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ABSTRACT

The 5 leader of the human immunodeficiency virus
type 1 (HIV-1) genomic RNA harbors an internal
ribosome entry site (IRES) that is functional during
the G2/M phase of the cell cycle. Here we show that
translation initiation mediated by the HIV-1 IRES
requires the participation of trans-acting cellular
factors other than the canonical translational ma-
chinery. We used ‘standard’ chemical and enzymat-
ic probes and an ‘RNA SHAPE’ analysis to model the
structure of the HIV-1 5 leader and we show, by
means of a footprinting assay, that G2/M extracts
provide protections to regions previously identified
as crucial for HIV-1 IRES activity. We also assessed
the impact of mutations on IRES function. Strikingly,
mutations did not significantly affect IRES activity
suggesting that the requirement for pre-formed
stable secondary or tertiary structure within the
HIV-1 IRES may not be as strict as has been
described for other viral IRESes. Finally, we used a
proteomic approach to identify cellular proteins
within the G2/M extracts that interact with the
HIV-1 5 leader. Together, data show that HIV-1
IRES-mediated translation initiation is modulated
by cellular proteins.

INTRODUCTION

Initiation of protein synthesis in the eukaryotic cell leads
to the assembly of the 80S ribosome at the start codon of
the mRNA. At least two mechanisms for recruiting and
positioning ribosomes on the mRNA have been described
(1,2). The primary mechanism involves the recognition of
the 5" cap structure (m’GpppN) by eukaryotic translation
initiation factors (elFs), followed by binding of the 40S
ribosomal subunit and scanning downstream to the initi-
ation codon (1,2). Alternatively, in some mRNAs a struc-
tural element, the internal ribosome entry site (IRES),
allows assembly of the translational machinery at a
position close to or directly at the initiation codon (3,4).
IRES elements were first described in the uncapped polio-
virus and encephalomyocarditis virus mRNAs (5,6).
Functionally, the IRESes were identified by inserting the
S’-untranslated region (UTR) of the viral mRNA into the
intercistronic spacer of a bicistronic construct encoding
two proteins (5,6). In this context, expression of the
second cistron documented the ability of the inserted
sequence to promote internal ribosome binding and trans-
lation independent of the first cistron. Since the initial
characterization of IRES elements in Picornaviridae,
viruses from other families including the Retroviridae
have been shown to initiate translation via an IRES (7-9).

The study of the mechanism of translation initiation of
the full length RNA of the human immunodeficiency virus
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type 1 (HIV-1) revealed that this capped and
polyadenylated mRNA can initiate protein synthesis
through the canonical cap-dependent or by the alternative
IRES-dependent  mechanism  (8-15). The HIV-I1
full-length RNA harbors two IRESes, the first in the
mRNAs 5-UTR (here referred to as the HIV-1 IRES)
(10,13), and the second within the Gag open reading
frame (the HIV-1 gag IRES) (11,12,14). Translation initi-
ation of the viral structural proteins, Gag and GagPol can
thus be driven by three independent mechanisms, the ca-
nonical cap-dependant process (8,15), or by two internal
ribosome entry events dependant on the HIV-1 IRES, or
the HIV-1 gag IRES (8,10-12). In addition, the translation
of a shorter 40K-Gag isoform of currently unknown
function is directed by the HIV-1 gag IRES (8,9,11,12).

The observed redundancy and the conservation of the
different mechanisms for the initiation of protein synthesis
among primate lentiviruses suggest that translation initi-
ation of HIV-1 mRNA is a key step during the viral life
cycle (7-9,12). Alternative initiation may allow the viral
mRNA to bypass the constraints of global cellular trans-
lation repression that normally target cap-dependent
translation initiation, a proposal given credence by
evidence that HIV-1 IRES supports translation initiation
during osmotic stress (13,16). Additionally, HIV-1 gene
expression is influenced by the cell cycle as evidenced by
the observation that HIV-l-infected cells arrested in
G2/M by the viral protein Vpr or by chemicals, exhibit
enhanced levels of viral mRNA transcription and transla-
tion (17,18). Notably, the HIV-1 IRES supports transla-
tion of viral mRNA in HeLa cells that have been arrested
in the G2/M phase of the cell cycle (10), when global
cellular cap-dependent translation initiation is suppressed
(19). IRES-mediated translation initiation may also ensure
synthesis of viral structural proteins during the late stages
of the replication cycle, when the eIF4G and the poly(A)
binding protein (PABP), both required for cap-dependent
translation initiation, are targeted by the viral protease
(20-24).

To date the molecular mechanisms that determine the
function of the IRESes harbored within the HIV-1
full-length mRNA are not clearly understood. However,
recent reports suggest that translation initiation driven by
the HIV-1 IRES can be modulated by cellular proteins
(16,25,26). The heterogeneous nuclear ribonucleoprotein
Al (hnRNP Al), elF5A, the human rev-interacting
protein (hRIP) and DEAD (Asp—Glu—Ala—Asp) box poly-
peptide 3 (DDX3) have been identified as a cellular factor
that enhance HIV-1 IRES activity (16,26), while the
human embryonic lethal abnormal vision (ELAV)-like
protein, HuR, has been describe as a negative modulator
of HIV-1 IRES activity (25). These reports are in keeping
with existing evidence that IRES-dependent translation
for a number of viral and cellular mRNAs requires the
presence of an additional and sometimes complex set of
trans-acting factors for full translational activity (4,27,28).
IRES trans-acting factors (ITAFs) are thought to bind to
the mRNA, inducing conformational changes needed to
structurally form the IRES, thereby facilitating ribosome
recruitment (4,27,28).
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In this study, we show that translation mediated by the
HIV-1 IRES requires G2/M-specific cellular factors. We
show that cell extracts alter the accessibility of chemical
reagents to single-stranded regions present within the
HIV-1 5 leader region. Close analysis of these data
reveal that cell factors protect a region of the HIV-1 ¥
leader known to participate in IRES activity (10). A mu-
tational analysis revealed that the HIV-1 IRES function is
resistant to the introduction of mutations that were pre-
dicted to disrupt local RNA structures (29). This observa-
tion suggests that the requirement for a single, stable
pre-formed secondary or tertiary structure may not be as
rigid as has been described for other viral IRESes. Finally,
using a proteomic approach we identify proteins present in
cell extracts that interact with the HIV-1 5 leader.
Together our data suggest that the translational activity
from the HIV-1 IRES is most probably modulated in trans
by a group of proteins that specifically interact with the
HIV-1 5 leader during the different stages of the cell cycle.

MATERIALS AND METHODS
Plasmid

The AIAEMCYV and dl HIV-1 IRES plasmids were as pre-
viously described (10,25). The long distance interactions
(LDI)/branched multiple hairpin (BMH) stabilizing muta-
tions previously described by Abbink et al. (29) were
introduced in the 5 leader of the proviral clone pNL4.3
by overlapping extension PCR (30), using primers descri-
bed in Table 1. In each case, the amplicon was digested
with EcoRI and Ncol (both restriction sites added by
PCR) and inserted into the intercistronic region of dl
HIV-1 IRES plasmid as described (10), previously
digested with the same enzymes (Fermentas, Vilnius,
Lithuania). Upon sequencing additional mutations that
were not originally included in the primers were identified
in four constructs (namely Mut L5, Mut L6, Mut L7 and
Mut LS8); these mutants were included in the study.
Mutant L9 was constructed by digesting Mut L8 with
Paul and Xbal (Fermentas) and cloning the Paul-Xbal
fragment into the Mut L7 digested with the same enzymes.
As before, the generated mutant HIV-1 5 leader was
inserted into the intercistronic region of dl HIV-1 IRES
plasmid as described (10). The authenticity of all plasmids
used in this study was confirmed by sequencing (Macrogen
Corp, Rockville, MD, USA).

Cell culture

HeLa cells were cultured in Dulbecco’s modified Eagle’s
medium (Gibco-BRL) with 100 U/ml of penicillin—strepto-
mycin (HyClone) and 10% fetal bovine serum (HyClone)
at 37°C in a 5% CO, atmosphere. Nocodazol (400 ng/ml;
Sigma-Aldrich) and L-mimosine (20 mM; Sigma-Aldrich)
were used to enrich cells in the G2/M or G1 phase of the
cell cycle, respectively. Cell cycle arrest was confirmed by
flow cytometry as previously described (10). Cytoplasmic
cell extracts were prepared following a previously
described protocol (10,25). Upon preparation, extracts
were tittered to determine the concentration that should



6188 Nucleic Acids Research, 2011, Vol. 39, No. 14

Table 1. Primers used to generate the HIV-1 Leader mutants

Mutant Sense primer Antisense primer

Mut L1 5'-GGTGCGCACACCAAAAATTTTGACTAGCGGAGGCT -3’ 5'-AAAATTTTTGGAGTGCGCACCAGTCGCCGCCCC-3/

Mut L2 5 -GAGTACGCCATCCTTTTTGACTAGCGGAGGCTAGAAGG-3' 5'-GTCAAAAAGGATGGCGTACTCACCAGTCGCC3’

Mut L3 5'-ACGCCAGGGGTTTTGACTAGCGGAGGCTAGAAGG-3/ 5'-AGTCAAAACCCCTGGCGTACTCACCAGTCGCC-3/

Mut L4 5 -TTTTTCTAGCGGAGGCTAGAAGGAG-3' 5'-AGCCTCCGCTAGAAAAAATTTTTGGCGTACTCACC-3’

Mut L5-L10 5 -TTTAGCTAGCGGAGGCTAGAAGGAG-3' 5'-AGCCTCCGCTAGCTAAAATTTTTGGCGTACTCACC-3’

Mut L6 5'-GACGCTGGTGAGTACGCCAAAAATTTTG-3’ 5/ -TTTTTGGCGTACTCACCAGACGTCGCCCCTCGCCTCTTG-3’
Mut L7 5'-CGACGCACCCCTCGGCTTGCTGAAGCGCGC-3’ 5'-CAGCAAGCCGAGGGGTGCGTCGAGAGATCTCCTC-3"

Mut L8-L11 5'-CCCGGCGACTGGTGAGTACGCC-3/ 5'-ACTCACCAGTCGCCGGGACTCGCCTCTTGCCGTG-3’

A, deleted nucleotide with respect to pNL4.3 (AF 324493); bold, nucleotide changes with respect to pNL4.3.

be used in the assay. The adequate experimental concen-
tration varied from one cell extract to another.

In vitro transcription

Capped RNAs were synthesized using the mMESSAGE
mMACHINE High Yield Capped RNA Transcription Kit
(Applied Biosystems/Ambion, Austin, TX, USA), while
capped and polyadenylated RNA transcripts were
synthesized using the complete mMessage mMachine T7
Ultra Kit (Applied Biosystems/Ambion) according to the
manufacturer’s protocol. Uncapped RNA was synthesized
by in vitro transcription conducted in a final volume of
200 ul using T7 RNA polymerase, SmM DTT, 5SmM
rNTP’s, 1X transcription buffer (40mM Tris—-HCI pH
8.0, 25mM MgCl,, 1 mM spermidine) and 0.04 U RNase
Inhibitor (Applied Biosystems/Ambion) and incubated 2 h
at 37°C. Upon synthesis, RNAs were treated with DNAse
RQI (Promega, Madison, WI, USA) for 20 min at 37°C.
RNA was precipitated with 2.5M LiCl, centrifuged at
16000g, 30 min at 4°C, washed with 70% ethanol and re-
suspended in 50 pl of nuclease-free water. RNA concen-
trations  were  determined  spectrophotometrically
(NanoDrop Technology, Wilmington, DE, USA) and
RNA integrity was monitored by electrophoresis on
denaturing agarose gels.

In vitro translation

In vitro transcribed dl HIV-1 IRES RNAs (8 ng/ul) were
translated in 25% (v/v) nuclease-treated rabbit reticulo-
cyte lysate (RRL; Promega), supplemented or not with
cell extracts prepared as previously described (25). Final
concentrations of extract used in each experiment are
indicated in figure legends. Cell extracts were pre-
incubated with RNA for 5min prior to addition of the
RRL mix as previously described (25). Luciferase activi-
ties were measured using the DLR™ Assay System
(Promega) according to manufacturer’s instructions on a
Sirius Luminometer (Berthold Detection Systems GmbH,
Pforzheim, Germany) as previously described (25,31).
For *S-methionine labeling, bicistronic RNA (1 pmol)
was translated in 50% of RRL Flexi® (Promega) in the
presence of 20uM amino acids (lacking methionine),
0.5mM MgOAc,, 160mM KOAc, 0.8 U/ul de RNasin®
Plus RNase Inhibitor (Promega) and 0.6 mCi/ml [**S]-me-
thionine. Translation reactions, conducted in final volume
of 10 ul, were incubated for 90 min at 30°C. The reaction
was stopped with 90ul of protein loading buffer as

previously described (12). Ten microliter of the final mix
was loaded and resolved by SDS-PAGE (12%), and
bands visualized using a BAS-5000 phosphorimager
(Fujifilm).

Oocyte microinjection

Oocytes were isolated from Xenopus laevis ovarian frag-
ments and microinjected with glass micropipettes
calibrated to deliver a final volume of 50 nl, as previously
described (25). To assess the effect of G2/M HelLa extracts
on IRES activity, oocytes were first microinjected with
6.25 ng of in vitro transcribed, capped and polyadenylated
bicistronic RNA generated from either AIAEMCYV or dl
HIV-1 IRES plasmids. Fifteen minutes later oocytes were
microinjected with 200ng of G2/M Hela extracts.
Oocytes were incubated for 24h at 15°C in a standard
Barth’s solution supplemented with 10 UI/l penicillin—
streptomicine and 2mM pyruvate. Oocyte lysates were
prepared in 1x passive lysis buffer (Promega
Corporation), centrifuged at 16000g for 5min and 1-5 pul
of supernatant was used in the detection of luciferase as
described above.

RNA probing

The secondary structure of the HIV-1 5-UTR was probed
using DiMethyl Sulfate (DMS, Across Organics), N-cyclo-
hexyl- N-[ N-methylmorpholino)-ethyl]-carbodiimid-4-
toluolsulfonate (CMCT, Merck) and RNAse V1 (Applied
Biosystems/Ambion) as described previously (12,32).
RNA Selective 2" Hydroxyl Acylation analysis by Primer
Extension (SHAPE) analysis was conducted using
I-methyl-7-nitroisatoic anhydride (1M7) as a modifying
agent as previously described (33,34). In brief, 10 pmol
of in vitro transcribed RNA, which included the 5
leader of HIV-1 (pNL4.3) and the first 58 nt of fluc (re-
covered from the dl HIV-1 IRES plasmid using a primer
T7HIVF 5-CCATATGTAATACGACTCACTATAG
GTCTCTCTGGTTAGA-3" and Fluc30bp 5-CATCTTC
CAGCGGATAGAATG-3') were resuspended in 30 pl of
80 mM HEPES pH 7.5 (or 50 mM borate potassium pH 8
for CMCT), denatured for 2min at 80°C, and then 2 pl of
3M KCI and 2 pul of 40mM MgCl, were added. Upon a
10 min incubation at 30°C DMS (0.2mM final), CMCT
(25mM final), RNAse V1 (0.01 or 0.025U) or 1M7 was
added and the mixture was incubated for 5 min (10 min for
CMCT). Mock controls, where the chemical was replaced
by water or DMSO (for the 1M7 probing) were also



included. The modification reaction was stopped in ice by
addition of 10 pug of yeast tRNA. As previously described
(32,34), the time and concentration of modification agent
were established to generate at the most one modification
per molecule. The reaction was then immediately
precipitated in dry ice with ethanol and 5M ammonium
acetate. RNA was then resuspended in 0.5 M ammonium
acetate, ethanol precipitated in presence of 20pug of
glycogen, washed with 70% ethanol and resuspended in
6 ul of nuclease-free water. For DMS, CMCT and VI
probing, modifications were revealed by reverse transcrip-
tion (AMV RT; Promega) using a >’P-labeled primers
(Fluc30bp; HIVI1-336 R 5-TTTGAAAAACACGAATT
CGGTCTCTCTG-3"; 100pbHIV-1 5-ACTTTGAGCAC
TCAAGGCAAG-3'; 200pbHIV-1 5-TTCGCTTTCAAG
TCCCTGTTC-3') according to the manufacturer’s in-
structions (Promega). Reverse transcription products
were resolved by 8% denaturing PAGE; the resulting gel
was scanned on a Typhoon trio variable mode imager
(Amersham Biosciences). The relative proportion of each
product was determined, drawing profiles with Multi
Gauge V3 software (Fujifilm). For 1M7 probing, modifi-
cations were revealed using RNAse H- M-MLV RT
(Promega) and the Fluc30pb primer labeled with
WellRed D2, D3, D4 (Sigma), or IR-800 (MWG
Eurofins) fluorophores, cDNA fragments were resolved
by capillary electrophoresis (Beckman Coulter CEQ
8000). Data were then interpreted and analyzed using
the software ‘shapefinder’ (35) (http://bioinfo.unc.edu).

I1M7 footprinting experiments were carried as described
above except that non-synchronized, Gl or G2/M
synchronized, Hela extracts (6 ug of total proteins) were
added after RNA renaturation, the mixture was then
incubated for 10min at 30°C before 1M7 addition.
Profiles were compared to the profile obtained with a
mocked control containing the equivalent amount of
buffer instead of extracts. Increases or decreases of
2-fold of the reactivity, with the higher reactivity being
at least 0.3, was considered significant and reported.

Synthesis of 1-methyl-7-nitroisatoic anhydride was as
described by Mortimer and Weeks (34).

DNA transfection

Cells were seeded at 1 x 10° cell/well in 12-well plates and
DNA transfection (200ng/well) was performed at 60%
confluence using the JetPEI transfection system
(PolyPlus transfection, France) according to the manufac-
turer’s protocol. After 24h, the culture medium was
removed and cells lysed with 1x passive lysis buffer
(Promega) as described in the DLR™ Assay System
manual (Promega) (10,25,31). Protein concentration was
determined by a Bradford assay using the Bio-Rad Protein
Assay (Bio-Rad Laboratories, Inc., Hercules, CA, USA).
FLuc and RLuc activities were measured as described
above.

RNA constructs and cellular extracts preparation
for pull-down experiments

HeLa cells were grown to confluency in standard media or
media supplemented with 400ng/ml nocodazole. Cells
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were detached with trypsin/EDTA, and pelleted.
Following a cold phosphate buffered saline (PBS) wash,
the cell pellet was resuspended in cold buffer A (10mM
Hepes, pH 7.9, 1.5mM MgCl,, 10mM KCI, 0.5mM
DTT, supplemented with protease inhibitors) and
incubated on ice for Smin. Cells were lysed with a
pre-chilled Dounce homogenizer for 20 strokes using a
tight fitting pestle. Dounced cells were centrifuged at
228¢ for Smin at 4°C to pellet nuclei and other fragments.
The supernatant was retained as the cytoplasmic fraction
and the pellet was retained as the nuclear fraction. The
cytoplasmic fraction was supplemented with 5x RIPA
buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 1% NP-40,
0.5% deoxycholate, supplemented with protease inhibi-
tors) to a 1x final concentration and centrifuged at
2800g for 10 min at 4°C to pellet solids. The nuclear pellet
was resuspended in buffer S1 (0.25M Sucrose, 10 mM
MgCl,), layered over a sucrose cushion (0.8 M Sucrose,
0.5mM MgCl,) and centrifuged at 2800 x g for 10 min
at 4°C. The pellet was resuspended in 10 pellet volumes
1x RIPA buffer and sonicated on ice. The lysate was
centrifuged at 2800 x g for 10 min at 4°C to pellet solids.
Protein concentration was determined using a Bradford
assay (BioRad).

Templates for in vitro transcription of strep-aptamer
tagged HIV-1 5 leader (nucleotides 1-384) and the
reverse complement HIV-1 5 leader (RC) were generated
by PCR amplification from plasmid HIV 1-384 described
by Brasey et al. (10). A T7 promoter was added to the
5’-end, and the sequence for a streptomycin binding RNA
aptamer (36) was added on the 3’ end using the primer
pair SYTAATACGACTCACTATAGggtctctctggttagaccag3’
(forward) and 5SGGATCCGACCGTGGTGCCCTT
GCGGGGCAGAAGTCCAAATGCGATCCcccatttat
ctaattctcee3’ (reverse) for the HIV-1 5 leader and primers
STAATACGACTCACTATAGGcccatttatctaattcteee3’
(forward) and YGGATCCGACCGTGGTGCCCTTGC
GGGGCAGAAGTCCAAATGCGATCCggtctctetggttag
accag3’ (reverse) for the HIV-1 RC 5 leader. RNA was
in vitro transcribed from PCR templates using T7 RNA
polymerase as previously described (37). RNA was
purified on a denaturing polyacrylamide gel, passively
eluted in diethylpyrocarbonate treated water, and con-
centrated using spin concentrator columns (Amicon).
RNA integrity and purity was verified by denaturing poly-
acrylamide gel electrophoresis, and concentration was
determined by ultraviolet (UV) spectroscopy.

Pull-down experiments

Pull-down experiments were performed using aptamer
tagged RNA and a streptomycin-conjugated sepharose
column (36). Aptamer tagged RNAs were folded over a
series of incubations (65°C for 5min, 37°C for 5min,
room temperature for 5Smin) and added to 1ml of
column buffer (50 mM Tris HCI, pH 7.5, 5SmM MgCl,,
250 mM NaCl). Folded RNA was loaded onto a column
packed with 1 ml bed volume of streptomycin conjugated
sepharose that had been equilibrated three times with
column buffer and blocked with 20 ug tRNA. The RNA
was incubated on the column for 10min, and washed
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twice with 1 ml column buffer. 150 ug of protein extract
(supplemented with RNASE inhibitor) was loaded onto
the column and incubated for 10 min. The column was
washed 10x with column buffer, and RNA-protein
complexes were eluted three times with 1 ml column buffer
supplemented with streptomycin to 10 uM. Elutions were
concentrated using spin concentrator columns (Amicon)
according to the manufacturer’s protocol.

Mass spectrometry analysis

Eluted protein samples were reduced with SmM DTT
(30 min at 70°C) and alkylated with 15 mM iodoacetamide
(30 min at room temperature in the dark). Samples were
digested with 1.2 pug trypsin overnight at room tempera-
ture and peptides desalted using C18 tips (Omix) accord-
ing to the manufacturer’s protocol. Acetonitrile was
evaporated and the samples were brought up to a final
volume of 15pul with 1% formic acid. Tryptic peptides
were analyzed by the UC-Denver proteomics core on an
Agilent 1200 nanoLC system directly infused for MS/MS
analysis on a LTQ-FT Ultra hybrid mass spectrometer
(ThermoFisher). Peptides were separated using a 90 min
gradient of increasing acetonitrile (8-35%) with 0.1%
formic acid as a pairing agent. Electrospray ionization
was performed at 200V on the column eluent. Parent
scans (MS) were acquired in the ICR cell at 50000 reso-
lution. Collision induced dissociation was performed in
the ion trap and product ions recorded (MS/MS). lon
peak lists were created using PAVA (UCSF) and
searched against the human Swiss Prot database using
the Mascot server (Version 2.2, Matrix Science). Mass tol-
erances of +10ppm were used for MS peaks, and
+0.8Da for MS/MS fragment ions. The modifications
of cysteine carbamidomethylation, methionine oxidation,
N-terminal acetylation of protein, N-terminal pyro-
glutamic acid formation and phosphorylation of serine,
threonine, and tyrosine residues were allowed for.
Protein identifications were considered significant if
two or more peptides matched with an expect value of
below 0.01.

RESULTS

Cap-independent translation initiation from the HIV-1
IRES in RRL requires cytoplasmic cellular factors

The HIV-1 IRES was identified by cloning the 5 leader
region of the laboratory adapted HIV-1 infectious recom-
binant proviral clone pNL4.3 or the CXCR4 (X4 )-tropic
HIV-1 primary isolate HIV-LAI in the intercistronic
region of a dual luciferase (dl) reporter construct (10,13).
In the context of this bicistronic RNA the HIV-1 IRES
was shown to be cell-cycle regulated and preferentially
active during G2/M (10), and to be functional during
osmotic stress (13,16). In addition, the HIV-1 IRES is
functional in HeLa cell translational extracts (10), in
transfected Hela or Jurkat T cells (10,13,16,25), and
in X. laevis oocytes (25); however, it is poorly active in
RRL (8,10).

Poor activity of the HIV-1 IRES in RRL suggests that,
similar to poliovirus (PV) and human rhinovirus (hRV)

IRES elements (38-40), additional factors entirely absent
or present only at low concentration in the RRL may be
required for HIV-1 IRES activity. To assess this possibil-
ity, RRL programmed with the dl HIV-1 IRES RNA
(depicted in Figure 1A) was supplemented with 0.5 or
lpg of cytoplasmic HelLa extracts generated from
non-synchronized, mimosine-G1 or nocodazole-G2/M
arrested cells. Cell arrest in G1 or G2/M was confirmed
by flow cytometry (10). Translation reactions were con-
ducted in the presence of **S-methionine and resolved and
visualized as indicated in ‘Materials and Methods’ section.
One representative experiment is shown in Figure 1B. It
should be noted that optimal translation of the upstream
reporter occurred at a narrow range of cell extract con-
centrations, since translation of the first cistron was con-
sistently abolished with high concentrations of cell extract
(Figure 1B compare lanes 2, 4, 6 with lanes 3, 5, 7). In
contrast, the addition of 0.5 pg of cell extracts to the RRL
had no significant impact on RLuc synthesis, thus no
effect on the translation of the upstream message of the
bicistronic reporter (Figrue 1B lanes 2, 4 and 6). RNA did
not significantly vary among the different assays suggest-
ing that extracts did not affect RNA integrity (data not
shown). Based on this observation, in this particular ex-
periment, data generated with 1 pg of HeLa cell extracts
were not taken into account in further analysis. In agree-
ment with previous reports (8,10), HIV-1 IRES activity
was negligible in non-supplemented or Gl-supplemented
RRL (Figure 1B, lanes 1 and 2). When RRL was supple-
mented with 0.5 pg of cytoplasmic extracts generated from
non-synchronized (NS; Figure 1B, lane 6) or G2/M
(Figure 1B, lane 4) cells, HIV-1 IRES activity increased
markedly as evidenced by the appearance of FLuc protein.
IRES activity was always greatest when RRL was supple-
mented with G2/M extract (Figure 1B). These observa-
tions echoed previous studies conducted in HeLa cells or
HeLa cell based translational extracts (10).

To further extend these observations, we next studied
the kinetics of protein synthesis using luciferase activity as
the experimental readout. The RLuc/FLuc bicistronic
RNA dIAEMCYV, that harbors a defective encephalo-
myocarditis virus (AEMCV) IRES known to inhibit
ribosome reinitiation and read-through, inserted
upstream of the FLuc reporter, was used as a negative
control (10,31,41). In Figure 1C, RLuc and FLuc activities
are independently displayed. The maximal RLuc and
FLuc activity obtained in non-supplemented translation
reactions in RRL was arbitrarily set to 100%. In agree-
ment with data presented in Figure 1B, the activity of the
HIV-1 IRES increases when RRL is supplemented with
G2/M extracts (Figure 1C). As before (Figure 1B), the
addition of G2/M extracts to the RRL had little or no
impact on translation initiation from the first cistron
(see RLuc, Figure 1C). Together, the observed enhance-
ment by G2/M cell extracts which only impacts translation
from the second cistron implies that one or more cellular
factor(s) present in G2/M HeLa extracts may act in trans
to specifically overcome the translational inefficiency of
the HIV-1 IRES in RRL.

Next, we evaluated the effect of G2/M extracts on
HIV-1 IRES activity in X. laevis oocytes, a system
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Figure 1. HeLa cell cytoplasmic factors are required for HIV-1 IRES activity. (A) Schematic representation of the dl HIV-1 IRES and dIAEMCV
RNAs used in this study. (B) RRL alone or supplemented with cytoplasmic extracts (0.5 or 1 pg of total protein) generated from NS HeLa cells or
cells arrested in G1 or in G2/M were programmed with the dl HIV-1 IRES RNA. [>*S]-methionine-labeled proteins were resolved by SDS-PAGE
and visualized as indicated in ‘Materials and Methods’ section. (C) Kinetics of HIV-1 IRES translation in the presence of G2/M HeLa extracts. The
capped dAIAEMCYV (open shapes) or dl HIV-1 IRES (filled shapes) RNAs (8 ng/ul) were used to program RRL. In vitro translation reactions were
supplemented with 160 ng/ul of G2/M cytoplasmic extracts (A). Renilla luciferase (RLuc) and Firefly luciferase (FLuc) activities were measured at
the indicated times. The RLuc and FLuc activities of the dl HIV-1 IRES measured at 105 min of in vitro translation in non-suplemented RRL (filled
square) were arbitrary set to 100%. Relative RLuc activity (left panel) and relative FLuc activity (right panel) are shown. Values are the
means = SEM (error bars) of five independent experiments. (D) Capped and polyadenylated RNA corresponding to the dIAEMCV or dl HIV-1
IRES vectors (6.25ng) were microinjected into X. laevis oocytes with (+) or without (—) cytoplasmic extracts generated from G2/M arrested HeLa
cells (200ng) as described in ‘Materials and Methods’ section. Oocytes were harvested 24 h after the microinjection and processed and RLuc and
FLuc activities were determined RLU. The RLuc (left panel) and FLuc (right panel) activities for each RNA are shown. Each value is the
mean + SEM from at least three oocytes obtained from different animals.
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known to support its function (25). To this end the control
dIAEMCV or the dl HIV-1 IRES RNA were micro-
injected into X. Laevis oocytes either alone or with
G2/M extract as previously described by others (42).
Once more, no effect was evident on RLuc translation
as indicated by a constant luciferase activity (Figure
1D). In contrast FLuc activity increased >50% in the
presence of cell extracts (Figure 1D). Just as in RRL,
factors present in G2/M cell extracts seem to be capable
of specifically stimulating HIV-1 IRES activity.

Cytoplasmic cellular factors alter the accessibility of
chemical reagents to single-stranded regions present
within the HIV-1 5’ leader

We next sought to establish whether cytoplasmic cell extracts
altered the chemical modification profile of the HIV-1 ¥
leader. Before addressing this specific question, the second-
ary structure of the HIV-1 5 leader recovered from the dl
HIV IRES construct (nucleotides 1-336 from clone pNL4.3
followed by 58 nt of fluc gene) was probed using DiMethyl
sulfate (DMS), N-Cyclohexyl-N-[N-Methylmorpholino)-
ethyl]-Carbodiimide-4-Toluolsulfonate (CMCT) and
RNAse V1 as described (12,32). CMCT and DMS were
used to detect accessible RNA functional groups consist-
ent with single-stranded regions, while RNAse VI
revealed stacked or paired nucleotides. Modifications
were mapped by reverse transcription using a **P-labeled
primer. For each run the reverse transcription pattern
of the modified RNA was compared to the profile obtained
with a non-modified RNA. Modifications were classified
into two categories according to the relative intensity of
the induced stop by comparison with the control.
Modifications were classified as ‘weak’ when inducing a
2- to 3-fold increase in intensity of the RT stop, and as
‘highly reactive’ for higher intensities. A typical example
of our results using DMS and covering the full HIV-1 ¥
leader is shown (Figure 2A). The strong hits for DMS and
CMCT were considered in the initial secondary-structure
modeling using the Mfold algorithm as previously desc-
ribed (12,32). The structure obtained was then fitted onto
a model structure of the HIV-1 leader (43), taking into
account the V1 data and the weak DMS and CMCT
hits. To further validate our probing data and to gain in-
formation on the intrinsic nucleotide flexibilities that char-
acterize the secondary structure we also performed
a detailed RNA Selective 2'Hydroxyl Acylation analysis
by Primer Extension (SHAPE) analysis using the same
RNA and 1-methyl-7-nitroisatoic anhydride (1M7) as a
modifying agent (33,34). 1M7 reacts with flexible ribose
groups of nucleotides that are not in a strong Watson—
Crick pair or any other rigid tertiary interaction (33). In
these experiments, modifications were mapped by reverse
transcription using a fluorescent primer and the raw
data were processed using ‘Shapefinder’ (35). The second-
ary structure of the HIV-1 5 leader was modeled using
‘RNA structure 5.03’ and the pseudo-energy con-
straints derived from the probing analysis (44). The integ-
rated data, DMS/CMCT/RNAse V1 probing and RNA
SHAPE analysis, were fitted onto a model structure
of the HIV-1 leader (Figure 2B). Both methods,

DMS/CMCT/RNAse V1 probing and RNA SHAPE
analysis (Figure 3A), showed high consistency and yield
essentially the same structure model. Most of the discre-
pancies observed when comparing both models consist in
nucleotides reactive with DMS or CMCT but unreactive
to IM7 (for example Ags—Ag7 and Ggy). As DMS and
CMCT probe the availability of ‘Watson—Crick’ pos-
ition and 1M7 the flexibility of the ribose, such results
could indicate bases involved in non-canonical base
pairs. This is particularly interesting in the case of Age—
A¢7 and Gog, which are located within an asymmetrical
bulge (Figure 2B). The observed probing signatures and
the established model are similar to those obtained by
others, in vitro or ex vivo (43,45-47). As notable differ-
ences, the regions involved in the LDI with the gag open
reading frame (ORF) (U5 Gos—C;4 and part of the
polyA loop G79—Cgs) were accessible to single-strand
probes. This observation is expected because the construct
used in the study lacks the gag coding sequence.
Interestingly, 3 nt within the palindrome in the DIS loop
are reactive to 1M7, suggesting that the kissing-loop inter-
action that initiates non-covalent dimerization of the gen-
omic RNA (48), was not formed under the experimental
conditions used for probing.

Once we had a model secondary structure for the HIV-1
5" leader we probed the RNA using IM?7 in the presence of
cytoplasmic cell extract (see ‘Materials and Methods’
section) and compared the data with those generated in
absence of extracts (Figures 2B and 3A). A position was
considered as protected (or exposed) when the reactivity
value was at least 2-fold lower (or higher) than in the
mock control. We tested RNA with or without cell
extracts generated from non-synchronized cells (NS) (red
bars in Figure 3A), cells arrested in G1 (green bars in
Figure 3A), or cells arrested in G2/M (yellow bars in
Figure 3A). The modification of the pattern upon
addition of NS cell extracts or extracts generated from
cells blocked in Gl or G2/M is summarized on
Figure 3B. Interestingly, distinct 1M7 accessibility RNA
patterns are observed when NS, G1 or G2/M extract is
used (Figure 3A and B). However, significant protections
are seen upon addition of cell extracts independently of
the stage where the cells were blocked. Specifically, we
observe a strong protection of the TAR apical loop
(Cr9-A3y), in the PBS (Gig7-Aj79) and in three occur-
rences in the DIS element (Gago—Az4n, Asss—Asse and
A»71—G»73). As depicted in Figure 3, some positions are
protected in the presence of G2/M extracts while few
others are highly reactive. These reactivity modifications
map to four specific regions: the poly(A) loop (increased
reactivity of Cgo—Uyg; and Ugs—Agg; protection of Asg—Aqg
and Cgs5—Ay7), the PBS structure (protection of Gy3p—A 133,
G199 and G153-Gaye), the SD loop (increased reactivity of
Gago and the Psi stem—loop immediately upstream from
the initiation codon (protection of Gs3;3—Gzyg andAsz,y—
Ajz»7). It is interesting to highlight that the PBS structure,
the SD loop, and the Psi stem—loop are regions previously
identified as crucial for HIV-1 IRES activity (10). As
reported in Figure 3, Gl-specific alterations of the modi-
fication pattern exclusively consist of positions that
become highly reactive. Most interestingly, sequences
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Figure 2. Secondary structure model of the HIV-1 leader. The HIV-1 5 leader recovered from the dl HIV IRES construct (nucleotide 1-336 from
clone pNL4.3 followed by 58nts of fLuc gene) was probed using DiMethyl Sulfate (DMS), N-Cyclohexyl-N- [N-Methylmorpholino)-ethyl]-
Carbodiimide-4-Toluolsulfonate (CMCT) and RNAse VI as previously described (12,32) or using l-methyl-7-nitroisatoic anhydride (IM7) as a
modifying agent. (A) Typical examples of probing DMS probing. The HIV-1 5 leader was probed using (+) DMS. Reverse transcription (RT)
products were separated on a 8% gel as indicated in the ‘Materials and Methods’ section. Sequencing lanes were also included. Note that DMS
induces a premature RT stop 1 nt before the hit. Therefore the DMS induced stops migrate faster than the corresponding sequence product (12,32).
The RT pattern of the modified RNA was compared to the profile obtained with an unmodified RNA. Some hits are indicated in the figure. The
asterisks on the gel denote the nucleotide position. (B) Results were fitted in a model of the HIV-1 5 leader (43), the respective reactivity of the
different probes is indicated as motioned in the box. The main HIV-1 structural elements present in the 5 leader the TAR and poly(A) loops, PBS,

DIS, SD and Psi are indicated (43).
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Figure 3. HeLa cell extracts alter the accessibility of 1M7 to single-stranded regions present within the HIV-1 5 leader. The HIV-1 5 leader RNA
was probed using 1M7 in the presence or absence of HeLa cell cytoplasmic extracts generated from NS, or cells arrested in the G1, or in the G2/M
phase of the cell cycle. (A) Histogram representing the ‘SHAPE’ reactivity for each nucleotides of the 5-UTR in absence of extracts [(-) blue bars] in
presence of NS (red bars), G1 arrested [(G1) green bars] or G2/M arrested [(G2M) yellow bars] HeLa extracts. Nucleotides which reactivity is
undetermined in at least one of the tested conditions are boxed in grey. Local RNA structures are indicated as hallmark. (B) Data presented in A, are
incorporated in the model depicted in Figure 2, the nucleotides protected by NS, Gl and G2/M extracts are boxed in purple, those specifically
protected by G2/M extracts are boxed in blue, while those which reactivity is enhanced in presence of G2/M cytoplasmic extracts are boxed in red,
nucleotides which reactivity is enhanced in presence of G1 extracts are boxed in green. The reactivity of each nucleotide in presence of G2/M extract
is encoded by a specific colour, the reactivity are thus also valid for the area protected by all extracts (boxed in purple), but not for the nucleotides

which reactivity is enhanced in presence of Gl extracts.



modeled as double stranded in all conditions (C;o—C; in
the pOly(A) stemfloop, C125*G129 and U174*U176 in the
PBS structure) clearly react as unpaired nucleotides
upon G1 extract addition.

In summary, we find that the addition of HeLa cell
extracts alters the accessibility of 1M7 to discrete regions
of the HIV-1 5 leader. Most interestingly, we observed a
G2/M-specific pattern most probably confirming that one
or more proteins delivered with those cell extracts inter-
acts with the HIV-1 5 leader. It should be stated, however,
that at this point we cannot tell if our observation results
from the footprint of proteins, or from a structural re-
arrangement, or from both.

Cap-independent translation initiation driven from HIV-1
IRES is resistant to point mutations

The HIV-1 ¥ leader is capable of forming a complex sec-
ondary structure with multiple junctions, internal loops
and stem—loop elements that is involved in many steps
of the viral life cycle including translation (10,43). The
most probable secondary structure model of the HIV-1
5" leader, known as the Branched Multiple Hairpin
(BMH, see Figure 2), comprises the PBS, dimer-initiation
site (DIS), splice donor (SD) and hairpin loops, all struc-
tural elements involved in genomic RNA dimerization,
reverse transcription, splicing and packaging (46,47,49).
An alternative secondary structure model of the 5 leader
known as the LDI would engender alternative base
pairing that disrupts the DIS hairpin loop (49-51).
When comparing the LDI and the BMH models the
region embedding the Gag start codon is contained in dif-
ferent secondary structure elements, but the initiation
codon itself is mostly occluded in both structures
(49-51). Abbink et al. (2005) reported a series of muta-
tions designed to alter the LDI-BMH equilibrium (29).
However, one important caveat of the study was that
the specific secondary structure of the described mutants
was not probed and thus the predicted changes to the
structure of the HIV-1 leader remain largely speculative
(29). Nonetheless, we decided to evaluate the effect of
the mutations described by Abbink et al. (2005) on trans-
lation initiation driven by the HIV-1 IRES. The rational
for this experiment was based on the observation that
the introduction of point mutations within the sequence
of a viral IRES can have a profound impact on its
function (4,52-55). Therefore, the mutations reported by
Abbink er al. (2005) were introduced into the 5 leader
of the HIV-1 clone pNL4.3 and examined in the context
of bicistronic mRNAs (similar to those depicted in
Figure 1A). Based on what has been previously reported
(29), mutants leaders (Mut L) Mut L7, Mut L8 and Mut
LI1 are expected to favor the BMH conformation, Mut
L1, Mut L2, Mut L4, Mut L5, Mut L6 and Mut L10 favor
the LDI conformer while with the wild-type and mutants
Mut L3 and Mut L9 the two conformers are expected to
be in equilibrium.

Vectors were transfected into HeLa cells and the RLuc
and FLuc activities were monitored as described in
previous studies (10,16,25). Vector dl HIV-1 IRES, har-
boring the leader (nucleotide 1-336) of the HIV-1
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infectious recombinant proviral clone pNL4.3 (10), was
used as a positive control and sets the 100% of activity,
while construct dAIAEMCV, used as a negative control
(10,31,41), showed only 0.8% of the activity of the
HIV-1 IRES. As in previous studies (10,16,25,31), the
FLuc/RLuc ratio was used as an index of IRES ac-
tivity and the activity of the mutants are expressed as
relative translation (%) with respect to the wild-type con-
struct. As shown in Figure 4, the most affected mutant
was Mut L6 which exhibits an increase (1.3-fold) in
IRES activity with respect to the control HIV-1 IRES
(pNL4.3). However, none of the relative translation
efficiencies were significantly different from the control
IRES, as determined by a one-way ANOVA (P> 0.05).
Therefore, echoing previous reports (13,29), no correl-
ation between the IRES activity and the putative BMH/
LDI switch of conformation is evidenced. To this respect,
it is important to note that the existence of the LDI
conformation is not supported in vivo (46,47). Somewhat
surprisingly, data do show that the activity of the
HIV-1 IRES is resistant to mutations spread all along
the 5 leader sequence, a feature that directly contrast
what has been described for most viral IRES elements
(4,52-55).

Specific cellular factors from G2/M extracts bind the
HIV-1 5 leader

Results presented in Figures 3 and 4 suggest that IRES-
mediated translation initiation is most probably
modulated by a distinct group of proteins that specifically
interact with the HIV-1 5 leader during the G2/M phase
of the cell cycle. If indeed the case, different sets of
proteins would be expected to bind the HIV-1 5 leader
in different stages of the cell cycle. To evaluate this possi-
bility we used a proteomic approach to identify the pro-
teins present in HeLa cell extracts generated from NS or
G2/M arrested cells that interact with the HIV-1 5 leader.
In these assays, an uncapped streptomycin binding RNA
aptamer (strep-aptamer)-tagged HIV-1 5 leader was used
as bait (36), while the reverse complement HIV-1 5 leader
was used as a control RNA to discard non-specific RNA-
binding proteins from the subsequent analysis. Pull-down
experiments were performed using extracts from either
NS or G2/M arrested cells. Mass Spectrometry analysis,
conducted as indicated in the ‘Materials and Methods’
section, allowed the identification of 54 proteins that
pulled-down with the HIV-1 5 leader when cytoplasmic
extracts from non-synchronized cells were used as the
protein source (data not shown). Interestingly, only 18
proteins were identified as pulling-down with the viral 5
leader RNA when G2/M extracts were used (Table 2).
From these, only two proteins where common between
NS and G2/M extracts (Table 2) indicating that a
distinct set of proteins interact with the leader during
G2/M. This result correlates with biochemical assays
demonstrating that the accessibility of 1M7 to discrete
regions of the HIV-1 5 leader changes when extracts
from NS or G2/M cells are used.

Taken together, the results of the pull-down experi-
ments suggest that the assembly of protein factors on
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Mutations Activity (%) + SEM

dl AEMCV 0,82+0.5
dl HIV-1 IRES 100 * 26
A293C,U295C, Deletion298G  Mut L1 94 + 26
A302U,A303C,A304C,A305U MutL2 142 + 41
A302G,A303G,A304G,A305G MutL3 143 +39
G310U,A311U MutL4 114+ 34

C18U, U213A,C238U,G310A,A311G MutlL5 70+ 25
A 209G, G283 A, Deletion 286 A Mut L6 228 + 52
A149G,G240C,G241C,A242C MutlL7 113 +37
C160G,G278U,G279C,G280C MutL8 138 + 52
A149G,G240C,G241C,A242C,G 1419 133+ 45

278 U,G279C,G280C

G310A,A311G MutL10 145 + 52
G278U,G279C,G280C MutL11 135 + 42

40 80 120 160 200 240 280
% Translational Activity

Figure 4. Translational activity of the mutant HIV-1 IRES elements. HIV-1 mutant leaders generated as described in ‘Materials and Methods’
section and arbitrarily named Mut L1-L11 were cloned into the dual luciferase bicistronic vector (dl-vector). The dl HIV-1 mutant vectors (Mut L1-
L11) were transfected into HeLa cells and IRES-mediated translational activity was evaluated in comparison with the dl HIV-1 IRES vector and the
dIAEMCYV control (10,41). The nucleotide changes with respect to the pNL4.3 (AF 324493) leader included in the dl HIV-1 IRES vector, are shown
(left). RLuc and FLuc activities were measured and the [(FLuc/RLuc)] ratio was used as an index of IRES activity. The [(FLuc/RLuc)] ratio of the dl
HIV-1 IRES vector (10), was arbitrarily set to 100%. Values are the means +=SEM (error bars) of three independent experiments.

Table 2. Cellular factors from G2/M extracts identified to that were pulldown bind the HIV-1 5 leader

Accession Protein Name Score Mass  Matches Coverage emPAI References
No. (Da) (%)

P53999 Activated RNA polymerase II transcriptional coactivator p15* 157 14386 5 26 1.05 (62)
Q07021 Complement component 1 Q subcomponent-binding protein® 174 31742 4 5 0.25 (63)
P11387 DNA topoisomerase 1% 391 91125 25 17.3 0.43 (64-69)
P14866 Heterogeneous nuclear ribonucleoprotein L (hnRNP L) 127 60719 6 12.9 0.06

P07196 Neurofilament triplet L protein 122 61536 4 4.1 0.12

P19338 Nucleolin (Protein C23)* 105 76625 4 34 0.1 (70,71)
P06454 Prothymosin o 113 12196 2 12.6 0.32 (72)
P37108 Signal recognition particle 14kDa protein (SRP14)° 146 14675 4 28.7 0.61

P55072 Transitional endoplasmic reticulum ATPase (TER ATPase) 444 89950 11 8.4 0.33

P09234 Ul small nuclear ribonucleoprotein C (Ul snRNP protein C) 191 17552 4 18.9 0.49 (73)
P62861 40 S ribosomal protein S30 124 6644 13 20.3 6.08

P16989 DNA-binding protein A (Cold shock domain-containing protein A) 225 40066 10 14.8 0.31

P62873 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit 1 85 38151 3 12.1 0.1

QI9BUJ2  Heterogeneous nuclear ribonucleoprotein U 79 91164 33 25.5 0.89

P17096 High mobility group protein HMG-I/HMG-Y (HMG-I(Y))* 232 11669 6 15 1.41 (74,75)
Q04837 Single-stranded DNA binding protein, mitochondrial precursor (Mt-SSB)* 71 17249 2 20.3 0.23 (76)
P07951 Tropomyosin B-chain (B-tropomyosin)® 61 32945 5 10.6 0.24 77)
Q13748 Tubulin o-2 chain (a-tubulin 2)*° 143 50612 6 16.9 0.24 (78-82)

Score = protein identification score, reflects amount of peptide matches and percent coverage obtained for the protein; Mass = protein mass;
Matches = number of peptides corresponding to the protein; percent coverage = sequence coverage of identified peptides over the protein;
emPAI = exponentially modified protein abundance index.

“Proteins known to play a role in the HIV-1 replication.

®Proteins also found in non-synchronized cytoplasmic cell extracts.

the HIV-1 leader varies when non-synchronized or G2/M Opverall, the biological significance of the pull-down
arrested extracts are used. Combined with the results from analysis is still to be determined, work is being performed
Figures 1 and 4, these data support the notion that to determine the role of these and other RNA binding
G2/M-specific proteins bind the HIV-1 leader to support proteins in the control of HIV-1 IRES-mediated transla-
IRES-mediated translation initiation. tion initiation.



DISCUSSION

In this study, we report that in common with most cellular
IRESes and some viral IRESes translation initiation from
the HIV-1 IRES in RRL requires the addition of exogen-
ous proteins (Figure 1). Echoing previous reports suggest-
ing that activity of the HIV-1 IRES is enhanced in the
G2/M phase of the cell cycle (10), G2/M extracts were
more effective at stimulation of IRES-mediated transla-
tion initiation than Gl or extracts generated from no-
synchronous cells (NS in Figure 1). This could be due to
the presence of specific G2/M factors, or simply reflect the
reduced competition for the translation machinery due to
the impairment of cap-dependent translation during the
G2/M phase of the cell cycle. The latter possibility was
disregarded as the addition of G2/M extracts did not sig-
nificantly impact translation initiation from the first
cistron in two independent translation systems, the RRL
and the X. laevis oocytes (Figure 1). In an attempt to
resolve this issue and to further characterize the molecular
events involved in this process, we show that the addition
of cell extracts induces an alteration of the IM7 modifica-
tion profile of the HIV-1 leader (Figure 3). The sequences
directly upstream the initiation codon appear to be pro-
tected with the extracts generated from G2/M arrested
cells, possibly reflecting bound G2/M-specific proteins or
perhaps even the presence of the initiation complex on the
start codon. In good agreement with the functional data,
we observe a specific G2/M footprint on the sequences
spanning from the poly(A) stem—loop to the SD stem—
loop. It should be noted that Brasey et al. (10) previously
reported that the poly(A) loop (nucleotide 58-104) is not
part of the minimal IRES (nucleotide 104-336), but the
PBS structure, the SD loop and the Psi stem—loop are
regions previously identified as crucial for HIV-1 IRES
activity (10). Our data do not formally allow us to
conclude if the protection of specific position within the
HIV-1 leader is due to protein or ribosome binding or if
we observe some local RNA structural rearrangement.
However, beside the case of the poly(A) loop, protections
in loop or bulges suggest the presence of proteins on those
nucleotides rather than a structural modification. In
contrast, the modification pattern obtained with G1 cell
extracts suggests a significant alteration of the global
structure of the HIV-1 5’ leader. This observation raises
the possibility that IRES activity is inhibited in G1 due to
a disruption of the active structure. In conclusion, our
observations suggest that the G2/M cellular extracts
contain proteins that stimulate HIV-1 translation, and
that one or several G2/M-specific ITAFs bind within
regions known to be critical for the IRES function.

To gain information on the set of proteins from G2/M
cell extracts that interact with the HIV-1 5’ leader a prote-
omic approach was used. Surprisingly, a discrete set of
proteins from G2/M arrested extracts pull-down with
the HIV-1 leader (Table 2). Interestingly, many of the
proteins identified have been previously implicated in
HIV-1 replication (Table 2), although their direct role in
HIV-1 IRES-mediated translation initiation 1is still
unknown. Together, our data (Figures 1, 3 and 4;
Table 2) warrants the notion that a protein complex that

Nucleic Acids Research, 2011, Vol. 39, No. 14 6197

forms on the viral RNA somehow imprints the informa-
tion required to determine IRES activity.

An additional and unexpected finding reported in this
study is that the HIV-1 IRES activity is resistant to a
number of mutations designed to disrupt RNA structure
(29). Mutations introduced in the TAR stem-loop or
within the region spanning between the major 5 splice
site and the initiation codon (ML1-ML6) had no signifi-
cant effect on translation [Figure 4 and references (13,29)].
This confirms the results of a precedent study that shows
the TAR element, and the nucleotides beyond the splice
site (U»sg;) could be deleted without significantly affecting
the IRES-mediated translational activity (10). More sur-
prisingly, mutations within the PBS or the DIS stem—loop
which are known to be essential for HIV-1 IRES do not
significantly alter the translation efficiency in our
bicistronic assay (Figure 4). Even though unexpected,
these results are consistent with a recently published
report that conducted a similar set of experiments in the
context of a bicistronic mRNA (13). Together, these ob-
servations are in direct contrast to what is observed with
other viral IRESes such as those present within picorna-
virus, HCV and CrPV RNAs, where simple point muta-
tions that alter their secondary/tertiary RNA structure can
totally abolish IRES activity (4,52-55). However, it
remains possible that point mutations to as-of-yet undis-
covered critical elements in the HIV-1 IRES may have a
stronger effect than those explored here.

Interestingly, point mutations or deletions within many
cellular IRESes have little impact on translation initiation,
suggesting that the structure—function relationship in
cellular IRESes is not as rigid as that observed for viral
IRESes (4,28,56). In this respect, it is tempting to specu-
late that the HIV-1 IRES is an atypical viral IRES as it
seems to shares certain properties normally ascribed to
cellular IRESes (4,28,57,58), but that are absent from
their viral counterparts. Moreover, a striking difference
between the HIV-1 full-length mRNA and most viral
mRNAs that harbor an IRES, is that the former possesses
both a 5 cap and the poly(A) tail. Incorporation of a cap
structure onto a picornavirus mRNA inhibits IRES-
mediated translation, suggesting that in the context of
viral mRNAs the two mechanisms are mutually exclusive
(59). Yet, as cellular mRNAs that harbor IRES elements,
the HIV-1 mRNA is also capped. However, at this point,
we cannot tell if the two mechanisms are used simultan-
eously or at two different stages of the virus life cycle (8).
Additionally, and in sharp contrast to most (+) RNA
viruses that harbor IRES elements that are synthesized
by a viral RNA-dependent RNA polymerase in the cell
cytoplasm where it is translated (27), transcription of the
HIV-1 mRNA takes place in the host cell nucleus. As
nascent cellular mRNAs, the HIV-1 mRNA would be
expected to first encounter RNA binding proteins in the
nucleus structuring a distinct ribonucleoprotein (RNP)
complex with nuclear RNA binding factors (60,61).
These RNA binding proteins of nuclear origin might be
part of an ‘IRES RNP’-specific signal that is further
modified by interaction with cytoplasmic proteins prior
to its associating with the translation apparatus; as
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would be the case of cellular mRNA that harbor IRES
elements (4,27,28).

In summary, in this study, we describe that G2/M
extracts harbor factors capable of enhancing HIV-1
IRES activity. Furthermore, we describe that a discrete
set of proteins present within G2/M extracts bind the
HIV-1 5 leader. Even though the role on IRES function
of the identified proteins is presently unknown, our data
are consistent with the notion that cellular proteins are
directly involved in the regulation of HIV-1 IRES
activity. In fact, current evidence indicate that cellular
proteins cannot only stimulate HIV-1 IRES-mediated
translation initiation [Figure 1, Table 2 and reference
(16)], but they can also inhibit it (25). Thus, we propose
a mechanism by which G2/M-specific proteins bind to
local structures within the 5 leader, and subsequently
recruit, or stimulate the internal recruitment of the initi-
ation complex. Together, findings presented herein give
new insights into the RNA structure/function relationship
and provide a valuable framework for further dissection
of the molecular mechanism involved in HIV-1 IRES
activity.
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