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Abstract
Purpose of the Review—Infusions of bone marrow derived cells together with “space making”
continue to be tested in clinical organ transplant tolerance protocols. These trials are based on the
hypothesis that this might produce initial multilineage chimerism. There is some evidence that this
in turn induces regulatory cells which control alloimmunity. Although a wealth of knowledge is
available from animal models, this review deals with what we know or can speculate about donor
bone marrow cells and chimerism in human organ transplantation.

Recent Findings—Calcineurin inhibitors are employed in most of these protocols to blunt the
initial immune response. One protocol also has a stepwise regulatory cell generating treatment
with sirolimus before total withdrawal. A number of donor chimeric lineages including stem cells,
dendritic cells, myeloid precursors and various lymphoid subpopulations cells have been
described. Currently, it is recognized that the nature of cells that make up the chimerism could
influence graft rejection vs. acceptance. Tolerogenic donor chimeric cells may also generate
regulatory subsets thus controlling alloimmunity on two fronts.

Summary—It might be speculated that prolonged and sustained regulation or possible anergy
induced by chimerism may eventually lead to clonal deletion, thereby bringing about classical
immunologic tolerance.
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Introduction
Infusions of bone marrow derived cells continue to be tested in clinical protocols intended to
induce specific immunologic tolerance of solid organ transplants. This is aside from their
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more conventional use in conferring engrafted immune and myelopoietic systems into
ablated individuals. A wealth of knowledge from experimental animal models has associated
chimerism and organ transplant tolerance [1–3]. However, this review deals with what we
know or can speculate about donor bone marrow derived cells in human organ transplant
recipients, with an emphasis on our own work.

The seminal observations of Billingham, Brent and Medawar [4] in 1953, that H-2 disparate
donor bone marrow derived cells infused into fetal or new-born murine recipients could
bring about life long specific acquired immunologic tolerance to skin allografts laid the
foundation of establishing clinical donor specific tolerance. It was over 20 years later that
nonspecific and subsequently donor specific blood transfusions were described to improve
human kidney transplant acceptance [5, 6]. The first clinical attempt to use iliac crest donor
bone marrow cells (iDBMC) was by Monaco et al. in kidney transplantation [7].
Subsequently, Barber et al. reported initial encouraging results [8], but later observed no
significant difference with the control group [9]. However, observations of microchimerism
of bone marrow derived cells in several transplant recipients who had stopped
immunosuppression (IS) for several years with functioning grafts [10, 11] added impetus to
these protocols. In 1994, Fontes et al. [12] reported preliminary clinical results in recipients
of several types of organ allografts using vertebral body donor bone marrow cells
(vDBMC). Our own clinical studies were performed between 1994 and 2000, in over 350
deceased donor liver (or liver/intestinal), 111 kidney, 25 kidney/pancreas, and 5 kidney/islet
transplants accompanied by vDBMC [13–19] as well as 47 living-related-donor (LRD)
haploidentical kidney recipients infused with iDBMC [15, 18, 20, 21]. In deceased donor
kidney transplant recipients higher graft survival was observed compared to (non-
randomized) non-infused controls [17, 22]. Similar observations were also made by others
[23–25]. However, in none was immunosuppression withdrawn.

Donor bone marrow cell infusions can bring about a number of immunological effects [21].
These included the infused cells functioning as 1) down-regulators of anti-donor immunity,
2) stimulators that might sensitize, 3) responders that could cause GvHD, and 4) autologous
inhibitors of these GvH responses. These theoretical immune effects were studied using non-
chimeric marrow from deceased donors in vitro [26–32] suggesting strong inhibitory
properties for a number of vDBMC sub-populations that could overcome both responding
and stimulatory effects, thereby promoting unresponsiveness [21].

Operational tolerance by Donor Bone Marrow Cell Infusions in Clinical
Transplantation

Operational tolerance, i.e. maintenance of the allograft in the absence of immunosuppressive
treatment, can be spontaneously achieved in about 20% of liver transplant recipients. The
liver contains enormous quantities of passenger leukocytes which generate donor
microchimerism in the recipient [33–35]. In contrast, documented occurrences of
operational tolerance in kidney transplants are fewer, other than those deliberately induced
through donor bone marrow derived cellular infusions involving more potent (ablative or
lympho-depleting) induction regimens than in conventional transplants [36–47].

The first deliberate successful clinical attempt was made at Massachusetts General Hospital.
HLA-identical (HLA-Id) LRD-kidney transplants were performed accompanied by DBMC
infusions, in patients who had received previous chemotherapy for multiple myeloma, the
cause of their end-stage renal disease [36, 37]. Thymic x-irradiation (7 gy) was
administered, together with (equine) anti-thymocyte globulin induction therapy (ATGAM®;
Upjohn, Kalamazoo, MI), and a short course of cyclosporine, which was then totally
withdrawn [36]. These studies were then extended to haploidentical renal transplant
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recipients [38, 39]. The details are reviewed in this issue of the journal, and hence are not
further discussed.

Strober and colleagues [40, 41] initiated a protocol in HLA-identical (HLA-Id) kidney
transplant recipients (n=12) by conditioning with ten doses of total lymphoid irradiation
(TLI) and five infusions of rabbit anti-thymocyte globulin. This was followed by
granulocyte-colony stimulating factor (GCSF) mobilized and purified CD34+ Donor
Hematopoetic Stem Cells (DHSC) with low numbers of T cells. Criteria for withdrawal of
immunosuppression at ≥ six months were stable chimerism and absence of rejection or graft
versus host disease (GVHD). Some patients developed rejection (3/12). In 6 others
immunosuppression was withdrawn [41]. Nonetheless, there has been subsequent loss of
donor chimerism without deleterious effects.

Trivedi et.al initiated somewhat similar clinical procedures evolving over time [42–44].
They first used GM-CSF mobilized but unpurified DHSC in high dose infusions
intraportally, systemically and into the thymus. The majority of recipients were either fully
or haplomismatched with the donors. More recently, donor specific blood transfusions to
stimulate allospecific immunity have been followed by “deletion” of responding cells with
cyclophosphamide, ATG and TLI resulting in 16/69 (23%) patients immunosuppression free
or on low dose of steroids at 13–23 months post-operatively. Another modification included
the use of rituximab and Bortezomib to eliminate B cells and plasma cells respectively [44].

Currently we are conducting clinical trials using 2 different approaches. In the first, HLA-Id
LRD renal transplant recipients are given 4 infusions of CD34+ DHSC, the first purified
from iliac crest marrow and the others from GCSF mobilized DHSC in peripheral blood.
The infusions extend from day +5 to +270 post-operatively, with alemtuzimab induction on
days 0 and +4. Maintenance immunosuppression with tacrolimus is converted to sirolimus
by day +80. Mycophenolate, also started at surgery, is discontinued between 12 and 18
months and finally sirolimus withdrawn by 24 months [45]. Chimerism has never reached
above 3% and became lower than the detection level of 0.01% in both the peripheral blood
and the bone marrow usually after 1 year. Five of 7 recipients are >2 years with
immunosuppression withdrawn upto 12 months, thus far with normal renal biopsies and
function.

In the second, we have explored combined DHSC and kidney transplantation in HLA
mismatched living related and unrelated transplant recipients in collaboration with
University of Louisville [46, 47]. This was based on observations that a subpopulation of
bone marrow derived cells, the CD8+TcR-αβnegative facilitating cells (FC), significantly
increased DHSC engraftment without GVHD in a mouse model [48] as well as in HLA
mismatched leukemia [49, 50] and sickle-cell disease patients [51]. A subsequent Phase 1
study of FC-enriched DHSC in renal transplant recipients established the safety of the
protocol, although durable chimerism was never achieved [51]. The current study involves
nonmyeloablative conditioning pre- and peri-transplant (fludarabine, cyclophosphamide,
200cGy TBI), and infusion of FC-enriched DHSC on Day +1 [46, 47]. Maintenance
immunosuppression is with tacrolimus and MMF, with planned total elimination by one
year. All initial 8 patients entered into this Phase 2 trial have demonstrated macrochimerism
post-transplant, ranging from 6 to 100% at 1 month. Chimerism was lost in 2 subjects due to
suboptimal cell dosing and more limited conditioning (less cyclophosphamide was used).
However, durable full (100% donor) chimerism has developed in the others, along with
evidence of donor-specific hyporesponsiveness. Three patients have been successfully
weaned from immunosuppression thus far, one for over 10 months. They are
immunocompetent responding to mitogen (PHA) and MHC-disparate third party
alloantigens; none have developed donor-specific antibodies using flow crossmatch
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techniques. Most notably, none have developed GVHD, in spite of high levels of chimerism.
These encouraging early results suggest that nonmyeloablative conditioning in conjunction
with FC-enriched DHSC preparations can safely achieve durable donor macrochimerism in
mismatched kidney transplant recipients, allowing for immunosuppression withdrawal.

Role of chimerism
The term chimerism was popularized in transplantation biology by Medawar [52] based on
the observations of Owen [53] in freemartin calf dizygotic twins describing a mixture of
blood cells due to cross-circulation in the common placenta in utero. This type of
chimerism, established during the fetal or newborn stages, has been synonymous with a state
of lifelong unresponsiveness to donor alloantigens. All the afore-mentioned clinical trials
have in common the intent to generate donor chimerism in the adult, some with the
additional hypothesis that even transient microchimerism might be sufficient to induce
donor specific immune tolerance. Therefore, it is important to analyze the immune reactions
that can occur due to chimerism.

Detection of chimerism
Differences between donor and recipient gene polymorphisms or their products have been
used to detect chimerism in a variety of fluorescent and molecular methods. These include
HLA polymorphism, gender differences (XX-XY chromosome), variable number of tandem
repeat sequences (VNTR) and other cytogenetic markers including ABO blood group
antigens. Specific methods include polymerase chain reaction (PCR) [54–56], fluorescent in
situ sequence hybridization (FISH) [57], flow cytometry (>0.1%) [58] and a combination of
PCR and flow cytometry called PCR-Flow. [14, 59]. However, the most widely used and
FDA approved method is PCR amplification of short tandem repeats and single-nucleotide
polymorphism-specific quantitative real-time PCR (reviewed in [60]*).

Chimerism: friend or foe
There is controversy about the role and the extent of chimerism needed, especially in
humans to be associated with drug-free organ transplant acceptance [61, 62].
Microchimerism mediated by blood transfusions, organ transplantation, or pregnancy has
even been associated with allo-sensitization and rejection [55, 56, 63, 64] as well as the
development of GVHD in liver and small bowel transplant recipients [65, 66]. Conversely,
other studies describe microchimerism as either only an epiphenomenon derived from the
vascularized organ or helping to induce allograft acceptance. Although we had reported
clinical evidence linking increasing microchimerism in the bone marrow compartment with
the absence of graft loss [15, 17, 21], it was with ex vivo experiments that we have clarified
a role for chimeric cells in amplifying donor-specific unresponsiveness in renal transplant
recipients [21, 67, 68]*. Currently, it is recognized that the nature of cells that make up the
chimerism could influence rejection vs. graft acceptance.

Distribution and phenotype of chimeric cells
Passenger leukocytes that migrate from the vascularized transplant in non-
immunosuppressed rodent recipients were found to first circulate through the blood stream
and rapidly disappear [69, 70] possibly into central and secondary lymphoid organs. In
immunosuppressed patients given DBMC infusions, chimeric cell numbers were highest in
the peripheral circulation during first 3 months and then gradually decreased until they
approached minimal detection levels by 1 year post-transplantation [10, 38] with few
exceptions [21, 46, 47, 71]. However, cells of donor origin have been detected long-term in
bone marrow, skin and lymph nodes of kidney and liver transplant recipients [10, 11, 72,
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73]. These belong to a number of lineages including stem cells, dendritic cells, some
myeloid precursors and various lymphoid subpopulations, i.e., T, B and NK cells [14, 15,
18, 21, 74, 75]. When isolated using anti-HLA antibodies to the donor mismatched antigens
and with magnetic microbeads, a substantial percentage of the recipient derived donor
(RdD) chimeric cells were found to be CD3+, TcR-αβ+ and CD28+ T cells with markedly
decreased CD40L, CD80 and CD86 receptors [21, 67]. However, a significant proportion of
RdD cells remained undetermined (lineage negative). Thus, it appears that the chimerism
generated in DBMC infused recipients is of multiple lineages.

Regulatory functions of chimeric cell of donor origin
Very few studies directly demonstrated regulatory functions of chimeric cells of donor or
even recipient origin post-transplant. In 1995, Burlingham et al. [76] observed that removal
of the donor chimeric cells failed to reverse CTL unresponsiveness in a “chimeric” patient
functionally tolerant to a maternal kidney allograft without immunosuppression. However,
although restimulation of primary cultures with donor cells plus exogenous IL-2 completely
reversed unresponsiveness, addition of fresh patient PBMC subsets to tertiary MLR cultures,
inhibited the generation of anti-donor CTL. In our own studies, in addition to phenotypically
characterizing RdD cells from the iDBMC LRD-renal transplant recipients (see above), we
have tested them in functional ex vivo assays. In the recipients with residual anti-donor
responses, depletion of cells of donor phenotype allo-specifically increased donor-specific
mixed lymphocyte reactions (Figure 1A&B) and addition of these cells back into the culture
inhibited them more potently than freshly isolated non-chimeric iDBMC from the non-
immunosuppressed LRD volunteers (Figure 1C) [67, 68]*. This inhibition was quasi-
antigen-specific, in that at higher doses RdD cells inhibited non-specifically but as the doses
decreased non-specific inhibition disappeared while donor-specific inhibition still occurred
(Figure 1C vs D) [68]*. Analogously, Demirkiran et.al. observed that up to 5% of
CD4+CD25+CTLA4+ T cells in liver transplant recipient blood were derived from the donor
liver within the first weeks, and that when purified using monoclonal antibodies specific to
the donor, these cells inhibited recipient’s anti-donor MLRs [77].

“Regulation Recruitment”: of cells that develop in the recipient
Microchimerism may have its greatest and long-lasting effect by inducing a regulatory
profile within the recipient. Initially in parallel to the immunoregulatory studies with donor
chimeric RdD cells described above [67, 68]*, we also tested purified recipient-derived
recipient (RdR) “chimeric” cells from the peripheral blood and bone marrow of iDBMC
infused LRD-kidney transplant recipients for donor specific regulatory functions [18]. When
used as modulators, the RdR cells also inhibited the recipient anti-donor MLR (and CML)
responses. In a number studies, depletion of CD25+ cells from recipient responding PBMC
increased their donor specific MLR or CTL responses [41, 68]*; but there were exceptions
[37, 78]. Conversely, addition of purified CD4+CD25+ cells from the post-transplant PBMC
inhibited recipient’s responses in a dose dependent manner [68, 79–81]*.

Recently, we have approached this as an ancillary study to our HLA-identical renal
transplant DHSC infusion trial. The percentages of CD4+CD127−CD25highFOXP3+ cells in
the PBMC of all patients increased by 10-fold from the pre-operative values during the first
6 months and remained >4-fold even after 24 months. When these post-op recipient PBMC
containing these high percentages of putative Tregs were added as third component
modulators, they inhibited the donor-specific proliferation of cryopreserved pre-op recipient
CFSE-labeled PBMC responders. Noteworthy is the post-op PBMC modulators enhanced
the newly generated CD4+CD127−CD25highFOXP3+ cells in the CFSE labeled proliferating
responders [45, 82]. We described this generation of additional Tregs ex vivo as “regulation
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recruitment” [82, 83]. These inhibition and recruitment effects identified donor-specific
Tregs operating in HLA-id renal transplant recipients undergoing thus far successful
immunosuppression withdrawal.

Conclusions and Synthesis
Infusions of bone marrow derived cells together with “space making” continue to be tested
in clinical protocols to induce specific immunologic tolerance in solid organ transplants [36–
47]. These trials are based, among other possible mechanisms, on an hypothesis that this
might produce initial multilineage chimerism which in turn induces regulatory cells
controlling alloimmunity [21]. Conventional immunosuppression with calcineurin inhibitors
is employed to blunt the initial immune response amplified by inflammation [36–41, 45–47].
In addition stepwise regulatory cell generating immunosuppression with sirolimus may be
beneficial before total withdrawal [45].

A variety of regulatory cell subsets have been described in transplantation and a number of
studies including our own have demonstrated regulatory roles played by chimeric cells of
both donor and recipient origin [21, 67, 68]*. We introduce the terminology “regulation
recruitment” to describe the latter phenomenon. It might be speculated that regulation by
donor chimeric cells may also involve the induction of anergy [76] possibly by incomplete
antigen presentation in the absence of costimulatory molecules [84], tolerogenic allopeptides
[85] or by the transduction of an as yet undefined negative signal, perhaps even involving B
cells [86, 87] with a memory and inhibitory phenotype [88]. Prolonged and sustained
regulation or anergy may eventually lead to the clonal deletion, thereby bringing about
classical immunologic tolerance [89].

These clinical studies have generated more questions than answers. Is “operational
tolerance” a ticking time bomb, i.e., a balancing act that can easily be tipped over by an
immune stimulus as “mundane” as a viral infection or is it long-lasting? More definition of
mechanisms is needed. Are anergy or deletion eventually involved? Does the thymus and
central tolerance play a role? Answers are essential before these protocols can be routine in
clinical transplantation.

KEY POINTS

○ Infusions of bone marrow derived cells together with “space making”
continue to be tested in clinical organ transplant protocols with one
hypothesis being that this might produce initial multilineage chimerism
which in turn induces regulatory cells controlling alloimmunity.

○ Conventional immunosuppression with calcineurin inhibitors is employed to
blunt the initial immune response.

○ Stepwise treatment with sirolimus may augment regulatory subsets before
total withdrawal.

○ Chimeric cells of various subsets of both donor and recipient origin have
been shown to play regulatory roles

○ It might be speculated that prolonged and sustained regulation or possible
anergy induced by chimerism may eventually lead to clonal deletion, thereby
bringing about classical immunologic tolerance.
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Figure 1. Role of chimeric cells of donor phenotype present in DBMC recipients at 1 year post-
transplantation on MLR regulation
(A & B): Recipient PMBC were used as responders in MLR either before (Total) or after the
depletion of donor cells (D-Depleted) using monoclonal antibodies to mismatched HLA-
Class I and Miltenyi magnetic microbeads. Statistically significant differences were obtained
in the MLR responses to the donor between Total versus D-depleted recipient responders
(p<0.01).
(C & D): 1×105 PMBC from renal transplant recipients depleted of donor chimeric cells
were stimulated with 1×105 irradiated PMBC from the living related donors (C) or third
Party (D) in presence of the indicated number of donor modulator cells and standard 3H-
thymidine incorporation assays were performed on day 7. Data are shown as percentage
inhibition ± SE (n=6). Statistically significant differences were obtained in the inhibition of
anti-donor MLR between fresh DBMC versus RdD cells from the bone marrow (BM-RdD;
p< 0.001) and fresh DBMC versus RdD cells from the peripheral blood (PBL-RdD; p<0.01).
[Previously published in Human Immunology: 2010; 71(6): 566–576]
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