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Abstract
Non-typhoidal Salmonella enterica (NTS) serovars Typhimurium and Enteritidis are important
causes of bacterial gastroenteritis in the USA and worldwide. In sub-Saharan Africa these two
serovars are emerging as agents associated with lethal invasive disease (e.g., bacteremia,
meningitis). The development of NTS vaccines, based on mucosally-administered live attenuated
strains and parenteral non-living antigens, could diminish the NTS disease burden globally. Mouse
models of S. Typhimurium and S. Enteritidis invasive disease can accelerate the development of
NTS vaccines. Live attenuated NTS vaccines elicit both cellular and humoral immunity in mice
and their efficacy is well established. In contrast, non-living vaccines that primarily elicit humoral
immunity have demonstrated variable efficacy. An analysis of the reported studies with non-living
vaccines against S. Typhimurium and S. Enteritidis reveals that efficacy is influenced by two
important independent variables: 1) the innate susceptibility to NTS infection that differs
dramatically between commonly used mouse strains and, 2) the virulence of the NTS strain used
for challenge. Protection by non-living vaccines has generally been seen only in host-pathogen
interactions where a sub-lethal infection results, such as challenging resistant mice with either
highly virulent or weakly virulent strains or susceptible mice with weakly virulent strains. The
immunologic basis of this discrepancy and the implications for human NTS vaccine development
are reviewed herein.

© 2011 Elsevier Ltd. All rights reserved.
*Corresponding Author contact information: Myron M. Levine, MD, DTPH, HSFI 480, 685 West Baltimore St., Baltimore, MD 21201
USA, mlevine@medicine.umaryland.edu, Phone: +1 (410) 706-5328, Fax: +1 (410) 706-6205.
Author contact information: Raphael Simon, PhD, HSFI 480, 685 West Baltimore St., Baltimore, MD 21201 USA,
rsimon@medicine.umaryland.edu, Phone: +1 (410) 706-5328, Fax: +1 (410) 706-6205
Sharon M. Tennant, PhD, HSFI 480, 685 West Baltimore St., Baltimore, MD 21201 USA, stennant@medicine.umaryland.edu, Phone:
+1 (410) 706-5328, Fax: +1 (410) 706-6205
James E. Galen, PhD, HSFI 480, 685 West Baltimore St., Baltimore, MD 21201 USA, jgalen@medicine.umaryland.edu, Phone: +1
(410) 706-5328, Fax: +1 (410) 706-6205
Conflict of interest: The authors declare no conflict of interest with regard to this manuscript.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Vaccine. Author manuscript; available in PMC 2012 July 18.

Published in final edited form as:
Vaccine. 2011 July 18; 29(32): 5094–5106. doi:10.1016/j.vaccine.2011.05.022.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Keywords
Salmonella Typhimurium; Salmonella Enteritidis; mouse model; vaccine efficacy; live attenuated
vaccine; conjugate vaccine

1. Introduction
Certain serovars of Salmonella enterica sub-species enterica that cause invasive infections
in humans pose a public health burden worldwide [1]. Among the most important are the
etiologic agents of typhoid and paratyphoid fever, Salmonella Typhi and Salmonella
Paratyphi A and B (and occasionally C), often referred to collectively as the enteric fever
serovars. S. Typhimurium and S. Enteritidis are the two most common NTS serovars
associated with gastroenteritis [2] and invasive disease [3]. Whereas in industrialized
countries it has long been recognized that NTS serovars can occasionally cause severe
invasive infections accompanied by high case fatality rates when they infect young infants
or the elderly, only recently has systematic, blood culture-based surveillance of febrile
infants and young children in sub-Saharan Africa revealed an enormous burden of invasive
disease associated with NTS. Although many of the surveillance activities in Africa were
originally undertaken to quantify the burden of invasive Haemophilus influenzae type b
(Hib) and Streptococcus pneumoniae infections, the studies unexpectedly revealed that
invasive NTS were as commonly isolated from bacteremic patients as Hib and
pneumococcus [4–13]. Notably, 75–95% of these invasive NTS infections in Africa are due
to S. Typhimurium and S. Enteritidis [4–14]. Four features differentiate the pediatric
invasive NTS infections in sub-Saharan Africa from the invasive pediatric NTS infections
observed in the USA and Europe. First, the sub-Saharan Africa infections are clinically
severe and accompanied by case fatality rates of ~15–20%. Second, two-thirds of the
African invasive NTS cases neither present with gastroenteritis nor have a history of
gastroenteritis [15]. Third, full genome sequencing of an invasive prototype S. Typhimurium
strain from Malawi surprisingly revealed that the strain manifested considerable genomic
degradation, including complete loss of some genes and the presence of multiple
pseudogenes, some of which are also found in S. Typhi or S. Paratyphi A [16]. Lastly, the
few epidemiological investigations carried out so far have failed to identify an animal
reservoir for these emerging “invasive” NTS strains [17].

Oral challenge of mice with the human host-restricted serovars S. Typhi and S. Paratyphi
does not lead to a productive invasive infection. In contrast, oral challenge of mice with S.
Typhimurium and S. Enteritidis generates an invasive, generalized infection of the gut-
associated lymphoid tissue and reticuloendothelial system (RES) that recapitulates many
aspects of typhoid fever in humans [18, 19]. Accordingly, these “mouse typhoid” models
have been used to study Salmonella pathogenesis, to identify attenuating genetic lesions
possibly applicable to S. Typhi, and to assess the immunogenicity and efficacy of different
candidate vaccines.

The burgeoning interest in developing NTS vaccines to control invasive NTS disease in sub-
Saharan Africa has renewed interest in mouse models of S. Typhimurium and S. Enteritidis,
since such pre-clinical models may be invaluable for examining the efficacy of candidate
NTS vaccines intended for human use.

2. Mouse Models of Salmonella Pathogenesis
Since the pathogenesis of Salmonella infection is reviewed extensively elsewhere [18–23], it
will only be briefly summarized here. Following oral inoculation in mice, Salmonella
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bacteria initiate infection in the small intestine through penetration of the Peyer’s patches
[24, 25]. Invasion and colonization of the Peyer’s patches is soon followed by migration
within phagocytic cells to mesenteric lymph nodes, followed by a primary bacteremia and
dissemination to the organs of the reticuloendothelial system (RES) (spleen, liver, bone
marrow, etc.), onset of a systemic febrile illness, and, finally death [19, 23]. Mice can also
be infected by parenteral inoculation via the intraperitoneal (IP), intravenous (IV) and
subcutaneous (SC) routes, resulting in similar patterns of infection of the RES and death
[26–28]. Of these various routes, inoculation with Salmonella by the oral route most closely
resembles the natural route of infection in humans [18, 26], but requires the highest number
of viable bacteria in order to induce lethal infection. However, oral infection allows more
accurate control of the administered dose, since orally administered Salmonella do not
immediately enter a rapid growth phase following inoculation, as can happen with IP
infections [18, 20, 26, 28].

3. Literature Search
3.1. Methods

A review of the literature was performed by searching the PubMed database with no time
limits, using search terms including “Salmonella”, “Typhimurium”, “Enteritidis”, “vaccine”,
“mice”, “porin”, “conjugate”, “live attenuated”, “killed”, “humoral”, “cell mediated”, as
well as the references of included papers. Our search was limited to studies published in the
English language. To be selected for inclusion, a publication had to provide detailed
information on 1) well characterized vaccine candidates; 2) route and schedule of
immunization; 3) the degree of virulence of the wild-type Salmonella challenge strain; 4) the
interval from last vaccine dose until challenge; 5) size of the challenge inoculum; 6) route of
challenge; and 7) genetic background of the mouse strain with defined or evident NTS
susceptibility.

4. The Vaccines Used to Prevent Fatal Salmonella Typhimurium and
Salmonella Enteritidis Infections in Mice
4.1 Live attenuated vaccine strategies

Live attenuated strains based on lesions in genes encoding products in bacterial metabolic,
signaling, and gene regulation pathways have formed the basis of several live attenuated
Salmonella vaccine strains that have shown marked vaccine efficacy in mouse challenge
experiments [29]. The mutated genes encode aromatic amino acid biosynthesis (aroA, aroC,
aroD), galactose metabolism (galE), heat shock proteins (htrA), guanine nucleotide
biosynthesis (guaA, guaB), purine nucleotide biosynthesis (purA, purB, purE, purH),
adenylate cyclase signaling (cya, crp), two-component regulatory systems (phoP, phoQ),
regulators of protein metabolism (clpP, clpX), outer membrane proteins (ompC, ompF,
ompR), DNA recombination and repair pathways (recA, recB, recC), dissemination to deep
organs of the reticuloendothelial system (cdt) and transcriptional regulators of gene
expression (dam) [29–38].

4.2 Inactivation and subunit strategies
Killed whole cell vaccines prepared by a variety of methods, including thermal inactivation,
or chemical inactivation with acetone, deoxycholate, or formalin, have been tested in mice.
In an effort to target individual Salmonella antigens to avoid the reactogenicity associated
with parenteral administration of inactivated whole cell Salmonella vaccines, candidate
subunit vaccines have been developed. These include protein (purified porins, bulk outer
membrane proteins, flagellin protein), lipopolysaccharide or O-polysaccharide and
Salmonella O-polysaccharide-protein conjugate vaccines. Conjugate vaccines based on
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chemical covalent linkage of the Salmonella O-polysaccharide (OPS) with a protein carrier
have been utilized to enhance the immunogenicity of the otherwise weakly immunogenic
polysaccharide hapten, and provide functional immunological memory [39].

5. Sources of Variability in Murine Models that Test the Efficacy of
Salmonella Typhimurium and Salmonella Enteritidis Vaccines
5.1 Importance of the strain of mouse

The development of the mouse model of lethal S. Typhimurium and S. Enteritidis infections
has provided a robust platform for testing experimental vaccines against these two serovars
and allowed considerable progress to be made towards understanding the immune responses
that can mediate protection against these pathogens [19, 23, 40–42]. Nevertheless, the
systematic analysis that we undertook of the published scientific literature on S.
Typhimurium and S. Enteritidis vaccines evaluated in murine models reveals considerable
variability and often contradictory results (Table 1, 2). We found that the genetic
background of the mouse strain and the virulence of the wild-type Salmonella challenge
strain stood out, strikingly, as the two most important fundamental variables [43–48], aside
from expected differences in efficacy stemming from the type of vaccine. Indeed, since
several commonly used mouse strains differ so markedly in their natural susceptibility to
Salmonella infection, they are classified as either inherently “resistant” or “susceptible” [46,
49–53]. A defining phenotypic trait of susceptible mouse strains is the dramatic reduction in
the lethal dose of a given Salmonella strain required to kill 50% of infected mice (LD50),
which can be > 1,000-fold lower as compared to resistant mice (Table 3).

The use of susceptible mice in NTS vaccine development offers several advantages, as well
as disadvantages. Of notable importance, the significantly lowered LD50 with virulent NTS
in these mice allows a wider range of challenge inocula to be tested. This is particularly
pertinent to the oral challenge model, which necessitates a much larger inoculum size that
can be on the order of 1,000-fold greater than that required to achieve similar lethality with
parental challenge (Table 3). Moreover, in resistant mice it may not be possible to achieve a
lethal dose following oral challenge if a weakly virulent NTS strain is given. On the other
hand, a sub-lethal infection with highly virulent strains of S. Typhimurium and S. Enteritidis
administered parenterally cannot be established in susceptible mice, as the LD50 for
parenteral challenge is frequently less than 20 colony forming units (cfu) [46, 49, 50, 52–
54]. A final point to consider is that inbred susceptible mice do not model accurately the
genetic heterogeneity of human populations.

5.2 Genetic basis of mouse susceptibility to Salmonella
Mutations in several important genetic loci in mice have identified susceptibility factors for
infection with Salmonella, and are associated with significant lowering of the LD50 [23, 49–
51, 53]. Of these, NTS susceptibility loci originally referred to as Immunity to Typhimurium
(Ity) and resistance to Lipopolysaccharide (Lps), involve genes associated with innate
immunity. The Ity locus contains the Natural resistance associated macrophage protein 1
gene (Nramp1) which encodes an intracellular endosome-associated pH-controlled ion
transport protein, present within resident peritoneal and splenic macrophages. A mutation in
this gene found in susceptible mice leads to defects in phagocyte endolysosome function that
impairs control of intracellular infections and increases susceptibility to lethal Salmonella
infection [55, 56]. Mutations in the Lps locus were originally identified in the C3H/HeJ
mouse strain, a spontaneous mutant derived from the C3H line, that is insensitive to the
toxic effects of bacterial lipopolysaccharide (LPS) [57]. The inability to respond to LPS, an
important Salmonella pathogen associated molecular pattern, causes these mice to become
highly susceptible to Salmonella infection, as they are unable to mount an adequate innate
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immune response to control the early stages of infection. The mouse Lps locus is associated
with a mutation in the gene for Toll-like Receptor 4 (TLR4), the innate immune receptor for
LPS, that renders it nonfunctional for signaling [58–60]. The broad importance of LPS
recognition in natural Salmonella immunity has been further confirmed, as defects in the
endotoxin recognition system including LPS Binding Protein (LBP), and CD-14 have also
been associated with Salmonella susceptibility [23, 61, 62].

6. Immunization of Susceptible Mouse Strains with Live Attenuated NTS
Vaccines and Protection against NTS Challenge
6.1 Oral immunization and oral challenge

As summarized in Table 1, every report of susceptible mice (e.g., BALB/c, C57Bl/6)
immunized orally with S. Typhimurium attenuated mutants has demonstrated a high level of
protection when the mice were subsequently challenged orally with wild type S.
Typhimurium [30–33, 63, 64]. This is true for an array of live vaccines carrying different
attenuating mutations. Moreover, in most studies the oral challenge was rigorous and
contained > 10,000 × LD50 of virulent S. Typhimurium [30, 32, 33].

6.2 Oral immunization and parenteral challenge
The literature search was unable to identify reports describing susceptible mice immunized
orally with attenuated S. Typhimurium or S. Enteritidis vaccines that were then challenged
parenterally with wild type organisms.

6.3. Parenteral immunization and oral challenge
There are multiple reports of experiments with susceptible mice immunized with a variety of
attenuated S. Typhimurium or S. Enteritidis vaccines by parenteral routes (IP, IV or SC) and
were then challenged orally [31, 57, 63, 65–67]. In all instances a high level of vaccine
efficacy was observed (Table 1).

6.4. Parenteral immunization and parenteral challenge
There are also several reports of susceptible strains of mice that were immunized
parenterally (IP or IV) with attenuated S. Typhimurium or S. Enteritidis vaccines and were
then shown to be highly protected when subsequently challenged with wild type NTS
administered IP (Table 1) [47, 57, 68].

7. Immunization of Susceptible Mouse Strains with Non-Living NTS
Vaccines and Protection against Challenge with Virulent NTS
7.1. Oral immunization followed by oral or parenteral challenge

Our search uncovered no reports of susceptible mice immunized orally with non-living S.
Typhimurium or S. Enteritidis vaccines who were then challenged with the homologous wild
type serovar given either orally or parenterally.

7.2. Parenteral immunization followed by oral challenge
Several reports describe the parenteral immunization of susceptible strains of mice (e.g.,
BALB/c, C57Bl, C57Bl/6) with chemical or heat-inactivated whole cell S. Typhimurium or
S. Enteritidis vaccines or with a subunit vaccine (flagellin) followed by oral challenge with
low doses of virulent organisms (Table 1). The only vaccine or regimen that achieved a high
level of protection against oral challenge was when inactivated S. Enteritidis were
administered with Complete Freunds Adjuvant (CFA) and the challenge dose was low and

Simon et al. Page 5

Vaccine. Author manuscript; available in PMC 2012 July 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



near the LD50 [69, 70]. The only other hint of protection in the face of oral challenge was
observed following SC immunization of C57Bl/6 mice with S. Typhimurium flagellin
protein FliC; weak protection was recorded against oral challenge with a low dose of S.
Typhimurium [64].

7.3. Parenteral immunization followed by parenteral challenge
As summarized in Table 1, non-living S. Typhimurium vaccines have provided generally
disappointing and inconsistent results in instances where both the vaccine and the challenge
were administered parenterally to susceptible strains of mice (Table 1). With only one
exception [46], parenteral immunization with inactivated whole cell vaccines have failed to
protect susceptible mice against parenteral challenge with virulent NTS. Those few
inactivated parenteral vaccines that did confer measurable protective efficacy against wild
type challenge involved immunization with subunit vaccines, followed by challenge with
weakly virulent Salmonella strains (parenteral LD50 > 10,000 cfu) or low inocula of virulent
strains [46, 54, 71–76].

8. Immunization of Resistant Mouse Strains with Live Attenuated NTS
Vaccines and Protection against Challenge
8.1. Oral immunization followed by oral or parenteral challenge

We did not find any reports of resistant strains of mice immunized orally with attenuated
NTS vaccines and then challenged, either orally or parenterally.

8.2 Parenteral immunization followed by parenteral challenge
Our search revealed that resistant mice immunized by the IP route with live attenuated aroA
and a rough LPS mutant of S. Typhimurium, were protected against subsequent IP challenge
with 1,000 × LD50 of virulent S. Typhimurium (Table 2) [47, 77].

9. Immunization of Resistant Mouse Strains with Non-Living NTS Vaccines
and Protection against Challenge
9.1 Oral immunization followed by either oral or parenteral challenge

Our search failed to reveal any reports of oral immunization of resistant mice with non-
living S. Typhimurium or S. Enteritidis vaccines followed by either oral or parenteral
challenge with wild type organisms where mortality was reported. In the one study, CD-1
mice immunized orally or IM with heat-killed S. Enteritidis showed a slight decrease in
tissue cfu burden following oral challenge with highly virulent S. Enteritidis. However, this
would be unlikely to translate to a decrease in mortality [26].

9.2. Parenteral immunization and parenteral challenge
Resistant mice have proven to be a robust model for testing the efficacy of a panoply of non-
living S. Typhimurium and S. Enteritidis vaccines, including inactivated whole cell, subunit
and polysaccharide-protein conjugates, in preventing mortality following challenge with
NTS (Table 2). Several publications describe parenteral (IP or IV) immunization of resistant
mice (e.g., C3H/HeNCrIBR, CD-1, CF1, ddy, White Swiss), followed by parenteral
(primarily IP) challenge with virulent S. Typhimurium or S. Enteritidis (Table 2) [27, 39, 43,
46, 54, 77–83]. In all reports a high level of protection was observed, even with challenge
inocula containing wild type organisms equivalent to 1,000 × LD50 (Table 2). These reports
contrast with the highly variable protection reported when susceptible mice were challenged
after being immunized with non-living vaccines.
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10. Role of Mouse Salmonella Susceptibility Gene Alleles and Vaccine
Efficacy

The variability in protective efficacy seen with non-living vaccines in different strains of
mice led to considerable confusion in the field, for a period of time. The situation was
clarified when studies to address this conundrum established, unequivocally, that the
background murine genetic Salmonella susceptibility locus exerts a powerful influence on
the observed efficacy of non-living vaccines [46, 54]. In one key study conducted by
Robson and Vas, inbred mouse strains that vary in innate susceptibility to infection with
NTS were vaccinated IP with phenol-inactivated S. Typhimurium and then challenged by
the IP route with graded inocula of S. Typhimurium ranging from 101 to 107 cfu [54].
Strikingly, highly susceptible (C57Bl/6J, BALB/cJ, C3H/HeJ) and moderately susceptible
(DBA/2/J) mice immunized with whole-cell killed-vaccine were not significantly protected
against fatal S. Typhimurium infection at any challenge dose tested. In contrast, resistant (A/
J) mice were highly protected against lethal Salmonella challenge at all levels tested.
Notably, both naïve and vaccinated highly susceptible mice succumbed to infection with less
than 10 S. Typhimurium cfu, whereas infection in naïve resistant A/J mice was consistently
fatal only at 105 cfu, and immunized mice were fully protected at 107 cfu.

Eisenstein et al. immunized mice of the C3H lineage that vary in inherent susceptibility to
Salmonella by the IP route with either whole-cell killed vaccine or purified LPS and then
challenged the mice by IP inoculation with ~ 20 × LD50 of virulent S. Typhimurium [46].
Naturally resistant C3H/HeNCrlBR mice were fully protected, whereas highly susceptible
C3H/HeJ mice (that are non-responsive to bacterial LPS) showed no significant protection
against challenge. C3HeB/FeJ mice that are innately responsive to LPS but nonetheless
more highly susceptible to S. Typhimurium, as compared to traditionally resistant mice,
displayed an intermediate protection phenotype; partial protection was observed compared
to resistant C3H/HeNCrlBR mice. This study was the first to demonstrate that the
differential performance of non-living vaccines in different mouse strains that vary in
natural susceptibility to wild-type Salmonella infection is consistent across different types of
vaccine preparations.

11. Mechanisms of protective immunity to S. Typhimurium and S.
Enteritidis in mice
11.1 Humoral immunity

The extensive work conducted towards understanding the mechanistic basis of the protective
adaptive immune response to Salmonella has been reviewed elsewhere [23, 34, 84] and will
be discussed here only briefly, with an emphasis on mechanisms of immunity in susceptible
versus resistant strains of mice. Immunization with non-living vaccines can stimulate the
production of humoral immunity, including antibody against Salmonella outer membrane
antigens and flagellin that can provide protection against extracellular bacteria. Non-living
vaccines, in contrast, stimulate comparatively negligible cytotoxic T-cell mediated cellular
immunity [84]. Mucosal IgA plays an important role against oral infection with Salmonella
as a first line of defense at the mucosal epithelial surface, through inhibition of bacterial
penetration into the Peyer’s patches [85, 86]. Protection by circulating serum antibody can
potentially play a role in inhibiting cell-to-cell transmission of Salmonella following exit
from infected cells, as well as a reduction in overall systemic bacterial cell burden [68, 87–
89].

The systemic immune responses mediated by antibody to Salmonella include direct
complement mediated cytocidal activity by IgM and IgG, as well as opsonophagocytic
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uptake into professional phagocytes such as macrophages, neutrophils, and dendritic cells
[88]. Of these, antibody-mediated opsonophagocytic uptake, which is associated with
secretion of pro-inflammatory cytokines and intracellular oxidative burst, is likely more
important in vivo as natural resistance to serum and complement-mediated bactericidal
activity may be common among invasive non-typhoidal Salmonella [90]. Killing by
antibody-mediated opsonophagocytosis is effective against complement-resistant strains,
and opsonophagocytosis is important for presentation of antigenic peptides and activation of
CD4+ T-helper cells [79, 90]. Surface bound antibody on B-cells can also mediate
internalization and processing of bacterial cells, for subsequent presentation of Salmonella-
specific peptide epitopes on MHC-II molecules to T-cells [91]. Presentation of Salmonella
antigens by antibody mediated opsonophagocytosis can aid in the development of cell-
mediated immunity, that may not progress normally otherwise, as Salmonella outer
membrane polysaccharides are known to interfere with non-specific opsonophagocytic
uptake [92, 93]. The importance of antibody-mediated protection against Salmonella has
been demonstrated in genetic models of B-cell deficiency. In these studies, transgenic
derivatives of the susceptible C57Bl/6 mouse strain, defective for the generation of B-cells,
were unable to mount a protective immune response against virulent Salmonella
Typhimurium following vaccination with a live attenuated aroA mutant. Furthermore,
greatly diminished T-cell activation was observed in these B-cell deficient mice, and full
protection was not restored by passive immunization with anti-Typhimurium sera, further
underscoring the important role that antibody and B-cells play in the generation of cellular
immunity [67, 94].

11.2. Cellular immunity
Immunization with live attenuated non-typhoidal Salmonella vaccine strains elicits robust
both humoral immunity and cellular immunity that is important for the control of
intracellular infection [84]. Cellular immunity against Salmonella involves the coordinated
action of CD4+ T helper and CD8+ Cytotoxic T lymphocytes (CTL) against Salmonella
proteins [84, 95, 96]. Cellular responses against Salmonella proteins have been
demonstrated for several Salmonella protein antigens including, for example, flagellin FliC
[34, 64, 97–99]. T-helper type I immunity, mediated by tumor necrosis factor-α, (TNF-α),
interleukin-12 (IL-12) and interferon-γ (IFN-γ), that includes the action of activated
macrophages, subsets of CD8+ and CD4+ T-cells, and opsonophagocytic antibodies, is
strongly associated with the protective immune response to Salmonella [95, 100–103].
Vaccination of mice with live attenuated strains of Salmonella has been demonstrated to
elicit potent cellular immunity as characterized by the production of high levels of IFN-γ
upon ex-vivo restimulation of immune T-cells with Salmonella antigens [64, 98, 104].
Indeed, observations from both mouse and human studies have highlighted the overt
susceptibility associated with perturbation of the IL-12/IFN-γ axis towards infection with
Salmonella [61, 105–108]. Allelic specificity of the Major Histocompatibility Complex-II
(MHC-II) has also been implicated as important for clearance of Salmonella infection in
both mice and humans [34, 109, 110].

11.3. Importance of antibody and T-cells to immunity against NTS
Elucidation of the comparative contribution of humoral and cellular immunity in functional
protection against Salmonella infection in highly susceptible mice has been demonstrated in
several published reports. Adoptive transfer models of immunity with immune serum and T-
cells from mice immunized with live attenuated aroA Salmonella Typhimurium, into
susceptible naïve BALB/c mice, has provided evidence that both humoral and cellular
immunity are necessary for immunity to oral challenge with virulent Salmonella
Typhimurium. In this model, naïve mice receiving either immune serum or T-cells
separately, succumbed to oral infection, whereas mice receiving both were protected [66].
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Further studies with this model have highlighted the importance of O-specific antibody
against bacterial polysaccharide as a functional correlate of protection [65]. Separate studies
with susceptible BALB/c mice genetically ablated for B-cell responses, has further
confirmed the dual requirement for both antibody and T-cells in the IP model of Salmonella
Typhimurium challenge. In these experiments, partial protection against challenge was seen
following passive transfer of anti-Salmonella Typhimurium immune serum into B-cell
deficient BALB/c mice that had been previously immunized with live attenuated aroA
Salmonella Typhimurium. Protection however was not seen following transfer of immune
serum into naïve mice, or in aroA Salmonella Typhimurium vaccinated B-cell deficient mice
[68].

Evidence for antibody-mediated protection against parenteral challenge with highly virulent
NTS in resistant mice is provided in several published reports. Protection from parenteral
challenge mediated by immunization with killed whole cell Salmonella Typhimurium in
resistant White Swiss mice is mirrored by the rise in titer of functional bactericidal antibody
[81, 82]. In this model, the substantial protection observed following challenge is similarly
associated with a large reduction of Salmonella CFU in the liver and spleen as compared to
unvaccinated mice and can be seen as early as six hours after challenge. Resistant CD-1 and
NMRI mice immunized with O-polysaccharide based conjugate vaccines were also shown to
produce high levels of functional opsonophagocytic antibody that could transfer protection
by passive immunization into naïve hosts [39, 80, 111–113]. As further evidence for the
protective role of antibody in resistant mice, passively transferred monoclonal IgG and IgM
specific for Salmonella Typhimurium OPS mediated significant protection against IP
challenge with LD100 levels of Salmonella Typhimurium in resistant C3H/HeN mice [114].
By comparison, the failure of passive transfer of these same monoclonal IgG and IgM anti-
OPS antibodies to provide protection against IP challenge with LD100 levels of S.
Typhimurium in susceptible C3H/HeJ mice [114], underscores the limitations of antibody-
mediated protection alone in susceptible mice.

Based on results from these mechanistic and functional immunological studies in susceptible
and resistant mice immunized with living as compared to non-living NTS vaccines, several
important points emerge. In susceptible mice challenged by either the parenteral or oral
route with highly virulent NTS strains, the coordinated action of both humoral as well as
cellular immunity is required for effective protection from Salmonella Typhimurium
challenge. This is likely a result of the failure to adequately control intracellular infection for
example in Nramp1 deficient mice [23, 56]. The contribution of humoral immunity alone to
protection by vaccines against NTS in mice is generally only seen in host-pathogen
interactions that can result in a sub-lethal infection, such as can be produced in either
resistant mice challenged with either highly or weakly virulent NTS strains, or susceptible
mice challenged with weakly virulent NTS strains. Under these conditions, functional
bactericidal and opsonophagocytic antibody directed against NTS likely causes an
immediate reduction in Salmonella challenge inoculum present extracellularly, that
functions to lower a fatal Salmonella dose to a level that is sub-lethal [81, 82]. This sub-
lethal infecting population becomes disseminated to secondary sites of infection, and may
also potentially generate cell-mediated immunity akin to that elicited during a natural sub-
lethal infection in naïve animals [26, 43, 69, 81, 82, 97]. As highly susceptible mice are
impaired for control of Salmonella infection, and succumb to very low parenteral challenge
doses, they are virtually unable to be infected at sub-lethal levels with fully virulent strains,
and thus protection by antibody is likely not significant [54].
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12. Conclusions
The mouse model is expected to play an invaluable role in accelerating the development of
safe and effective vaccination strategies against recently emerging NTS that are capable of
causing invasive infections in humans. As emphasized in this review, choice of a mouse
strain is of fundamental importance among the variables that affect the experimental
outcome of investigational NTS vaccines.

The choice of mouse strain used for testing NTS vaccines should be tailored to the expected
mechanism of protective immunity generated and the background virulence of the proposed
NTS challenge strain. For vaccines designed to elicit both humoral and cellular immunity,
such as live attenuated strains, both resistant as well as susceptible mice can be used to test
for protection against highly virulent (as well as weakly virulent) NTS challenge strains.
Efficacy against highly virulent NTS strains by vaccines for which the correlate of
protection is expected to be antibody may be better studied in resistant mice. Thus,
parenteral NTS conjugate vaccines, for example, should be tested for efficacy in resistant
strains of mice.

Based on the findings revealed in our review, another consideration in selecting the
appropriate mouse model for testing the efficacy of NTS vaccines is the selection of the
route of challenge. Oral challenge, which resembles the natural route of infection in humans,
can be accomplished in either susceptible or resistant mice, in testing live oral vaccines, with
the caveat that the LD50 in resistant mice challenged with weakly virulent NTS strains may
be so high as to pose a practical obstacle to achieving lethality in control animals.

Our review uncovered no examples where parenteral non-living NTS vaccines found to
protect resistant mice against mortality when challenged parenterally were also tested for
their ability to protect against oral challenge. We identify this as an important knowledge
gap to be filled. If parenteral NTS vaccines under development, such as conjugates, porins
and common proteins, can be shown to protect resistant mice against oral challenge, this will
be an important breakthrough for generating relevant pre-clinical data for regulatory
agencies.

Two vaccine strategies that have proved useful for developing successful human vaccines
against S. Typhi are attenuated strains that serve as live oral vaccines [35, 115] and
parenteral conjugates consisting of capsular Vi polysaccharide linked to a carrier protein
[116–118]. Not surprisingly, these same strategies are being followed to develop safe and
effective vaccines against invasive S. Typhimurium and S. Enteritidis disease. Carefully
selected mouse models will be particularly critical for non-living NTS vaccine development
in order to generate relevant pre-clinical data for regulatory agencies that includes evidence
of vaccine efficacy.
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