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ABSTRACT

Taxonomy-independent analysis plays an essential
role in microbial community analysis. Hierarchical
clustering is one of the most widely employed
approaches to finding operational taxonomic units,
the basis for many downstream analyses. Most
existing algorithms have quadratic space and com-
putational complexities, and thus can be used only
for small or medium-scale problems. We propose a
new online learning-based algorithm that simultan-
eously addresses the space and computational
issues of prior work. The basic idea is to partition
a sequence space into a set of subspaces using a
partition tree constructed using a pseudometric,
then recursively refine a clustering structure in
these subspaces. The technique relies on new
methods for fast closest-pair searching and efficient
dynamic insertion and deletion of tree nodes. To
avoid exhaustive computation of pairwise distances
between clusters, we represent each cluster of se-
quences as a probabilistic sequence, and define a
set of operations to align these probabilistic se-
quences and compute genetic distances between
them. We present analyses of space and computa-
tional complexity, and demonstrate the
effectiveness of our new algorithm using a human
gut microbiota data set with over one million se-
quences. The new algorithm exhibits a quasilinear
time and space complexity comparable to greedy
heuristic clustering algorithms, while achieving
a similar accuracy to the standard hierarchical clus-
tering algorithm.

INTRODUCTION

Microbes play an essential role in processes as diverse
as human health and biogeochemical activities critical
to life in all environments on earth. The descriptions
of complex microbial communities, however, remain
poorly characterized. Currently available pyrosequencing
technologies easily and inexpensively determine millions
of signature sequences in a matter of hours. However,
analyzing such massive nucleotide sequence collections
can overwhelm existing computational resources and
analytic methods, and consequently new computational
algorithms are urgently needed (1).

Providing a detailed description of microbial popu-
lations, including high, medium and low abundance com-
ponents, is typically the first step in microbial community
analysis (2,3). PCR amplification of the 16S rRNA gene,
followed by DNA sequencing, is now a standard approach
to studying microbial community dynamics at high
resolution (4-8). Existing algorithms for microbial classi-
fication using 16S rRNA sequences can be generally
categorized into taxonomy-dependent or -independent
analyses (9). In the former methods, query sequences are
first compared against a database and then assigned to
the organism of the best-matched reference sequences
[e.g. BLAST (10)]. Since most microbes have not been
formally described yet, these methods are inherently
limited by the completeness of reference databases (9).
In contrast, taxonomy-independent analysis compares
query sequences against each other to form a distance
matrix followed by clustering analysis to group sequences
into operational taxonomic units (OTUs) at a specified
level of sequence similarity (e.g. sequences grouped at
97% identity are often used as proxies for bacterial
species). Various ecological metrics can then be estimated
from the clustered sequences to characterize a microbial
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community. This analysis does not rely on any reference
database, and can thus enumerate novel pathogenic and
uncultured microbes as well as known organisms.
In addition to microbial diversity estimation, there is
currently increased interest in applying taxonomy-
independent analysis to analyze millions of sequences for
comparative microbial community analysis (11,12).

The key step in taxonomy-independent analysis is to
group sequences into OTUs based on pairwise sequence
differences, where hierarchical clustering is one of the
most widely employed approaches (13,14). Hierarchical
clustering is a classic unsupervised learning technique
(15), and has been used in numerous biomedical appli-
cations [e.g. (12,16,17)]. The main drawback of hierarch-
ical clustering is its high computational and space
complexities. In computer science, this computational
complexity is represented in so-called ‘Big-O’ notation,
where the number given indicates how the time or space
scales for large problem sizes: for example, an O(N) algo-
rithm takes time proportional to the size of the input, and
an O(N?) algorithm takes time proportional to the square
of the size of the input (e.g. computing all pairwise dis-
tances between sequences takes time proportional to the
square of the number of sequences, because each sequence
must be compared to each other sequence). Given N
objects, a brute-force algorithm takes O(N? log N) time,
and improved methods take O(N?) time (18). The memory
needed for conventional methods also grows quadratically
with respect to the data size. In the last decade, researchers
developed several approximate hierarchical clustering
algorithms with sub-quadratic time complexity (19,20).
The basic idea is to employ a space-partitioning technique
[e.g. dynamic closest-pair tree (21)] to organize objects
hierarchically into cells so that the nearest neighbor of
each object can be found within its adjacent cells by
using a divide-and-conquer strategy. These algorithms
can perform the analysis in O(N log N) time and are
good approximations. However, they can only handle
low-dimensional data in a numerical space where
hyper-planes can be defined to partition the space as
well as the samples. Mathematically, in order to partition
a space with a hyper-plane, an inner-product operator has
to be defined so that a direction in the space can be
specified to indicate the inner and outer sides of the
plane. For nucleotide sequence data, there does not exist
such an inner-product operator, and thus no hyper-planes
can be defined to efficiently partition the data. Moreover,
unlike numeric-valued vectors, the distances between pairs
of sequences can only be computed through sequence
alignment, because sequences vary in length and can
have deletions and insertions. Hence, a sequence can be
considered as a data point in a nucleotide space of un-
defined dimensions, which poses additional mathematical
challenges.

Several algorithms have been developed in the past
decade for taxonomy-independent analysis. DOTUR is
probably the first published hierarchical clustering algo-
rithm for pyrosequencing data analysis and widely used by
the microbiology community (14). It requires users to
provide a distance matrix and load it into the main
memory. Due to its quadratic complexity, it can process
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only several ten thousand sequences (13). We recently de-
veloped a new algorithm, referred to as ESPRIT, that
enables researchers to handle up to one million sequences
by wusing a computer cluster (12,13). An online
learning-based hierarchical clustering algorithm called
hcluster was developed within the ESPRIT framework
that addressed the memory issue associated with cluster
merging. Although ESPRIT uses k-mer statistics to
remove a large amount of unnecessary sequence com-
parisons, it is still an O(N?) algorithm. Hcluster is
incorporated in the well-known mothur pipeline (22)
that replaced DOTUR. Unlike ESPRIT, mothur com-
putes pairwise distances by aligning input sequences
against a pre-aligned reference database. Since a reference
database can be maintained off-line, the computational
complexity of the sequence-alignment step grows only
linearly with respect to the number of input sequences.
However, the algorithm suffers the same problem as
those used for taxonomy-dependent analysis. Since most
bacterial genomes have not been sequenced yet, a large
proportion of input sequences from unknown micro-
organisms may not be able to find significant hits and
can only be aligned to distantly related reference se-
quences, leading to inaccurate estimates of pairwise dis-
tances. Moreover, the overall space and computational
complexities remain O(N?). Another line of research is
to develop greedy heuristic-clustering methods. Two
well-known methods are CD-HIT (23) and UCLUST
(24). Both methods use pairwise sequence alignment and
process input sequences sequentially. Given a predefined
threshold, an input sequence is either assigned to an
existing cluster if the distance between the sequence and
a seed is smaller than the threshold, or becomes a seed
otherwise. The computational complexity of greedy heur-
istic clustering is on the order of O(NM), where M is the
number of seeds and usually M <« N. CD-HIT and
UCLUST are the two only methods that we are aware
of that are capable of handling millions of sequences
using a desktop computer. Although, CD-HIT and
UCLUST organize data in a hierarchical structure, they
are not hierarchical clustering algorithms and there is no
guarantee that the true data structure can be recovered.
In a numerical study presented below, we show that
although CD-HIT and UCLUST run several orders of
magnitude faster than a hierarchical clustering algorithm,
their accuracy is much worse. Interested readers may refer
to a companion paper (25) for a comprehensive review of
existing algorithms for taxonomy-independent analysis.
In this article, we propose a new algorithm, referred to
as ESPRIT-Tree, for hierarchical clustering analysis of
massive sequence data. To avoid confusion, we note that
ESPRIT-Tree is not a program for determining phylogen-
etic trees, but rather for producing hierarchical clusters of
sequences based on sequence similarity, using a tree-like
data structure. We extended the concept of space partition
used by previous methods for handling sequence data of
varying lengths. By assuming that sequence data lives
in a pseudometric space, we created a distance-based
partition of the data without explicitly defining an
inner-product operator to divide the space, and organized
the partition results in a pseudometric based partition tree.
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By repeatedly applying the triangular inequality, a fast
closest-pair searching algorithm was developed within
the ESPRIT-Tree framework. An efficient method for
dynamic insertion and deletion of tree nodes were also
developed. In order to avoid exhaustive computation of
pairwise distances between clusters, we represented a
cluster of sequences as a probabilistic sequence, and
defined a set of operations to align probabilistic sequences
and to compute genetic distances and k-mer distances
between probabilistic sequences. The analyses of space
and computational complexities of the algorithm are pre-
sented. A large-scale test was conducted on a human gut
microbiota data set consisting of over one million se-
quences that demonstrated the effectiveness of the newly
proposed algorithm.

METHODS

This section presents a detailed description of the newly
proposed ESPRIT-Tree algorithm. Throughout the
article, we use a boldfaced lowercase letter (e.g. a) to rep-
resent a vector or a sequence string, and a boldfaced
uppercase letter (e.g. M) to represent a matrix, the ij-th
element of which is written as M.

Prerequisites

Pseudometric space. We assume that sequence data lives
in a pseudometric space. Precisely, given a data set X and
a scoring function d(-) used to measure the similarity
between two sequences, for x, y, ze X, the following
properties hold: (1) d(x, y) = d(y, x), (2) d(x, x) =0 and
(3) d(x, y) <d(x, z) + d(z, y) (this is the triangular inequal-
ity, which states that there cannot be a shorter path from
A to B that goes through a third point C than the direct
path from A to B). The first two properties trivially hold.
Although sequence data does not strictly follow the
triangular inequality, the above assumption is very
weak. A Monte Carlo experiment was performed where
only 7 out of 100K trials were observed that violated the
inequality (See ‘Experimental results’ section).

Pseudometric based partition tree. A pseudometric based
partition (PBP) tree is a height-balanced tree consisting of
multiple layers of nodes at pre-designated distance levels.
Figure 1 depicts a toy tree with four layers. A similar
technique was first used in the well-known BIRCH algo-
rithm for clustering large-scale numerical-valued data
(26). In this article, we extend the concept to handle
sequence data of varying lengths. Each node in the tree
represents a hypersphere region in the space and includes
all sub-nodes and sequences that are positioned in
the region, except for those that have been included by a
preceding node. A non-leaf node is characterized
by F = {CF, i, {Ch,-}jJ:l}, where J is the total number of
children of the node, {Chj}jJ=1 is an ordered list of
pointers to its child nodes, and i/ is the order of the node
in the child list of its parent. CF = {N, r, ¢} is a triple
summarizing the sequences absorbed in the node, where
N is the total number of the sequences, ¢ is a sequence or
a probabilistic sequence (described in the next section)
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Figure 1. PBP tree. A PBP tree partitions an input space into a set of
non-overlapped hyperspherical regions at various distance levels
indicated by circles with different colors (a), and organizes input se-
quences in a tree-like hierarchical structure (b). Each point in (a) rep-
resents a sequence, and the color of a node in (b) corresponds to the
color of a circle in (a). For ease of presentation, the leaf nodes are
omitted, and a root node is created that includes all descendent nodes.
The partition, though not necessarily reflecting the true structure of a
data set as shown in (a), can significantly accelerate a clustering process
by removing most unnecessary sequence alignment operations and
distance computation.

defining the center of the node, and r is the distance
level used to determine whether to absorb a newly
arrived sequence into the node or to create a new node.
A leaf node contains only a single sequence or a single
cluster, and for ease of presentation, a root node is
created with no center and level defined that includes all
descendent nodes (Figure 1b). We call one node a sibling
of another node if both share the same parent. For two
sibling nodes 4 and B, assuming the order of A is smaller
than B, A is then called the predecessor of B. A detailed
description of how to build a PBP tree given a sequence
data set is given in the ‘Constructing a PBP tree’ section.

Probabilistic sequences. A probabilistic sequence is a stat-
istical model used to describe a group of similar sequences.
Suppose we have two sequences a and b, the optimal
global alignment of which is given by:

a: ATCGATCGGGG 11 (1)
b: GTCG-TCGTG — 11

We create a 5 x 11 matrix P, where each row from the top
to the bottom represents a nucleotide A, T, C, G and a
gap, respectively, and each column represents a nucleotide
base of the aligned sequences (The matrix P is presented in
Supplementary Table S1). For notational convenience,
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we associate with matrix P a virtual sequence x of length
11, and collectively call {x, P} a probabilistic sequence.
Each element of x can take one of the four nucleotides
or a gap, the probability (or occurrence frequency) of
which is specified in P. For example, the first column of
P in the above example reads [0.5, 0, 0, 0.5, O]T, where T'is
the matrix transpose. By wusing the probabilistic
Needleman—Wunsch algorithm, which will be detailed in
the following section, the update of P when given a newly
arrived sequence and the computation of the genetic
distance between two probabilistic sequences only
involve the application of simple linear algebra.

Probabilistic Needleman—Wunsch algorithm. The newly
proposed probabilistic Needleman—Wunsch algorithm is
a generalization of the Needleman—Wunsch algorithm
(27) and used to optimally align two virtual sequences.
Suppose we have two probabilistic sequences {x, P} and
{y, Q}. Denote x = [x1,...,x;Jandy = [yy,...,y]. Given
a scoring matrix, the best alignment score between {x, P}
and {y, Q} can be computed by using the following recur-
sive equation:

S(—1,1=1)+ C(x;, y1)
S(j, 1) =maxy S(j—1,1) + C(x;, gap) (2)
SO, 1 =1)+ Clgap, y),

where C(x;, y,), C(x;, gap) and C(gap, y;) are the costs
of aligning x; to y;, x; to a gap, and y, to a gap, respect-
ively. However, since both x; and y; can take a nucleotide
base or a gap with a certain probability, by denoting
A={A, T, C, G, gap}, C(x;, ) and C(x;, gap) can be
computed as:

5

Qg ) = Y PiQuClAs, Ay), 3)

i=1 n=1

5
Clxj, gap) = ) _ PyCAi, gap) . )

i=1

where Pj; and Q,; are the jj-th and n/-th elements of
matrices P and Q, respectively, and A; is the i-th
element of A. C(x;, y) and C(x;, gap) can be interpreted
as the expected cost of aligning x; with y; or a gap, respect-
ively. The alignment score for each position is stored in
an array with a pointer that records the current optimal
operation and provides an effective path to backtrack the
optimal alignment. In the above descriptions, we use a
linear gap penalty for simplicity. Extension to an affine
gap penalty is straightforward.

The proposed probabilistic Needleman—Wunsch algo-
rithm shares the same idea as the profile—profile alignment
(PPA) used in the well-known MUSCLE algorithm for
multiple sequence alignment (28). However, PPA works
on two groups of sequences, rather than two probabilistic
sequences. With the concept of probabilistic sequence, we
can go beyond PPA and compute genetic distances
directly based on alignment results, which is described
below.

PAGE4 oF 10

Genetic distances between probabilistic sequences. The
genetic distance between two globally aligned sequences
is computed as the number of mismatches divided by the
total length of the sequences. The distance between
two virtual sequences can be calculated analogously.
Let {x, P} and {y, Q} be two aligned probabilistic se-
quences of length L. Suppose that we randomly select
two sequences s = [sq,...,s57] and t = [£q,..., ;] following
the probabilities specified by P and Q, respectively.
The probability that the two sequences differ at a given
position, say /, can be computed as:

5
P(si# 1) =y Pu(l — Qu), 5)

i=0

and the genetic distance between virtual sequences x and y
can be computed as

1 L
d(x.y) = > Plsi # ). (6)
=1

By construction, the matrices P and Q record the distri-
butions of the sequences of two clusters. We call d(x, y)
a probabilistic average distance of two clusters, and use it
as an approximation of average inter-cluster distances.
A simulation study was performed that showed that the
two distances have a nearly perfect correlation, and using
probabilistic distances only has a negligible impact on
clustering outcomes (see Figures 2 and 3). A highly
desirable property is that the complexity of computing
probabilistic distances is a constant ‘independent’ of the
sizes of clusters.

We next define the operation of merging two aligned
probabilistic sequences. Suppose we have two prob-
abilistic sequences {x, P} and {y, Q}, representing N
and M sequences, respectively. After alignment, P and Q
are updated as P and Q. The probabilistic matrix T
of the merged sequence can be readily computed as
T = (NP + MQ)/(N + M).

K-mer distances between probabilistic sequences. The data
structure imposed by a PBP tree and using a probabilistic
sequence to represent a group of similar sequences enable
us to remove a large number of unnecessary sequence
comparisons. Yet, it is still computationally expensive to
align millions of sequence pairs. One commonly used
strategy to alleviate the above issue is to use k-mer
distances to identify a short list of candidate sequences
for exact sequence comparison. This technique has been
used by various bioinformatics algorithms, including
MUSCLE (28), ESPRIT (13), CD-HIT (23), UCLUST
(24) and RDP classifier (29). It has been shown that
k-mer distances are highly correlated with genetic dis-
tances and can be computed thousands of times faster
than sequence alignment. In this section, we extend the
concept of k-mer distances to handle probabilistic
sequences.

A k-mer is a sequence string consisting of k& nucleotides.
By specifying the value of k, a complete alphabet C of
k-mers can be constructed. Given a sequence x, a k-mer
statistics vector v is computed, where the i-th element of
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Figure 3. (a) NMI scores of four methods evaluated at 14 distance levels. (b) Box-plot of the maximum NMI scores of four methods. The genus

assignments of input sequences were used as ground truth.

v records the occurrence frequency of the i-th k-mer of
C in sequence x. Then, the k-mer distance between two
sequences x and y can be computed as:

€]
d(x,y) = 1 =) min(vx(). vy(0))/(min(Ly, L) =k + 1) ,

i=1
™)

where |C| is the number of elements in C, and L; and L, are
the lengths of x and y, respectively.

In order to compute k-mer distances for probabilistic
sequences, we need to re-define k-mer statistics vector v.
Let B={A4, T, C, G} and t = [1},72,...,Tg] be the i-th
k-mer of C. We further assume that t,,...,Tg take the
Jji,- .., jx-th nucleotides of B, respectively. The occurrence
frequency of t in probabilistic sequence {x, P} of length
L can then be computed as:

L—K+1
i)=Y PyPuriy - Park-i ®

i=1

Py Pit1y, - - - Piyk—1), can be interpreted as the prob-
ability of observing k-mer t at the i-th base of x.

The k-mer statistics are used in two places in ESPRIT-
Tree. First, when constructing a PBP tree, we use k-mer
distances as a filter to determine whether the distances
between a newly arrived sequence and the centers of the
nodes are within a predefined threshold before performing
exact sequence comparison. Secondly, when searching
for the nearest neighbor of a query sequence in a set of
candidate sequences, we calculate k-mer distances to
optimize the order of comparison and perform a
branch-and-bound search. Specifically, the candidate
sequence with the smallest k-mer distance to the query
sequence is considered first, and the obtained genetic
distance is then used to compute an upper bound based
on the correlation relationship between k-mer and genetic
distances. Sequences with k-mer distances larger than the
bound are removed from the candidate set, and the re-
maining sequences are sorted and compared to the query
sequence. The procedure repeats until the candidate set
becomes empty. The sequence with the smallest genetic
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distance is identified as the nearest neighbor of the query
sequence.

ESPRIT-Tree

With the above prerequisites, we are ready to present the
proposed algorithm. ESPRIT-Tree consists of two steps.
First, a PBP tree is constructed that roughly partitions an
input space into a set of hyperspherical cells. Second, a
refinement procedure is carried out that iteratively finds
the closest pairs of sequences or clusters and merges them
into a new cluster. The two steps are detailed below.

Constructing a PBP Tree. A PBP tree contains multiple
levels, uniformly spaced on a logarithmic scale starting
from the top at 0.1 and to the bottom at 0.01, and
grows incrementally to include all input sequences. The
number of levels created is a parameter of the algorithm.
Initially, the tree comprises only one branch of nodes, the
centers of which are all assigned to the first arrived
sequence. Given a new sequence, we first compare it
with the center of the child nodes of the top node in a
fixed order. If the resulting pairwise distance is larger than
the threshold, a new node is created; otherwise, the
sequence travels down toward the leaf nodes through the
first branch that yields a pairwise distance smaller than
the threshold. The reason that we do not assign the
sequence to the nearest center is that since the tree is con-
structed dynamically, the hyperspherical cells can overlap
(see Figure 1a), which makes the search of the closest pairs
in the second step difficult. After a sequence is absorbed
into a node, the parameter of that node is updated using
the operations defined in the previous section. The pro-
cedure is repeated until the sequence reaches a leaf node at
the bottom. If we are not interested in microbial diversities
at distance levels larger than 0.1, there is no need to grow
the tree upwards.

A PBP tree provides a coarse representation of the
entire data, and the representation is most accurate at
the bottom level. Since only the sequence index informa-
tion and cluster feature vector F = {CF, i, {Chj}jjzl} of
each node are saved in a PBP tree, the memory required
is very small. We also see that when a sequence travels
from the top to the bottom, it visits only a very small
fraction of the tree and aligns only with the center se-
quences of the visited nodes. For example, for the tree
presented in Figure 1b, if we decide to use the right
branch, the nodes on the left branch will never be
touched. The computational complexity of constructing a
PBP tree is on the order of O(N), instead of O(N?). For the
problems we are most interested in, NV is on the order of
10°. Hence, a PBP tree can be built very efficiently. In our
simulation study, it took only ~0.5 h to build a PBP tree
for one million sequences using a desktop computer.

Clustering refinement. Clustering refinement consists of
two steps: finding the closest pair among existing
clusters and dynamically updating a PBP tree. The first
step is computationally the most expensive module. A
naive implementation of finding distances between all
pairs of clusters and selecting the minimum requires
O(N?) operations. This problem has been intensively
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studied in the field of computational geometry (30).
Approximation algorithms can solve the problem in
O(N log N) time. However, they work only for
numerical-valued data of fixed dimension, and little
work has been done to handle sequence data of varying
lengths. We below show how to utilize the data structure
imposed by a PBP tree to design a fast and accurate
closest-pair searching algorithm. A PBP tree partitions
an input sequence space into a set of non-overlapped
hyperspherical regions at various distance levels and or-
ganizes them in a hierarchical structure (Figure 1). Similar
sequences are grouped into the same or adjacent cells,
which suggests that the nearest neighbor of a sequence
can be found locally, avoiding the need to explore the
entire space.

Suppose that we have a data set consisting of N
sequences. In order to find the nearest neighbor of
sequence x, we first compare it with its successor sibling
sequences that share the same parent as x and have an
order larger than that of x, and find a sequence y that
yields the minimal pairwise distance among the sequences
compared. We then move upwards to compare x with the
center of the parent node T to validate the identified pair.
The distance between x and the boundary of the parent
node is computed as d, = r; — d(x, ¢;), where r; and ¢
are the distance level and the center of T, respectively.
There are two possibilities.

Case 1: If d(x, y) > d,, it can be inferred that there may
exist a sequence outside the region covered by T that is
closer to x than y. We thus move up one level and
explore sequences belonging to the successor sibling
nodes of T, and use the parent of T, K, as the new
reference node. Note that we ignore all of the se-
quences in the predecessor nodes of T, which greatly
speeds up the searching process. For each successor
node with center ¢, and level r,, we first compute
the distance between sequence x and its center. If
d(x, ¢)>d(x, y)+ry it can be proved by using the
triangular inequality that there does not exist a
sequence in the node that can be closer to x than vy,
and hence all sequences within that node can be
ignored; if d(x, ¢) <d(x, y)+r,, we check the child
nodes of the successor node by using the triangular
inequality, and repeat the above process until we
reach a leaf node. After all successor nodes are
explored, a sequence z is identified that yields the
minimal distance among all sequences checked. If
d(x, z) < d(x, y), y is replaced by z and compared to
the center of K to determine the next move.

Case 2: If d(x, y) <d,, we bypass all of the sibling nodes
of T and go on to check if the sibling nodes of K need
to be explored.

The above described searching process continues until the
root node is reached. Sequences x, y and the correspond-
ing pairwise distance is recorded. It should be noted that
y is not necessarily the nearest neighbor of x since only
successor nodes are searched. We thus call y the successor
nearest neighbor (SNN) of x. Given N sequences, a list of
N sequence pairs is generated. By using a heap structure



PAGE 7 oF 10

(31), the minimal distance among the N sequence pairs can
be found in O(log N) time, and the algorithm requires only
O(N) space. For ease of presentation, we above consider
only how to find the closet pairs of sequences. The deriv-
ation can be easily generalized to find the closest pairs
of nodes containing a group of sequences by using the
probabilistic Needleman—Wunsch algorithm described
in the ‘Probabilistic Needleman—Wunsch algorithm’ sec-
tion. The following lemma proves that although we
do not explore the entire data set, the sequence pair
found by the proposed algorithm is the closest pair
among the input sequences.

Lemma 1. Let X be a set of input sequences in a pseudo-
metric space. For the algorithm described as above, the
sequence pair found by the algorithm is the closest pair of
the input sequences.

Proof. It is trivial to prove that if all sequences in succes-
sor nodes are searched, a SNN list contains the closest
pair. We then prove that if d(x, y)<r —d(x, ¢;), no
sequence in the sibling successor nodes of T is closer to
x than y and thus can be ignored. Suppose there exists
a sequence z in the sibling successor nodes so that
d(x, z)<d(x, y). By using the triangular inequality,
d(z, ¢;)<d(z, x)tdx, ¢|) <d(x, y)tdx, ¢|)<r;, which
contradicts the assumption that z is a sequence in the
sibling successor nodes of T. The same strategy can be
used to prove that if d(x, ¢) > d(x, y)+r, there does
not exist a sequence in the node that can be closer to x
than y. ]

After the closest pair is found, we then merge the
identified sequence pair into one cluster, remove the two
sequences from the tree, and insert the newly formed
cluster into the PBP tree by using the same procedure
we used to construct the tree in the first step. More spe-
cifically, a probabilistic sequence is generated from the
two merged sequences, and then compared to the center
of the children of the root node by using the probabilistic
Needleman—Wunsch algorithm. If the resulting pairwise
distance is larger than the threshold, a new node is
created; otherwise, the sequence travels down toward the
leaf nodes through the first branch that yields a pairwise
distance smaller than the threshold. The SNN table is then
updated. First, the two identified sequences are removed
from the table, the nearest neighbor of the newly formed
probabilistic sequence is then identified and added to the
table, and finally the sequences that previously set either of
the two identified sequences as the nearest neighbor are
reassigned new nearest neighbors. It should be noted that
since the new formed cluster or probabilistic sequence is
added to the tree dynamically, in order to maintain a
correct SNN list, the new cluster is compared with all
existing sequences, except for those that are bypassed
according to the triangular inequality. Nevertheless, due
to the hierarchical partitioning of the data set by the PBP
tree, only a small fraction of sequences are actually
compared. The iteration of finding the closest pair,
creating new clusters and updating the SNN table con-
tinues until only one cluster is left or the distance
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between the closest pair is larger than a predefined
threshold.

Unlike conventional hierarchical clustering algorithms,
the proposed algorithm does not require the generation
of a distance matrix. All of the operations are executed
on the fly, and the distances are computed only when they
are needed. The memory required to store a SSN table
is on the order of O(N). The algorithm thus addresses
the space-complexity issue of conventional methods. It is
difficult to conduct a computational complexity analysis.
However, since our algorithm uses a divide-and-conquer-
based strategy to recursively partition a sequence space
and refine clustering results, it is well known that this
type of algorithm has a quasilinear complexity (19-21),
which is empirically verified in a simulation study.

NUMERICAL EXPERIMENTS

We present a numerical experiment to compare ESPRIT-
Tree with three other methods, namely, CD-HIT (23),
UCLUST (24) and ESPRT (13). CD-HIT and UCLUST
are two greedy heuristic-clustering methods widely used
by the microbiology community. ESPRIT is a standard
implementation of hierarchical clustering and used to
benchmark the performance of ESPRIT-Tree. We demon-
strate that the proposed algorithm achieves a similar
accuracy to the standard hierarchical clustering algorithm
but with a computational complexity comparable to
CD-HIT and UCLUST. All experiments were performed
on a desktop computer with Intel E5462 2.8GHz and
16GB RAM.

Experimental setup

A real-world sequence data set was used to benchmark
the performance of the four methods. The data set was
originally used to study the connection between obesity
and altered compositions of the human gut microbial
community (8). It consists of ~1.1 M sequences with an
average length of 232 nucleotides, covering the V2
hypervariable region of 16S rRNAs collected from the
stool samples of 154 individuals. This is one of the most
comprehensive 16S rRNA based surveys of the human gut
microbiota available to date.

One of the major obstacles of a benchmark study is that
for complex microbial communities there is no ground-
truth information about what species are actually in the
community. To overcome this difficulty, we first con-
structed a reference database from the RDP-II database
(9), where each reference sequence was fully annotated.
We then ran a MegaBlast (32) search of the gut data
against the reference database, and used a stringent criter-
ion to retain the annotated sequences if the identity per-
centage >97% and the length of the aligned region >97%
of the total length. This resulted in a total of ~750K reads
classified into 671 species and 283 genera. We then applied
the four methods to the annotated sequences and used the
commonly used normalized mutual information (NMI)
criterion (33) to evaluate how the outcome of a clustering
algorithm agrees with the ground truth. NMI penalizes
both assigning sequences with the same label into different
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clusters and assigning sequences with different labels
into the same clusters. NMI = 1 means that a clustering
result completely agrees with the ground-truth partition,
and NMI =0 means that each sequence is randomly
assigned. A mathematical description of NMI can be
found in the Supplementary section S2. In order to
remove statistical variations, the experiment was
repeated 20 times. In each iteration, 30K sequences were
randomly extracted from the annotated data set, the four
methods were used to group the sequences into clusters at
various distance levels ranging from 0.01 to 0.15, a NMI
score was computed at each distance level by using either
the species or genus assignments of input sequences as the
ground truth, and the maximum NMI score was recorded.
We observed high, medium and low abundance compo-
nents (i.e. a long tail) in the test data sets, which is similar
to what observed in a real microbial community and much
more complicated than the previously used mock commu-
nity generated from 43 known 16S rRNA sequences
(13,34). We acknowledge that this benchmark is limited
to known taxa and is subject to a certain degree of in-
accuracy because not all taxa evolve at equal rates and
so OTUs are not expected to map perfectly onto species;
however, these factors should not bias the evaluation in
favor of any specific method since they were all applied
to the same data set, and, all else being equal, a method
that gives clusters consistent with existing taxonomic
knowledge should generally be preferred over one that is
less consistent.

For UCLUST, the clustering outcomes may depend
on the order of sequences presented to the algorithms.
The default setting is to sort input sequences based on
their lengths, while another possibility is based on their
abundances (i.e. a sequence and its subsequences are con-
sidered as one sequence). We found that abundance sort
yielded better results, which are reported in the article.
For ESPRIT, we used a loose k-mer threshold of 0.8 to
remove unnecessary sequence alignments. At the distance
levels <0.2, the results of ESPRIT are exactly the same as
those generated by the standard method. We considered
both average and complete linkage functions in ESPRIT,
and found that both performed similarly in terms of clus-
tering performance. Only the result of average linkage was
reported.

Experimental results

A key assumption of the proposed method is that
sequence data lives in a pseudometric space. We per-
formed a simulation study to justify the above assump-
tion. We first randomly selected 30 K sequences from the
gut data set and applied ESPRIT with the average linkage
function (ESPRIT-AL) to group the selected sequences
into clusters at various distance levels ranging from 0.01
to 0.10. We then randomly selected three clusters, and
applied the probabilistic Needleman—Wunsch algorithm
to generate three probabilistic sequences, represented
by x, y and z, respectively, from the sequences within
the three selected clusters. The ratio of the pairwise dis-
tances of the three sequences d(y,z)/(d(x,y) + d(x,z)) was
computed. A ratio of less than or equal to 1 means that the
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triangular inequality is satisfied. We repeated the experi-
ment 100 K times, and observed only 7 cases where the
inequality was violated. This experiment suggests that it is
generally true that sequence data follows the triangular
inequality.

We next conducted a benchmark study to compare the
clustering performance of the four methods. Figure 2a
depicts the NMI scores as a function of distance levels,
averaged over the 20 runs, by using the species assign-
ments of input sequences as ground truth. We observe
that all curves have a bell shape. This can be explained
by the fact that when a distance level is small, sequences
belonging to the same species are partitioned into different
clusters, and when a distance level is large, sequences be-
longing to different species are grouped into the same
clusters, and by definition both result in suboptimal
NMI scores. We also see that the NMI scores of the
four methods may peak at different positions, due to the
different formulations used to define the distance between
two clusters. Hence, the NMI scores obtained at the same
distance level are not directly comparable. We thus
compared the maximum NMI score of each method,
which by definition corresponds to the best clustering
result that a method can achieve. From Figure 2b, we
observe that ESPRIT-Tree performed similarly to
ESPRIT-AL, and significantly better than CD-HIT and
UCLUST (P-value < 107 based on a Student’s t-test).
We repeated the analysis by using the genus assignments
as ground truth, and observed similar results (Figure 3).

One of the main purposes of performing taxonomy-
independent analysis is to estimate the biodiversity of
a microbial community. In the microbiology literature,
3% and 5% are the two most commonly used criteria
to define species and genus-level OTUs, respectively,
although these definitions are controversial (14,35,36).
Table 1 reports the numbers of species and genera
estimated at the 0.03 and 0.05 distance levels, and those
at the positions where the NMI scores peak. We see that
the numbers of OTUs observed at the 0.03 and 0.05
distance levels are significantly larger than the ground
truths, and vary significantly for different methods
although they were all applied to the same data sets. It
was previously thought that sequencing errors are the
main reason for severe overestimation of microbial diver-
sity and several sequencing-error-correction algorithms
have been developed to address the above issue [e.g.
(34,37)]. However, we observe from Table 1 that the
numbers of OTUs for each method obtained at the peak
positions are always much closer to the ground truths than
those obtained at the 0.03 and 0.05 distance levels. This
suggests that the overestimation to some extent is due to
the incorrect use of distance levels. The commonly used
3% and 5% are not proper for defining species and
genus-level OTUs, which was also observed in (38), and
researchers should be careful when interpreting their di-
versity estimates. ESPRIT-Tree and ESPRIT-AL yielded
the most accurate estimates of microbial diversity among
the four methods.

The massive amount of data generated by high-
throughput pyrosequencing technologies poses serious
challenges to existing algorithms. In addition to
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Table 1. The numbers of OTUs observed at the 0.03 and 0.05
distance levels and at the peak positions for the four methods

ESPRIT-AL ESPRIT-Tree UCLUST CD-HIT

0.03 level 1045 (19) 1137 (30) 1193 (26) 920 (23)
0.05 level 241 (7) 268 (6) 362 (11) 314 (9)
peak NMlI-species 402 (9) 400 (9) 590 (13) 314 (9)
peak NMI-genus 190 (5) 176 (7) 216 (6) 243 (7)

The ground truths of the numbers of species and genera are 371+7
and 170+5, respectively. The number in the parenthesis is one SD.
ESPRIT-Tree and ESPRIT with the average linkage function
(ESPRIT-AL) yielded the most accurate estimates of microbial diversity
among the four methods.

accuracy, computational complexity is another important
issue that needs to be considered. To demonstrate the
scaling property of the new method, we compared
ESPRIT-Tree with CD-HIT and UCLUST using a
human gut data set with a varying number of sequences,
ranging from 1K to 1.1M. It is computationally intract-
able to run ESPRIT on 1.1M sequences using a desktop
computer. Figure 4 reports the CPU times of the three
methods as a function of the numbers of sequences.
The empirical complexity and confidence interval are
also reported. In terms of computational efficiency,
UCLUST performs the best, ESPRIT-Tree the second
and CD-HIT the third. However, all three methods have
a quasilinear computational complexity of O(N'). It took
ESPRIT-Tree ~11h to process 1.1 M reads to generate
OTU:s at ten distance levels (0.01-0.1). We have previously
applied ESPRIT to the same gut data set using a computer
cluster of 100 processors (12). It took ESPRIT ~4 days to
finish the analysis, which is about 800 times slower than
ESPRIT-Tree.

We performed additional experiments using other
hypervariable region and near full-length 16S rRNA
sequences and observed similar results. Due to space limi-
tations, the results are presented in the Supplementary
Data.

CONCLUSION

With the advent of the massively parallel pyrosequencing
technology, researchers can now obtain millions of signa-
ture sequences easily and inexpensively for diverse appli-
cations ranging from human epidemiological studies to
global ocean surveys. The molecular studies of microbial
communities are recently entering an era of quantization,
where not only species richness but also detailed com-
positions of microbial communities are required in order
to query multiple biological and ecological questions.
Considering that bacterial populations usually contain a
significant amount of unknown species, taxonomy-
independent analysis is a widely accepted and powerful
tool for studying microbial community dynamics at high
resolutions, and hierarchical clustering is an essential step
to explore the taxonomical information of bacterial popu-
lations. In this article, we have proposed a novel compu-
tational algorithm that enables researchers to perform
clustering analysis of millions of 16S rRNA tag sequences
on a desktop computer, while maintaining a clustering
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Figure 4. Scalability of ESPRIT-Tree, CDHIT and UCLUST per-
formed on a human gut microbiota data set with a varying number
of sequences ranging from 1K to 1.IM. The empirical complexity and
confidence interval (CI) are also reported.

accuracy comparable to the standard hierarchical cluster-
ing algorithm. The new algorithm can be extended for
parallel computing. While parallel computing is generally
not a viable solution to scaling up O(N?) algorithms, the
quasilinear space and computational complexities of the
proposed algorithm make it computationally tractable to
process tens of millions of sequences by using a small
computer cluster. Taxonomy-independent analysis plays
a key role in several recently developed pipelines
(e.g. QIIME, mothur and PANGEA), and our algorithm
can significantly improve the utility of these pipelines, as
each includes an OTU picking step that is distinct from
the chimera checking step (we note that ESPRIT-Tree
can either be applied to chimera-checked data, or that
the representative or consensus sequences from clusters
of nearly identical sequences generated from ESPRIT-
Tree output can be chimera-checked, to obtain improved
OTU counts from real data in which chimeras are
frequent). Although in this article we mainly focused
on 16S rRNA based studies, the new algorithm can be
used for other large-scale sequence based studies that
require large-scale clustering analyses. The ESPRIT-Tree
software is available at http://plaza.ufl.edu/sunyijun/
ES-Tree.htm.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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