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p53, Oxidative Stress, and Aging

Dongping Liu and Yang Xu

Abstract

Mammalian aging is associated with elevated levels of oxidative damage of DNA, proteins, and lipids as a result
of unbalanced prooxidant and antioxidant activities. Accumulating evidence indicates that oxidative stress is a
major physiological inducer of aging. p53, the guardian of the genome that is important for cellular responses to
oxidative stresses, might be a key coordinator of oxidative stress and aging. In response to low levels of oxidative
stresses, p53 exhibits antioxidant activities to eliminate oxidative stress and ensure cell survival; in response to
high levels of oxidative stresses, p53 exhibits prooxidative activities that further increase the levels of stresses,
leading to cell death. p53 accomplishes these context-dependent roles by regulating the expression of a panel of
genes involved in cellular responses to oxidative stresses and by modulating other pathways important for
oxidative stress responses. The mechanism that switches p53 function from antioxidant to prooxidant remains
unclear, but could account for the findings that increased p53 activities have been linked to both accelerated
aging and increased life span in mice. Therefore, a balance of p53 antioxidant and prooxidant activities in
response to oxidative stresses could be important for longevity by suppressing the accumulation of oxidative
stresses and DNA damage. Antioxid. Redox Signal. 15, 1669–1678.

p53 Is a Critical Tumor Suppressor

The critical tumor suppressor p53 plays important
roles in cell-cycle arrest, apoptosis, senescence, or differ-

entiation in response to various genotoxic and cellular stres-
ses, including oxidative stress (73, 102, 133). As a guardian of
the genome, the inactivation of wild-type p53 function by
direct gene mutation or disruption of pathways important for
p53 activation is a prerequisite for the development of most
human cancers (35, 92, 127). As a transcription factor, p53
consists of two N-terminal transactivation domains, a core
DNA-binding domain and a C-terminal oligomerization do-
main (55, 92). Because of its potent activity in inducing apo-
ptosis and senescence, the p53 stability and activity are tightly
regulated by posttranslational mechanisms (47, 51, 129). In the
absence of stresses, p53 is inactive and unstable because of its
interaction with Mdm2 and MdmX, which inactivate p53 and
ubiquitinate p53 for proteasome-dependent degradation (Fig.
1). In response to stresses, p53 is modified posttranslationally
through phosphorylation, acetylation, methylation, and su-
moylation at various sites, disrupting the interaction between
p53 and its negative regulators, leading to the activation and
stabilization of p53 (68, 85, 104).

As a transcription factor, p53 can directly regulate the ex-
pression of hundreds of genes, products of which mediate
various p53-dependent functions (Fig. 2) (43, 53, 69). For ex-
ample, p21 and 14-3-3s are responsible for p53-dependent

cell-cycle arrest (30, 31, 50); p53 can also induce embryonic
stem (ES) cell differentiation by suppressing the expression of
Nanog, which is required for the self-renewal of ES cells (64).
In response to high levels of DNA damage, p53 induces ap-
optosis and senescence by upregulating apoptotic genes such
as Noxa and Puma (66, 71). These functions of p53 prevent the
passage of DNA damage to the daughter cells and thus
maintain genomic stability. In response o oxidative stresses,
p53 activates the transcription of a number of genes involved
in regulating oxidative stress, such as Sestrin, glutathione
peroxidase (GPX), aldehyde dehydrogenase (ALDH), and
tumor protein 53–induced nuclear protein 1(TP53INP1) (14,
16, 115, 130). p53 can also regulate the cellular oxidative stress
levels by modulating glycolysis through inducing the ex-
pression of TIGAR (TP53-induced glycolysis and apoptosis
regulator) and suppressing the expression of phosphoglyc-
erate mutase (PGM) (9, 58).

p53 and Aging

Recent studies have functionally linked p53 to aging in
various organisms (Fig. 3). The p53 orthologue in Caenorhabditis
elegans, Cep-1, is involved in negatively regulating the life span
of the worm, because the reduced expression of Cep-1 results
in increased longevity (4). Expression of dominant-negative
versions of Drosophila melanogaster p53 (Dmp53) in adult neu-
rons extends the life span and increases the genotoxic stress
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resistance in the fly (8). Because the expression of the dominant-
negative Dmp53 does not further increase the life span of flies
that are calorie restricted, these findings suggest that p53 is
involved in mediating the calorie-restricted life span in flies.
However, mutagenesis studies in C. elegans show that certain
mutations extending the life span increase activities of p53 and
cancer resistance (94). Therefore, increased p53 activities are
associated with both accelerated aging and increased life span
in C. elegans.

A similarly complicated scenario is also observed when
studying the roles of p53 in mammalian aging. One mouse
model, in which the N-terminus of p53 is truncated, exhibits
increased p53 activities and accelerated aging (119). However,
because of the large deletion of the genomic DNA upstream of

p53 that contains 24 genes (40), it remains unclear whether
any of these deleted genes is responsible for these aging
phenotypes. The potential involvement of N-terminus–
truncated p53 in aging is further supported by the over-
expression of the N-terminus–deleted p53 isoform p44 in mice,
leading to accelerated aging (72). This study suggests that p44
modulates the life span by inhibiting the PTEN and IGF signal
pathways (39, 75, 110). To link p53 to aging in humans, a recent
study shows that polymorphism of p53 at codon 72 (arginine-
to-proline substitution) reduces p53 activities, correlating with
increased life span but also with higher cancer risk in older
individuals (120). Therefore, it has been suggested that p53
might suppress cancer at the cost of longevity.

The notion that increased p53 activity induces aging in mice
is challenged by recent studies of mouse models with increased
p53 activities. For example, mice with a hypomorphic muta-
tion in Mdm2 exhibit increased p53 activity but normal life
span (78). In addition, mice with an additional copy of p53 and
ARF exhibit an enhanced expression of antioxidant activity
and decreased levels of endogenous oxidative stresses, corre-
lating with increased life span (74). Therefore, the increased
antioxidant activity of p53 in these transgenic mice prevents
the accumulation of oxidative stresses to the high levels re-
quired to induce p53-dependent apoptosis and senescence,
thus delaying aging in these mice. In summary, the functions
of p53 in aging are complex and could be context dependent. In
this context, mild and transient activation of p53 in response to
a low dosage of oxidative stress could protect cells from oxi-
dative damage. In contrast, persistent activation of p53 in re-
sponse to high levels of oxidative stresses can result in cell
death and organismal aging. In further support of this notion,
persistent activation of p53 depletes adult stem cells primarily
through p53-dependent apoptosis (64).

Oxidative Stress and Aging

The free radical hypothesis remains the most well-estab-
lished theory on the mechanism of aging (46). The increased

FIG. 2. p53 target genes are media-
tors of various p53-dependent func-
tions in response to DNA damage and
oxidative stresses.

FIG. 1. Activation of p53 in response to DNA damage and
oxidative stresses. In the absence of stresses, the negative
regulators of p53, such as Mdm2=MdmX, suppress p53 ac-
tivity and induce its degradation. In response to DNA
damage and oxidative stress, p53 and its negative regulators
are posttranslationally modified, leading to p53 activation by
disrupting the interaction between p53 and its negative
regulators.
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ROS production and a decreased antioxidant capacity are
thought to contribute to the aging process by oxidative
modification of different macromolecules, such as lipids,
proteins, and genomic DNA (12, 20, 25, 62, 63, 65, 96, 109, 117).
In the context of DNA, oxidative damage to mitochondrial
and nuclear DNA is significantly increased in different tissues
in old rats and mice (20, 45, 61, 67, 76, 82, 116). Levels of lipid-
peroxidation products are also increased with aging (44, 83,
87, 97, 108, 113, 119, 123). In addition, aging-related oxidative
modification of different proteins causes changes in protein
structure, enzyme activities, transcriptional activities, and
signal-transduction pathways (32, 70, 103, 111, 112, 124),
leading to age-related diseases. In summary, the levels of
oxidative damage are increased during aging in various
organisms, including C. elegans (11, 52, 121), flies (3, 64), and
mice (22, 74, 79).

Free radicals are physiologic byproducts of metabolism
and are rapidly eliminated by various antioxidant enzymes
in cells (23). For example, the antioxidant enzymes, in-
cluding superoxide dismutase (SOD), catalase, and perox-
iredoxins, convert superoxide to hydrogen peroxide and
eventually to water (5, 19, 99). SODs catalyze the break-
down of the superoxide anion into oxygen and hydrogen
peroxide. Mice lacking SOD2 develop neurologic defects
and die soon after birth because of excessive mitochondrial
production of ROS (77); mice lacking SOD1 are viable but
have numerous pathologies and a reduced life span (98).
Catalase converts hydrogen peroxide into water and oxy-
gen (19, 132). Humans and mice deficient in catalase can
still efficiently remove H2O2 , implying that other enzymes
are also involved in this reaction (72, 88). Peroxiredoxins
catalyze the reduction of hydrogen peroxide, organic per-
oxide, and peroxynitrite (99). These enzymes can be di-
vided into there classes: typical 2-cysteine peroxiredoxins,
atypical 2-cysteine peroxiredoxins, and 1-cysteine peroxir-
edoxins (128). Mice lacking peroxiredoxins 1 and 2 have a
shortened life span (55, 86). Together, these findings un-
derscore the importance of antioxidant enzymes in pre-
venting aging processes. In further support of this notion,
a diet rich in the building-block nutrients of antioxidant
enzymes, including cofactors for SOD (manganese, zinc,
and copper), show beneficial effects on delaying aging (1,
24, 49, 59, 81, 106).

In further support of the notion that oxidative stress is an
inducer of aging, treatment with antioxidants can increase the
life spans of various organisms and has a beneficial impact on
aging-related diseases (6, 29, 38, 57, 114, 119). A low dose of
dietary supplement with antioxidants partially mimics the
effects of caloric restriction and delays aging in mice (6), and
long-term treatment with free radical scavenging Schisandrin
B, a dibenzocyclooctadiene derivative isolated from the fruit
of Schisandra chinensis, delays aging-related functional im-
pairment in various organs and improves the survival rate of
aging mice (114). A dietary supplement of cysteine, which is
required for the synthesis of the primary antioxidant gluta-
thione, has clear benefits in delaying some aspects of aging
(29). However, clinical trials have also found no significant
beneficial effects of supplementation with antioxidant vita-
min E, indicating that not all antioxidants have antiaging ac-
tivities (55, 107, 125).

p53 and Oxidative Stress

ROS levels have a significant impact on cell growth,
survival and development, and tumorigenesis (17). p53
plays key and complex roles in cellular responses to oxi-
dative stresses (84, 100). In response to low levels of oxi-
dative stresses, p53 plays primarily antioxidant roles. In this
context, a number of p53 target genes, including Sestrin,
glutathione peroxidase (GPX), and aldehyde dehydrogenase
(ALDH), are involved in reducing oxidative stresses (Fig. 4).
For example, Sestrin protects the cells from hydrogen per-
oxide–induced damage by generation of peroxiredoxins
(14). GPX is a primary antioxidant enzyme that scavenges
hydrogen peroxide or organic hydroperoxides (115). Alde-
hyde dehydrogenase (ALDH) also contributes to the anti-
oxidant function of p53 (130).

p53 can also reduce the intracellular levels of ROS by reg-
ulating cellular metabolism. In this context, p53 induces the
expression of TIGAR (TP53-induced glycolysis and apoptosis
regulator), which slows glycolysis and promotes the pro-
duction of NAPDH to decrease ROS levels (9). In addition,
p53 suppresses the expression of phosphoglycerate mutase
(PGM), leading to a decrease of pyruvate required for oxi-
dative respiration in mitochondria and thus reduced ROS
production (10, 74).

In response to high levels of oxidative stress, p53 exhibits
prooxidative activities by turning on prooxidative genes such
as PIG3 and proline oxidase (27, 95). Overexpression of these
genes leads to higher levels of oxidative stress. In addition,
p53 induces the expression of BAX and PUMA, which induce
apoptosis through the release of cytochrome c from mito-
chondria (66, 71). The prooxidative activities of p53 also in-
clude the inhibition of the expression of antioxidant genes,
leading to increased cellular oxidative stresses to induce ap-
optosis. For example, p53 could repress the expression of
SOD2 and Nrf2, resulting in sensitivity to oxidative stress or
inducing apoptosis (28, 34, 91). Interestingly, p53-induced
upregulation of MnSOD and GPX, but not catalase, increases
oxidative stress and apoptosis (54), suggesting that the bal-
ance of antioxidant enzyme and oxidative stress is important
for cell survival. In summary, p53 plays important but con-
text-dependent roles in regulating cellular oxidative stresses,
and the levels of oxidative-stress damage dictate whether the
p53 behavior is that of a protector or a killer (100).

FIG. 3. Summary of the modulation of p53 effects on the
lifespan of various organisms.
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p53 Interacts with Other Pathways
Involved in Oxidative Stress and Aging

In addition to its direct regulation of genes involved in
oxidative stresses, p53 also interact with other pathways that
are involved in aging and oxidative stresses, which are sum-
marized here (Fig. 5).

Sirt1

The Sirt1 gene encodes the NAD-dependent histone
deacetylase, which is important for the longevity in yeast
and mammalian species by calorie restriction (42, 60, 64,
122). Sirt1 can deacetylate and inactivate p53, leading to
impaired cell growth arrest and apoptosis in response to
oxidative stresses (101). In addition, the expression of a
dominant-negative version of Sirt1 increases the cellular
sensitivity to oxidative stress, further indicating its anti-
oxidant roles in cellular responses to oxidative stresses.
However, the roles of Sirt1 in suppressing p53 in response
to oxidative stresses remain to be fully established. In con-
trast to the prediction that Sirt1 deficiency would increase p53
activity, recent studies indicate that deficiency of Sirt1 extends
the replicative capacity of mouse embryonic fibroblasts
(MEFs) under the conditions of chronic oxidative stress due to
the inefficient activation of p53 (21). However, the physiolog-
ical relevance of replicative senescence in aging is not clear,
because it primarily reflects a cell-culture phenomenon in the
presence of nonphysiologically high levels of oxygen. Because
Sirt1 is an NAD-dependent deacetylase, and NAD levels are
regulated by cellular metabolism and levels of ROS, these
findings implicate a complex functional interaction of p53,
Sirt1, oxidative stresses, and aging.

p66Shc

p66Shc, a downstream target of p53, is indispensable for
p53-dependent elevation of intracellular oxidative stresses
and apoptosis (118). p66Shc is a splice variant of p52Shc=
p46Shc, a cytoplasmic signal transducer involved in the
transmission of mitogenic signal from activated receptors to

Ras (93). However, p66Shc is not involved in regulating Ras
signal but instead is involved in inducing apoptosis in re-
sponse to oxidative stresses (80). The important role of p66Shc
in oxidative stresses and aging is indicated by the findings
that ablation of p66Shc enhances cellular resistance to apo-
ptosis induced by oxidative stresses and extends the life span
of p66Shc-deficient mice (79). In this context, cytochrome c
release after oxidative signals is impaired in p66Shc-deficient
cells (90). Therefore, p66Shc functionally links p53 to oxida-
tive stress response and aging.

FoxO

Forkhead box O (FoxO) transcription factors are important
mediators of the PI3K=Akt signaling pathway and regulate
the cellular responses to oxidative stresses and the life span
(56, 105). p53 negatively regulates the activities of FoxO by
inducing the expression of serum- and glucocorticoid-induc-
ible kinase (SGK), a negative regulator of FoxO and PTEN
(37). In addition, Sirt1 can deacetylate FoxO3 and FoxO4, thus

FIG. 4. Context-dependent roles of
p53 in cellular responses to oxidative
stresses by turning on distinct target
genes. At basal or low levels of oxida-
tive stress, p53 regulates the expression
of Sestrin, GPX, ALDH, TP53INP1,
SOD2, TIGAR, and PGM to eliminate
ROS, and therefore, promotes cellular
survival. In response to high levels of
oxidative stress, p53 induces the ex-
pression of prooxidative genes and
suppresses the expression of antioxi-
dant genes to increase ROS levels and
promote apoptosis. Unbalanced anti-
oxidants can also induce ROS to pro-
mote cell death.

FIG. 5. Functional interaction between p53 and other
pathways important for oxidative stress response and aging.
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attenuating FoxO-induced apoptosis and cell-cycle arrest (41).
Therefore, the balance of the functional interaction among
Sirt1, FoxO, and p53 might play important roles in regulating
oxidative stresses and aging.

APE=Ref1

The expression of APE=Ref1 is decreased in senescent
human bone marrow–derived mesenchymal stem cells
(hBMSCs) with increased endogenous ROS levels. Over-
expression of APE1=Ref-1 suppresses superoxide production
and decreases senescence in hBMSCs (48). In addition, aging
mice have an impaired induction of APE in response to oxi-
dative damage (15). The activities of APE=Ref1 are negatively
regulated by p53 (131), implicating another pathway for p53
to modulate oxidative stresses and aging.

Caveolin-1

Expression of Caveolin-1 is induced in fibroblasts under-
going oxidative stress–induced senescence, and the antioxi-
dant prevents the senescence and upregulation of Caveolin-1
(36, 126). Overexpression of Caveolin-1 in MEF induces
the premature senescence through a p53-p21–dependent
pathway, suggesting that Caveolin-1 could activate p53-
dependent premature senescence after oxidative stresses (36).
In this context, Caveolin-1 binds to Mdm2 and disrupts the
binding of Mdm2 to p53, leading to the activation of p53 in
response to oxidative stresses. The activation of p53 and
induction of premature senescence are compromised in the
Caveolin-1–null MEFs, confirming that Caveolin-1 is an up-
stream activator of p53 in response to oxidative stresses (7).

FoxM1C-Bmi1 pathway

Bmi1 is a negative regulator of the Ink4a=Arf and p53;
FoxM1C induces the expression of Bmi1 to prevent the oxi-
dative stress–induced cellular senescence by inhibiting the
expression of p53 (13, 18, 33, 89). Bmi1 is important to repress
the prooxidant activities of p53 in neurons and to suppress
oxidative stress–induced apoptosis and premature aging-like
phenotypes (18). In addition, targeted depletion of Bmi1
sensitizes tumor cells to p53-mediated apoptosis in response
to radiation therapy (2).

Bach1

For transcription factors, the recruitment of co-activators
or co-repressors to p53 target promoters is critical for p53-
dependent transcription. Bach1 is induced by oxidative
stresses and forms a complex with p53, histone deacetylase 1,
and nuclear co-repressor N-coR, promoting histone deacety-
lation and suppression of certain p53 target genes (26). In this
context, Bach1 inhibits oxidative stress–induced cellular se-
nescence by disrupting p53-dependent gene expression (26).

Conclusion

The accumulation of oxidative stress and oxidative damage
is a major inducer of aging. Many pathways involved in cel-
lular responses to oxidative stresses regulate the aging process
and the life spans of various organisms. p53 plays important
but context-dependent roles in cellular responses to low or
high levels of oxidative stresses. In response to low levels of

oxidative stresses, p53 exhibits antioxidant activities and
promotes cellular survival; in response to high levels of oxi-
dative stresses, p53 exhibits prooxidative activities to induce
cellular apoptosis. Both functions of p53 can prevent the ac-
cumulation of oxidative damage in cells and thus maintain
genomic stability. p53 accomplishes these functions by direct
transcriptional regulation of genes involved in oxidative-
stress responses or modulating other pathways important in
oxidative-stress responses.

Consistent with its context-specific roles in oxidative-stress
responses, the roles of p53 in aging appear to be complex as
well. In this context, increased p53 activities can accelerate
aging in some transgenic mouse models but not in others (72,
74, 78, 119). In addition, the increase of the gene dosage of
ARF and p53 does not promote aging but increases the life
span of transgenic mice (74). Therefore, the roles of p53 in
aging could also be context dependent. The accumulation of
oxidative stresses in old mice could turn on the apoptotic or
senescent roles of p53, thus promoting the aging process.
However, increased dosages of p53 and ARF could ensure
more efficient elimination of oxidative stress and thus prevent
the accumulation of oxidative stresses to high levels in old
mice. In support of this notion, a significant reduction of DNA
damage occurs in old transgenic mice with additional copies
of p53 and ARF (74). p53 primarily plays a protective role
to increase the life span in these transgenic mice. Therefore,
further elucidation of the mechanism that governs the
context-dependent roles of p53 in oxidative-stress responses
and the functional outcomes of the interaction between p53
and other pathways involved in cellular responses to oxida-
tive stresses will shed light on its role in aging.
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Abbreviations Used

ALDH¼ aldehyde dehydrogenase
APE=Ref1¼ apurinic=apyrimidinic endonuclease=

redox factor-1
BAI1¼ brain-specific angiogenesis inhibitor 1

Dmp53¼Drosophila melanogaster p53
ES cell¼ embryonic stem cell

FoxO¼ forkhead box O
GPX¼ glutathione peroxidase
GST¼ glutathione S-transferase

hBMSCs¼human bone marrow–derived
mesenchymal stem cells

MEF¼mouse embryonic fibroblast

NQO1¼NAD(P)H dehydrogenase [quinone] 1
Nrf1¼NF-E2-related factor 2

PGM¼phosphoglycerate mutase
PIG3¼p53-inducible gene 3

Puma¼p53 upregulated modulator of apoptosis
ROS¼ reactive oxygen species
SGK¼ serum- and glucocorticoid-inducible

kinase
SOD¼ superoxide dismutase

TIGAR¼TP53-induced glycolysis and apoptosis
regulator

TP53INP1¼ tumor protein 53–induced nuclear
protein 1

TSP1¼ thrombospondin-1
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