Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1968 Nov;96(5):1528–1534. doi: 10.1128/jb.96.5.1528-1534.1968

Ribonucleic Acid Synthesis and Glutamate Excretion in Escherichia coli

Paul Broda a,1
PMCID: PMC315205  PMID: 4973126

Abstract

Cultures of Escherichia coli excreted glutamate into the medium when protein synthesis was blocked in RCrel strains or when it was blocked with chloramphenicol in either RCstr or RCrel strains. Both of these conditions resulted in continued ribonucleic acid (RNA) synthesis in the absence of protein synthesis. Glutamate was also excreted by both RCstr and RCrel strains when RNA synthesis was inhibited by uracil starvation or by treatment with actinomycin D. It is proposed that, in each of these cases, glutamate excretion resulted from an increase in the permeability of the cell membrane.

Full text

PDF
1532

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson E. H. Growth Requirements of Virus-Resistant Mutants of Escherichia Coli Strain "B". Proc Natl Acad Sci U S A. 1946 May;32(5):120–128. doi: 10.1073/pnas.32.5.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BOREK E., RYAN A., ROCKENBACH J. Nucleic acid metabolism in relation to the lysogenic phenomenon. J Bacteriol. 1955 Apr;69(4):460–467. doi: 10.1128/jb.69.4.460-467.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CROOM J. A., MCNEILL J. J., TOVE S. B. BIOTIN DEFICIENCY AND THE FATTY ACIDS OF CERTAIN BIOTIN-REQUIRING BACTERIA. J Bacteriol. 1964 Aug;88:389–394. doi: 10.1128/jb.88.2.389-394.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Edlin G., Broda P. Physiology and genetics of the "ribonucleic acid control" locus in escherichia coli. Bacteriol Rev. 1968 Sep;32(3):206–226. doi: 10.1128/br.32.3.206-226.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fiil N., Friesen J. D. Isolation of "relaxed" mutants of Escherichia coli. J Bacteriol. 1968 Feb;95(2):729–731. doi: 10.1128/jb.95.2.729-731.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GAVIN J. J., UMBREIT W. W. EFFECT OF BIOTIN ON FATTY ACID DISTRIBUTION IN ESCHERICHIA COLI. J Bacteriol. 1965 Feb;89:437–443. doi: 10.1128/jb.89.2.437-443.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. KANAZIR D., BARNER H. D., FLAKS J. G., COHEN S. S. Some physiological and genetic properties of a strain of Escherichia coli requiring thymine, arginine and uracil. Biochim Biophys Acta. 1959 Aug;34:341–353. doi: 10.1016/0006-3002(59)90287-2. [DOI] [PubMed] [Google Scholar]
  8. KENNEDY E. P., WEISS S. B. The function of cytidine coenzymes in the biosynthesis of phospholipides. J Biol Chem. 1956 Sep;222(1):193–214. [PubMed] [Google Scholar]
  9. LEIVE L. A NONSPECIFIC INCREASE IN PERMEABILITY IN ESCHERICHIA COLI PRODUCED BY EDTA. Proc Natl Acad Sci U S A. 1965 Apr;53:745–750. doi: 10.1073/pnas.53.4.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lederberg J. Gene Recombination and Linked Segregations in Escherichia Coli. Genetics. 1947 Sep;32(5):505–525. doi: 10.1093/genetics/32.5.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Matzura H., Broda P. Sensitization of Escherichia coli to actinomycin D by the arrest of protein synthesis. J Bacteriol. 1968 Nov;96(5):1877–1879. doi: 10.1128/jb.96.5.1877-1879.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pastan I., Friedman R. M. Actinomycin D: inhibition of phospholipid synthesis in chick embryo cells. Science. 1968 Apr 19;160(3825):316–317. doi: 10.1126/science.160.3825.316. [DOI] [PubMed] [Google Scholar]
  13. Silver S., Wendt L. Mechanism of action of phenethyl alcohol: breakdown of the cellular permeability barrier. J Bacteriol. 1967 Feb;93(2):560–566. doi: 10.1128/jb.93.2.560-566.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES