in some studies lij
in equation (6) is replaced by l{1

ij . The quantity defined this way is

called efficiency [42,43]. Another approach, which we will follow

here and which is frequently used in field studies, is to exclude

infinite values of lij from the average. The average shortest path

length then reads

L : ~
1

jSj
X

(i,j) [ S

lij , ð7Þ

where

S : ~f(i, j)jlijv?; i, j~1, . . . ,Ng ð8Þ

denotes the set of all pairs (i,j) of nodes with finite shortest path.

The number of such pairs is given by jSj. Note that L?0 for

Nc?N.

In field studies, values of C and L obtained for interaction

networks are typically compared with average values obtained from

an ensemble of random Erdös-Rényi (ER) networks [24]. Between

every pair of nodes is a link with probability E, and links for different

pairs exist independently from each other. The expectation value of

the clustering coefficient of ER networks is CER~E [2]. The

dependence of the average shortest path length LER of ER networks

on E and N is more complicated (see references [2,44]). Almost all

ER networks are connected, if E&ln N=(N{1). ER networks with

a predefined number of links (and thus link density) can also be

generated by successively adding links between randomly chosen

pairs of nodes until the predefined number of links is reached.

During this process, multiple links between nodes are avoided.

Results

Simulation studies
We consider time series zi, i [ f1, . . . ,Ng, whose entries zi(t) are

drawn independently from the uniform probability distribution U on

the interval (0,1). We will later study the impact of different lengths

T of these random time series on network properties. In order to

enable us to study the effects of different spectral contents on network

properties, we add the possibility to low-pass filter zi by considering

xi,M,T (t) : ~M{1
XtzM{1

l~t

zi(l), zi(l)*U, ð9Þ

where t [ f1, . . . ,Tg, and 1ƒM%T . By definition xi,1,T (t)~
zi(t)Vt. With the size M of the moving average we control the

spectral contents of time series. We here chose this ansatz for the sake

of simplicity, for its mathematical treatability, and because the

random time series with different spectral contents produced this

way show all properties we want to illustrate.

In the following we will study the influence of the length T of

time series on network properties by considering xi,1,T for different

T . For a chosen value of T we determine R realizations of xi,1,T

and we denote each realization r with x
(r)
i,1,T . When studying the

influence of the spectral content we will consider xi,M,T ’ with

different M and with T ’~500. We chose this value of T ’ because

we are interested in investigating time series of short length as

typically considered in field studies. For a chosen value of M we

determine R realizations of xi,M,T ’ and we denote realization r
with x

(r)
i,M,T ’.

In order to keep the line of reasoning short and clear, we will

present supporting and more rigorous mathematical results in

Appendix S1 and refer to them in places where needed. In

addition, since we observed most simulation studies based on rm to

yield qualitatively the same results as those based on rc, we will

present results based on rc only and report results of our studies

based on rm whenever we observed qualitative differences.

Clustering coefficient. Let r
(r)
ij,1,T : ~rc(x

(r)
i,1,T ,x

(r)
j,1,T ) denote

the absolute value of the empirical correlation coefficient estimated

for time series x
(r)
i,1,T and x

(r)
j,1,T , and let us consider R realizations,

r [ f1, . . . ,Rg. Because of the independence of processes

generating the time series and because of the symmetry of the

correlation coefficient, we expect the R values of the empirical

correlation coefficient calculated for finite and fixed T to be

distributed around the mean value 0. The variance of this

distribution will be higher the lower we choose T . If we sample

one value r
(r)
ij,1,T out of the R values it is almost surely that

r(r)
ij,1,Tw0. Thus there are thresholds 0vhvr(r)

ij,1,T for which we

would establish a link between the corresponding nodes i and j
when deriving a network. Let us now consider a network of N
nodes whose links are derived from N time series as before. For

some hw0 the network will possess links and Ew0. We expect to

observe E for some fixed hw0 to be higher the larger the variance

of the distribution of r(r)
ij,1,T . Likewise, for fixed values of E we

expect to find h to be higher the lower we choose a value of T .

As a first check of this intuition we derive an approximation Eal

for the edge density by making use of the asymptotic limit (T??,

see Appendix S1, Lemma 2 for details),

Eal(h,T)~2W({
ffiffiffiffi
T
p

h), ð10Þ

where W denotes the cumulative distribution function of a

standard normal distribution. In figure 1 (top left) we show the

dependence of Eal(h,T) on h for exemplary values of T . Indeed,

Eal(h,T) is decreasing in h and T .

The concession of taking the asymptotic limit when deriving

equation (10) may limit its validity in the case of small values of T
in which we are especially interested. Thus, we approach this case

by simulation studies. Let us consider R~106 values of r
(r)
12,M,T

obtained for R realizations of two time series xi,M,T ,

i [ f1,2g,r [ f1, . . . ,Rg. We estimate the edge density ÊE(h,M,T) by

ÊE(h,M,T) : ~R{1
X

r

H
(r)
12,M,T (h), ð11Þ

where H
(r)
ij,M,T (h)~1 for r

(r)
ij,M,Twh, and 0 else. Note that

ÊE(h,M,T) does not depend on N. This is because ÊE(h,M,T)
represents the (numerically determined) probability that there is a

link between two vertices. The dependence of ÊE(h,1,T) on h for

Spurious Properties of Interaction Networks
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different values of T shown in figure 1 (top left) indicates a good

agreement between Eal(h,T) and ÊE(h,1,T) for larger values of T
but an increasing difference for Tv30.

We proceed by estimating the clustering coefficient ĈC for our

model using R realizations of three time series xi,M,T , i [ f1, . . . ,3g
by

ĈC(h,M,T) : ~

P
r H

(r)
12,M,T (h)H

(r)
13,M,T (h)H

(r)
23,M,T (h)P

r H
(r)
12,M,T (h)H

(r)
13,M,T (h)

: ð12Þ

The dependence of ĈC(h,1,T) on h for various T is shown in the

top right part of figure 1. For fixed T , ĈC(h,1,T) decreases from 1
with increasing values of h which one might expect due to the

decrease of E. However, we also observe for hw0 that ĈC(h,1,T)
takes on higher values the lower T .

In order to investigate whether the clustering coefficients of

our networks differ from those of Erdös-Rényi networks we use

equation (11) and obtain ĈCM,T (E)~ĈC(ĥh(E,M,T),M,T) with

ĥ(E,M,T)~inffh : Ê(h,M,T)§Eg. This allows the comparison

with CER(E)~E by considering the ratio ĉc(E,M,T) : ~ĈCM,T (E)=
CER(E). Remarkably, ĉc(E,1,T)&1 for a range of values of E and T
(cf. lower left part of figure 1). ĉc(E,1,T) even increases for small E
and T . This indicates that there is a relevant dependence between

the three random variables rij,M,T , ril,M,T , and rjl,M,T for

different indices i,j,l and small T . For T?? and fixed edge

density, C converges to CER because the dependence between the

random variables rij,M,T , i,j [ f1, . . . ,Ng, vanishes (i.e., the

random variables will converge in distribution to independent

normal random variables).

In order to gain deeper insights into the influence of the spectral

contents of random time series on the clustering coefficient, we

repeat the steps of analysis with time series xi,M,T ’, where T ’~500 is

kept fix, and we choose different values of M. Figure 1 (top panels

and lower left) shows that the higher the amount of low-frequency

contributions (large M ) the higher ÊE(h,M,T ’) and ĈC(h,M,T ’) (for

hw0), and the higher ĉc(E,M,T ’) (for E%1). The difference between

Erdös-Rényi networks and our time series networks becomes more

pronounced (̂cc(E,M,T ’)&1) the smaller E and the higher M.

Given the similar dependence of ĉc, ĈC, and ÊE on T and M, we

hypothesize that the similarity can be traced back to similar

variances of rij,1,T and rij,M,T ’ for some values of T and M. By

making use of the asymptotic variance of the limit distributions of

T??, we derive an expression relating Var(rij,1,T ) and

Var(rij,M,T ) to each other (see Appendix S1, Lemma 1),

Var(rij,M,T )&g(M)Var(rij,1,T ), with g(M)~
2

3
Mz

1

3M
: ð13Þ

We are now able to define an effective length Teff of time series,

Teff (M) : ~
T ’

g(M)
, ð14Þ

for which Var (rij,1,Teff
)&Var (rij,M,T ’). In the lower right part of

figure 1 we show Teff (M) in dependence on M. To investigate

Figure 1. Simulation results for the edge density, the clustering coefficient, and the effective length. Top row: Dependence of edge
density ÊE(h,M,T) (left) and of clustering coefficient ĈC(h,M,T) (right) on the threshold h for different values of the size M of the moving average and
of the length T of time series. Values of edge density Eal(h,T) obtained with the asymptotic limit (equation (10)) are shown as lines (top left). Bottom
left: Dependence of the ratio ĉc(E,T ,M)~ĈCM,T (E)=CER(E) on edge density E. Note, that we omitted values of estimated quantities obtained for
h[fh : (R{1

P
r H

(r)
12,M,T (h)H

(r)
13,M,T (h))v10{3g since the accuracy of the statistics is no longer guaranteed. Bottom right: Dependence of effective

length Teff as determined by equation (14) (black line) and its numerical estimate T̂Teff (red markers) on M .
doi:10.1371/journal.pone.0022826.g001
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whether equation (14) also holds for small values of T , we

determine numerically, for different values of h, ĈC(h,1,T) for

T [ f3, . . . ,T ’g as well as ĈC(h,M,T ’) for some chosen values of M.

Eventually, we determine for each value of M a value of T , for

which ĈC(h,1,T) and ĈC(h,M,T ’) curves match in a least-squares

sense, and denote this value with T̂Teff (see the lower right part of

figure 1). We observe a maximum deviation Teff{T̂T eff

�� ��&2 and

conclude that equation (14) indeed holds for small length T of time

series. Moreover, numerically determined dependencies of ÊE on h,

ĈC on h, as well as ĉc on E for pairs of values (M,T ’) show a

remarkable similarity to those dependencies obtained for pairs of

values (1,T̂Teff ).

Thus, the clustering coefficient of networks derived from

random time series of finite length and/or with a large amount

of low-frequency contributions is higher than the one of Erdös-

Rényi (ER) networks – independently of the network size N (cf.

equation (12)). This difference becomes more pronounced the

lower the edge density E, the lower the length T of time series, and

the larger the amount of low-frequency contributions. These

results point us to an important difference between ER networks

and our model networks: possible edges in ER networks are not

only (1) equally likely but also (2) independently chosen to become

edges. While property (1) is fulfilled in our model networks,

property (2) is not.

Average shortest path length. Next we study the impact of

the length of time series and of the amount of low-frequency

contributions on the average shortest path length L of our model

networks by employing a similar but different simulation approach

as used in the previous section. To estimate L, we consider R~100
networks with a fixed number of nodes (N~100). We derive our

model networks by thresholding r
(r)
ij,M,T , i,j [ f1, . . . ,Ng,

r [ f1, . . . ,Rg. Let L(r)(E,1,T) denote the average shortest path

length for network r with M~1 and different values of T , and

L(r)(E,M,T ’) the average shortest path length for network r with

fixed value of T (T~T ’~500) and different values of M. With

L
(r)
ER(E) we refer to the average shortest path length obtained for the

r-th ER network of size N and edge density E. Mean values over

realizations will be denoted as L̂L(E,1,T), L̂L(E,M,T ’), and L̂LER(E)
respectively. Finally, we define l̂l(E,1,T) : ~L̂L(E,1,T)=L̂LER(E) and

l̂l(E,M,T ’) : ~L̂L(E,M,T ’)=L̂LER(E).
In figure 2 we show the dependence of L̂L and l̂l on E for various

values of M and T . All quantities decrease as E increases which

can be expected due to additional edges reducing the average

distances between pairs of nodes of the networks. For fixed E%1, L̂L
takes on higher values the higher M or the lower T . With equation

(14) we have L̂L(E,1,Teff )&L̂L(E,M,T ’) which resembles the results

obtained for the clustering coefficient. Differences between the

average shortest path lengths of our model networks and ER

networks (as characterized by l̂l) become more pronounced the

higher M and the lower T . For edge densities typically reported in

field studies (E&0:1), however, differences are less pronounced

(l̂l *v 1:2, cf. figure 2 right) than the ones observed for the clustering

coefficient (ĉcw2 for selected values of M and T , cf. figure 1

bottom left). We obtained qualitatively similar results for small

(N~50) and large numbers of nodes (N~500).

Number of connected components and degree

distribution. Since the number of connected components of a

given network might affect network characteristics such as the

average shortest path length (see equation (7)), we investigate the

impact of different length of time series and of the amount of low-

frequency contributions on the average number of connected

components N̂Nc(E,M,T) of the networks derived from xi,1,Teff
and

xi,M,T ’. We determine N̂Nc(E,M,T) as the mean of R realizations of

the corresponding networks and with N̂Nc,ER(E) we denote the

mean value of the number of connected components in R
realization of ER networks. For the edge densities considered here

we observe ER networks to be connected (cf. figure 3), Nc,ER&1,

which is in agreement with the connectivity condition for ER

networks, E&ln N=(N{1)&0:05 (for N~100). Similarly, we

observe N̂Nc(E,1,Teff )&1, even for small values of T (cf. figure 3

right). In contrast, N̂Nc(E,M,T ’) takes on higher values the lower E
and the higher M (cf. figure 3 left). In order to achieve a better

understanding of these findings, we determine degree probability

distributions of our model networks. Let p̂pk denote the estimated

probability of a node to possess a degree k, i.e.,

p̂pk~#fi(r) : k
(r)
i ~k,r [ f1, . . . ,Rgg=(NR). With p̂pk(E,M,T) we

will denote the estimated degree distribution for networks derived

from xi,M,T . We briefly recall that the degree distribution of ER

networks pk,N,ER follows a binomial distribution,

pk,N,ER(E)~
N{1

k

� �
Ek(1{E)N{k{1, ð15Þ

which we show in figure 4 for N~100 and various E (top panels and

lower left panel). In the same figure we present our findings for

p̂pk(E,M,T) for various values of T~Teff and M. We observe

p̂pk(E,1,Teff ) to be equal to p̂pk,N,ER(E) within the error to be expected

due to the limited sample size used for the estimation. For

p̂pk(E,M,T ’), however, we observe striking differences in comparison

to the previous degree distributions. In particular, for decreasing E
and higher M, the probability of nodes with degree k~0 increases,

which leads to networks with disconnected single nodes, thereby

increasing the number of connected components of the network.

We hypothesize that the observed differences in the number of

connected components as well as in the degree distributions are

related to differences in the spectral content of different

realizations of time series x
(r)
i,M,T ’ for Mw1. In particular, a node

i with a low degree ki might be associated with a time series

x
(r)
i,M,T ’, which possesses, by chance, a small relative amount of low

frequency contributions (or, equivalently, a large relative amount

of high frequency contributions).

In order to test this hypothesis, we generate R realizations of

N~100 time series x
(r)
i,M,T ’ and estimate their periodograms

P̂P
(r)
i,M (f ) for frequencies f [ f0, . . . ,fNyqg using a discrete Fourier

transform [45]. fNyq denotes the Nyquist frequency, and period-

ograms are normalized such that
P

f P̂P
(r)
i,M (f )~1. From the same

time series, we then derive the networks using E~0:1 and

determine the degrees k
(r)
i . For some fixed f ’w0 we define the

total power above f ’ (upper frequency range) as P̂P
H,(r)
i,M ~PfNyq

f 0 P̂P
(r)
i,M (f ), and the total power below f ’ (lower frequency

range) as P̂P
L,(r)
i,M ~

Pf ’{1
f ~0 P̂P

(r)
i,M (f ). For each realization r we

estimate the correlation coefficients between the degrees and the

corresponding total power contents in upper and lower frequency

range, k
(r)
L ~corr (k(r),P̂P

L,(r)
M ) and k

(r)
H ~corr (k(r),P̂P

H,(r)
M ), respec-

tively, and determine their mean values, kL(M)~R{1
P

r k
(r)
L and

kH(M)~R{1
P

r k(r)
H . Note that kL(M)~{kH(M) by construc-

tion. We choose f ’~f ’(M) such that 40% of the total power of the

filter function associated with the moving average is contained

within the frequency range f [ ½0,f ’�.
For increasing M we observe in the lower right panel of figure 4

the degrees to be increasingly correlated with P̂P
L,(r)
M , which

corresponds to an anti-correlation of degrees with P̂P
H,(r)
M . Thus, as

hypothesized above, the observed differences in the degree

distributions can indeed be related to the differences in the power

content of the time series. We mention that the exact choice of f ’
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does not sensitively affect the observed qualitative relationships as

long as 0vf ’%fNyq is fulfilled.

We briefly summarize the results obtained so far, which indicate

a striking difference between networks derived from independent

random time series using rc or rm (cf. equations (1) and (2)) and

corresponding ER networks. First, we observed the clustering

coefficient C and the average shortest path length L of our

networks to be higher the lower the length T of the time series (cf.

figures 1 and 2). Second, for some fixed T we observed C and L to

be higher the larger the amount of low frequency components (as

parametrized by M ) in the time series. In addition, these

contributions led to an increasing number of connected compo-

nents in our networks and to degree distributions that differed

strongly from those of the corresponding ER networks (cf. figures 3

and 4). We mention that L as defined here (cf. equation (7)) tends

to decrease for networks with an increasing number Nc of

connected components, and L?0 for Nc?N. L thus depends

non-trivially on the amount of low frequency components in the

time series. Third, for small edge densities E and for short time

series lengths or for a large amount of low frequency components,

the clustering coefficient deviates more strongly from the one of

corresponding ER networks (ĉcw2) than the average shortest path

length (l̂l *v 1:2; cf. figure 2 right and figure 1 (bottom left)).

Networks derived from independent random time series can thus

be classified as small world networks if one uses c&1 and l&1 as

practical criterion, which is often employed in various field studies

(cf. [31] and references therein).

Field data analysis
The findings obtained in the previous section indicate that

strong low frequency contributions affect network properties C
and L in a non-trivial way. We now investigate this influence in

electroencephalographic (EEG) recordings of epileptic seizures

that are known for their complex spatial and temporal changes in

frequency content [46–49]. We analyze the multichannel

(N~53+21 channels) EEGs from 60 patients capturing 100

epileptic seizures reported in reference [50]. All patients had

signed informed consent that their clinical data might be used and

published for research purposes. The study protocol had

previously been approved by the ethics committee of the

University of Bonn. During the presurgical evaluation of drug-

resistant epilepsy, EEG data were recorded with chronically

implanted strip, grid, or depth electrodes from the cortex and from

within relevant structures of the brain. The data were sampled at

Figure 2. Simulation results for the average shortest path length. Dependence of the average shortest path length L̂L(E,M,T) (left) and of the
ratio l̂l(E,M,T)~L̂L(E,1,T)=LER(E) (right) on edge density E for different values of the size M of the moving average and of the length T of time series.
Lines are for eye-guidance only.
doi:10.1371/journal.pone.0022826.g002

Figure 3. Simulation results for the number of connected components. Dependence of the number of connected components N̂Nc(E,M,T)
on the edge density E for different values of the size M of the moving average (left, for T~500) and of the length T of time series (right, for M~1).
Lines are for eye-guidance only.
doi:10.1371/journal.pone.0022826.g003
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200 Hz within the frequency band 0:5{70 Hz using a 16-bit

analog-to-digital converter. Electroencephalographic seizure on-

sets and seizure ends were automatically detected [51], and EEGs

were split into consecutive non-overlapping windows of 2.5 s

duration (T~500 sampling points). Time series of each window

were normalized to zero mean and unit variance. We determined

rc and rm for all combinations of EEG time series from each

window and derived networks with a fixed edge density E~0:1 in

order to exclude possible edge density effects. With Lc and Cc as

well as Lm and Cm we denote characteristics of networks based on

rc and rm, respectively. In order to simplify matters, we omit the

window indexing in the following.

We investigate a possible influence of the power content of EEG

time series on the clustering coefficient and the average shortest

path length by comparing their values to those obtained from

ensembles of random networks that are based on properties of the

EEG time series at two different levels of detail. For the first

ensemble and for each patient we derive networks from random

time series with a power content that approximately equals the

mean power content of all EEG time series within a window. Let

P̂Pi(f ) denote the estimated periodogram of each EEG time series i,
and with P(f )~N{1

P
i P̂Pi(f ) we denote the mean power for

each frequency component f over all N time series. We normalize

P(f ) such that
P

f P(f )~1. We generate N random time series of

length T~500 whose entries are independently drawn from a

uniform probability distribution, and we filter these time series in

the Fourier domain using
ffiffiffiffiffiffiffiffiffi
P(f )

p
as filter function. We normalize

the filtered time series to zero mean and unit variance and derive a

network based on rc or rm (E~0:1). We use 20 realizations of such

networks per window in order to determine the mean values of

network characteristics C(1)
c and L(1)

c as well as C(1)
m and L(1)

m based

on rc or rm, respectively. Since the power spectra of all time series

equal each other, these random networks resemble the ones

investigated in the previous section.

With the second ensemble, we take into account that the power

content of EEG time series recorded from different brain regions

may differ substantially. For this purpose we make use of a well

established method for generating univariate time series surrogates

[52,53], which have power spectral contents and amplitude

distributions that are practically indistinguishable from those of

EEG time series but are otherwise random. Amplitudes are

iteratively permuted while the power spectrum of each EEG time

series is approximately preserved. Since this randomization

scheme destroys any significant linear or non-linear dependencies

between time series, it has been successfully applied to test the null

hypothesis of independent linear stochastic processes. For each

patient, we generated 20 surrogate time series for each EEG time

series from each recording site and each window, and derived

networks based on either rc or rm (E~0:1). Mean values of

characteristics of these random networks are denoted as C(2)
c and

L(2)
c as well as C(2)

m and L(2)
m , respectively.

We begin with an exemplary recording of a seizure of which we

show in figure 5 (left) the temporal evolution of the relative amount

of power in the d- (0–4 Hz, Pd), q- (4–8 Hz, Pq), a- (8–12 Hz, Pa),

Figure 4. Simulation results for the degree distribution. (a–c) Degree distributions p̂pk(E,M,T) estimated for R~1000 realizations of networks
derived from time series xi,M,T (N~100) via thresholding using various edge densities E~�kk(N{1){1 and for selected values of the size M of the
moving average and of the length T of time series. The symbol legend in (a) also holds for (b) and (c). (d) Dependence of correlation (kL(M))
between node degrees and power content in the lower frequency range on the size M of the moving average. Mean values of correlations obtained
for R~100 realizations of networks for each value of M are shown as crosses and standard deviations as error bars. Stars indicate significant
differences in comparison to kL(1) (Bonferroni corrected pair-wise Wilcoxon rank sum tests for equal medians, pv0:01). Lines are for eye-guidance
only.
doi:10.1371/journal.pone.0022826.g004
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and b- (12–20 Hz, Pb) frequency bands. Prior to the seizure the d-

band contains more than 50% of the total power which is then

shifted towards higher frequencies and back towards low

frequencies at seizure end. Pd is even higher after the seizure

than prior to the seizure.

In figure 6 we show the temporal evolution of network

properties obtained for this recording based on rc (top panels)

and rm (bottom panels). During the seizure both the clustering

coefficients Cc and Cm and the average shortest path lengths Lc

and Lm show pronounced differences to the respective properties

obtained from the random networks. These differences are less

pronounced prior to and after the seizure, where C(2)
m and L(2)

m

even approach the values of Cm and Lm, respectively. C(1)
c and

C(1)
m decrease during the seizure and already increase prior to

seizure end, resembling the changes of Pd (cf. figure 5 (left)). This is

in accordance with results of our simulation studies: there we

observed the clustering coefficient to be higher the larger the

amount of low frequency components in the time series; this could

also be observed, but to a much lesser extent, for the average

shortest path length. Indeed, L(1)
m and L(1)

c vary little over time,

and L(1)
c is only slightly increased after the seizure, reflecting the

high amount of power in the d-band.

We only observe small deviations between C(1)
c and C(2)

c as well as

between L(1)
c and L(2)

c , which appear to be systematic (for many

windows C(1)
c *vC(2)

c and L(1)
c

w*L(2)
c ). These suggest that for

interaction networks derived from rc, both random network

ensembles appear appropriate to characterize the influence of

power in low frequency bands on clustering coefficient and the

average shortest path length. In contrast, we observed differences

between C(1)
m and C(2)

m , as well as between L(1)
m and L(2)

m . These

differences were most pronounced during the seizure and for L(1)
m

and L(2)
m also after the seizure. This finding indicates that the

clustering coefficient and average shortest path length of interaction

networks derived from rm depend sensitively on the power contents

of EEG time series recorded from different brain regions. Thus, for

these interaction networks only the random networks that account

for the complex changes in frequency content of different brain

regions prior to, during, and after seizures appear appropriate to

characterize the influence of power in low frequency bands on

clustering coefficient and the average shortest path length.

We continue by studying properties of networks derived from

the EEG recordings of all 100 focal onset seizures. Due to the

different durations of seizures (mean seizure duration: 110+60 s)

we partitioned each seizure into 10 equidistant time bins (see

reference [50] for details) and assigned the time-dependent

network properties to the respective time bins. For each seizure

we included the same number of pre-seizure and post-seizure

windows in our analysis and assigned the corresponding time-

dependent network properties to one pre-seizure and one post-

seizure time bin. Within each time bin we determined the mean

value (e.g., �CCc) and its standard error for each property. In figure 5

(right), we show for each time bin the mean values of the relative

amount of power in different frequency bands of all seizure

recordings (�PPd, �PPq, �PPa, �PPb). Similar to the exemplary recording (cf.

figure 5 (left)), we observe a shift in the relative amount of power in

low frequencies prior to seizures towards higher frequencies during

seizures and back to low frequencies at seizure end. The amount of

power in the d-band is on average higher in the post-seizure bin

than in the pre-seizure bin.

In figure 7 we show the mean values of properties of networks in

each time bin for all seizures. We observe �CC(1)
c , �CC(2)

c , �LL(1)
c , �LL(2)

c ,
�CC(1)

m , and �LL(1)
m to decrease during seizures and to increase prior to

seizure end thereby roughly reflecting the amount of power

contained in low frequencies (cf. figure 5 (right), �PPd). �CC(1)
c and �CC(2)

c

and to a lesser extent also �LL(1)
c and �LL(2)

c roughly follow the same

course in time, however, with a slight shift in the range of values as

already observed in the exemplary recording of a seizure (cf.

figure 6). Differences between both random network ensembles are

most pronounced in network properties based on rm, i.e., between
�CC(1)

m and �CC(2)
m as well as between �LL(1)

m and �LL(2)
m . This corroborates

the observation that the clustering coefficient and the average

shortest path length of the random networks based on rm depend

more sensitively on the power contents of EEG time series

recorded from different brain regions than the respective

quantities derived from rc. While �LLc and �LLm show a similar

course in time, reaching a maximum in the middle of the seizures,

we observe a remarkable difference between �CCc and �CCm prior to

end of the seizures, where the amount of power in low frequencies

is large. While �CCm decreases at the end of the seizures, �CCc does not

and remains elevated after seizures. Interestingly, considering the

corresponding quantities obtained from the second random

network ensemble, �CC(2)
m fluctuates around 0:3+0:01 and does

not increase at the end of seizures, while, in contrast, �CC(2)
c increases

at the end of the seizures, traversing an interval of values roughly

three times larger than the interval containing values of �CC(2)
m .

Taken together these findings suggest that the pronounced

Figure 5. Evolving relative amount of power during epileptic seizures. (Left) Relative amount of power P̂P contained in the d- (P̂Pd , black), q-
(P̂Pq, blue), a- (P̂Pa , green), and b- (P̂Pb, red) frequency bands during an exemplary seizure. Profiles are smoothed using a four-point moving average.
Grey-shaded area marks the seizure. (Right) Mean values (�PPd , �PPq, �PPa, �PPb) of the relative amount of power averaged separately for pre-seizure,
discretized seizure, and post-seizure time periods of 100 epileptic seizures. Lines are for eye-guidance only.
doi:10.1371/journal.pone.0022826.g005
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changes of the frequency content of EEG time series seen during

epileptic seizures influence the values of the clustering coefficient

and the average shortest path length.

A comparison of some value of a network property with the one

obtained for a random network with the same edge density and

number of nodes is typically achieved by calculating their ratio. If

ER networks are used for comparison, the value of a network

property is rescaled by a constant factor. In this case, the time-

dependent changes of network properties shown in figure 7 will be

shifted along the ordinate only. In order to take into account the

varying power content of EEG time series recorded from different

brain regions we instead normalize the clustering coefficients and

the average shortest path lengths with the corresponding quantities

from the second random network ensemble �CC(2)
c , �CC(2)

m , �LL(2)
c , and

�LL(2)
m (cf. figure 8). We observe the normalized network properties

to describe a concave-like movement over time indicating a

reconfiguration of networks from more random (before seizures)

towards a more regular (during seizures) and back towards more

random network topologies. This is in agreement with previous

observations using a different and seldom used thresholding

method [50].

Discussion

The network approach towards the analysis of empirical

multivariate time series is based on the assumption that the data

is well represented by a model of mutual relationships (i.e., a

network). We studied interaction networks derived from finite time

series generated by independent processes that would not advocate

a representation by a model of mutual relationships. We observed

the derived interaction networks to show non-trivial network

topologies. These are induced by the finiteness of data, which

limits reliability of estimators of signal interdependence, together

with the use of a frequently employed thresholding technique.

Since the analysis methodology alone can already introduce non-

trivial structure in the derived networks, the question arises as to

how informative network analysis results obtained from finite

empirical data are with respect to the studied dynamics. This

question may be addressed by defining and making use of

appropriate null models. In the following, we briefly discuss two

null models that are frequently employed in field studies.

Erdös-Rényi (ER) networks represent one of the earliest and

best studied network models in mathematical literature and can be

easily generated. They can be used to test whether the network

under consideration complies with the notion of a random

network in which possible edges are equally likely and indepen-

dently chosen to become edges. We observed that clustering

coefficient C and average shortest path length L for interaction

networks derived from finite random time series differed

pronouncedly from those obtained from corresponding ER

networks, which would likely lead to a classification of interaction

networks as small-world networks. Since the influence of the

analysis methodology is not taken into account with ER networks,

they may not be well suited for serving as null models in studies of

interaction networks derived from finite time series.

Another null model is based on randomizing the network

topology while preserving the degrees of nodes [26,54,55]. It is

used to evaluate whether the network under consideration is

random under the constraint of a given degree sequence. Results

of our simulation studies point out that the structures induced in

the network topology by the way how networks are derived from

empirical time series cannot be related to the degree sequence

Figure 6. Evolving network properties during an exemplary epileptic seizure. Network properties Cc and Lc (top row, black lines) as well as
Cm and Lm (bottom row, black lines) during an exemplary seizure (cf. figure 5 (left)). Mean values and standard deviations of network properties
obtained from surrogate time series (C(2)

c , L(2)
c , C(2)

m , L(2)
m ) are shown as blue lines and blue shaded areas, respectively, and mean values and standard

deviations of network properties obtained from the overall power content model (C(1)
c , L(1)

c , C(1)
m , L(1)

m ) are shown as red lines and red shaded areas,
respectively. Profiles are smoothed using a four-point moving average. Grey-shaded area marks the seizure. For corresponding Erdös-Rényi networks
CER&0:1 and LER&2:4 for all time windows.
doi:10.1371/journal.pone.0022826.g006
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only. We observed that C and L from interaction networks

remarkably depended on the finiteness of the data, while the

degree distribution did not (cf. figure 4 (a–c), M~1). The

usefulness of degree-preserving randomized networks has also

been subject of debate since they do not take into account different

characteristics of the data and its acquisition [56,57]. Moreover,

the link-switching algorithm frequently employed for generating

such networks has been shown to non-uniformly sample the space

Figure 7. Evolving network properties averaged over 100 epileptic seizures. Mean values (black) of network properties Cc (top left), Lc (top
right), Cm (bottom left), and Lm (bottom right) averaged separately for pre-seizure, discretized seizure, and post-seizure time periods of 100 epileptic
seizures. Mean values of corresponding network properties obtained from the first and the second ensemble of random networks are shown as red
and blue lines, respectively. All error bars indicate standard error of the mean. Lines are for eye-guidance only.
doi:10.1371/journal.pone.0022826.g007

Figure 8. Evolving normalized network properties averaged over 100 epileptic seizures. Mean values of Cc=C(2)
c and Cm=C(2)

m (left) as well
as Lc=L(2)

c and Lm=L(2)
m (right) averaged separately for pre-seizure, discretized seizure, and post-seizure time periods of 100 epileptic seizures. All error

bars indicate standard error of the mean. Lines are for eye-guidance only.
doi:10.1371/journal.pone.0022826.g008
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of networks with predefined degree sequence (see, e.g., references

[25,58]). This deficiency can be addressed by using alternative

randomization schemes (see, e.g., [58–60] and references therein).

We propose to take into account the finite length and the

frequency contents of time series when defining null models. For

this purpose we applied the same methodological steps as in field

data analysis (estimation of signal interdependence and threshold-

ing of interdependence values to define links) but used surrogate

time series [53] to derive random networks (second ensemble).

These surrogate time series comply with the null hypothesis of

independent linear stochastic processes and preserve length,

frequency content, and amplitude distribution of the original time

series. For these random networks, we observed (in our simulation

studies) dependencies between properties of networks and

properties of time series: the clustering coefficient C, and, to a

lesser extent, the average shortest path length L are higher the

higher the relative amount of low frequency components, the

shorter the length of time series, and the smaller the edge density

of the network. Results obtained from an analysis of interaction

networks derived from multichannel EEG recordings of one

hundred epileptic seizures confirm that the pronounced changes of

the frequency content seen during seizures influence the values of

C and L. Comparing these network characteristics with those

obtained from our random networks allowed us to distinguish

aspects of global network dynamics during seizures from those

spuriously induced by the applied methods of analysis.

Our random networks will likely be classified as small-world

networks when compared to ER networks which might indicate

that small-world topologies in networks derived from empirical

data as reported in an ever increasing number of studies can partly

or solely be related to the finite length and frequency content of

time series. If so, small-world topologies would be an overly

complicated description of the simple finding of finite time series

with a large amount of low frequency components. In this context,

our approach could be of particular interest for studies that deal

with short time series and low frequency contents, as, for example,

is the case in resting state functional magnetic resonance imaging

studies (see, e.g., references [61–65]). In such studies, taking into

account potential frequency effects could help to unravel

information on the network level that would be otherwise masked.

We observed the degrees of nodes of our random networks to be

correlated with the relative amount of power in low-frequencies in

the respective time series (cf. figure 4). The degree of a node has

been used in field studies as an indicator of its centrality in the

network (see, e.g., [2,66] and references therein). Particular

interest has been devoted to nodes which are highly central

(hubs). In this context it would be interesting to study whether

findings of hubs in interaction networks can partly or solely be

explained by the various frequency contents of time series entering

the analysis. In such a case, hubs would be a complicated

representation of features already present on a single time series

level. We are confident that our random networks can help to

clarify this issue.

Our simulation studies were based on the simplified assumption

that power spectra of all time series from which a network is

derived are approximately equal. The dependencies of C and L on

the power content could also be observed qualitatively for

networks derived from EEG time series – that were recorded

from different brain regions and whose power spectra may differ

substantially among each other – but only if link definition was

based on thresholding the values of the correlation coefficient (rc).

Thus, estimating mean power spectra of multivariate time series

can provide the experimentalist with a rule of thumb for the

potential relative increase of C and L in different networks based

on the correlation coefficient. This rule of thumb, however, might

not be helpful if the maximum value of the absolute cross

correlation (rm) is used to estimate signal interdependencies. In

this case, C and L depended sensitively on the heterogeneity of

power spectra (see the second random network ensemble). It

would be interesting to investigate in future studies, which

particular properties of rc and rm can be accounted for these

differences.

We close the discussion with two remarks, the first being of

interest for experimentalists. Our findings also shed light on a

network construction technique that relies on significance testing

in order to decide upon defining a link or not [21]. For this

purpose, a null distribution of a chosen estimator of signal

interdependence (rm) is generated for each pair of time series and

a link is established if the null hypothesis of independent processes

generating the time series can be rejected at a predefined

significance level. It was suggested in Ref. [21] to use a limited

subset of time series in order to minimize computational burden

when generating null distributions. Our findings indicate that

networks constructed this way will yield an artificially increased

number of false positive or of false negative links which will depend

on the frequency contents of time series being part or not part of

the subset. Our second remark is related to network modeling. By

choosing some threshold and generating time series that satisfy the

relation between the size of the moving average and the length of

time series, networks can be generated which differ in their degree

distributions but approximately equal in their clustering coefficient

and average shortest path length. This property could be of value

for future modeling studies.

To summarize, we have demonstrated that interaction

networks, derived from finite time series via thresholding an

estimate of signal interdependence, can exhibit non-trivial

properties that solely reflect the mostly unavoidable finiteness of

empirical data, which limits the reliability of signal interdepen-

dence estimators. Addressing these influences, we proposed

random network models that take into account the way

interaction networks are derived from the data. With an

exemplary time-resolved analysis of the clustering coefficient C
and the average shortest path length L of interaction networks

derived from multichannel electroencephalographic recordings of

one hundred epileptic seizures, we demonstrated that our random

networks allow one to gain deeper insights into the global

network dynamics during seizures. Here we concentrated on C
and L but we also expect other network characteristics to be

influenced by the methodologies used to derive interaction

networks from empirical data. Analytical investigations of

properties of our random networks and the development of

formal tests for deviations from these networks may be regarded

as promising topics for further studies. Other research directions

are related to the framework we proposed to generate random

networks from time series. For example, parts of the framework

may be exchanged in order to study network construction

methodologies other than thresholding (e.g., based on minimum

spanning trees [14] or based on allowing weighted links) or other

widely used linear and nonlinear methods for estimating signal

interdependence [34,35,39]. Other surrogate concepts [67–72]

may allow for defining different random networks tailored to

various purposes. We believe that research into network inference

from time series and into random network models that

incorporate knowledge about the way networks are derived from

empirical data can decisively advance applied network science.

This line of research can contribute to gain a better understand-

ing of complex dynamical systems studied in various scientific

fields.
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24. Erdős P, Rényi A (1959) On random graphs I. Publ Math Debrecen 6: 290–297.

25. Rao AR, Jana R, Bandyopadhyay S (1996) A Markov chain Monte Carlo

method for generating random (0,1)-matrices with given marginals. Sankhya

Ser A 58: 225–242.

26. Maslov S, Sneppen K (2002) Specificity and stability in topology of protein

networks. Science 296: 910–913.

27. James R, Croft DP, Krause J (2009) Potential banana skins in animal social

network analysis. Behav Ecol Sociobiol 63: 989–997.

28. Lima-Mendez G, van Helden J (2009) The powerful law of the power law and

other myths in network biology. Mol Biosyst 5: 1482–1493.

29. Ioannides AA (2007) Dynamic functional connectivity. Curr Opin Neurobiol 17:

161–170.

30. Butts CT (2009) Revisiting the foundations of network analysis. Science 325:

414–416.

31. Bialonski S, Horstmann MT, Lehnertz K (2010) From brain to earth and

climate systems: Small-world interaction networks or not? Chaos 20: 013134.

32. Antiqueira L, Rodrigues FA, van Wijk BCM, da F Costa L, Daffertshofer A

(2010) Estimating complex cortical networks via surface recordings–a critical

note. Neuroimage 53: 439–449.

33. Gerhard F, Pipa G, Lima B, Neuenschwander S, Gerstner W (2011) Extraction
of network topology from multi-electrode recordings: Is there a small-world

effect? Front Comp Neuroscience 5: 4.

34. Brillinger D (1981) Time Series: Data Analysis and Theory. San Francisco,
USA: Holden-Day.

35. Pikovsky AS, Rosenblum MG, Kurths J (2001) Synchronization: A universal
concept in nonlinear sciences. Cambridge, UK: Cambridge University Press.

36. Boccaletti S, Kurths J, Osipov G, Valladares DL, Zhou CS (2002) The

synchronization of chaotic systems. Phys Rep 366: 1–101.

37. Kantz H, Schreiber T (2003) Nonlinear Time Series Analysis. Cambridge, UK:

Cambridge Univ. Press, 2nd edition.

38. Pereda E, Quian Quiroga R, Bhattacharya J (2005) Nonlinear multivariate
analysis of neurophysiological signals. Prog Neurobiol 77: 1–37.
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